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Commonly. in offshore applications, {requency domain analyses of nonlinear
systems have been approximately carried out using the method of equivalent
statistical linearization. This method. however, fails to capture the non-
Gaussianity of the response in terms of its higher-order statistics. In addition,
response energy in frequency ranges outside that of the input spectrum is not
observed using this technique. Herein, a method of equivalent statistical
quadratization is proposed. whereby a statistically asymmetric nonlinearity in
the forcing of a tension leg platform (TLP) is cast in a quadratic form. The
present quadratization method takes advantage of the Gaussianity of the first
order response to simplify the recasting of the nonlinearity in its approximate
polynomial form. A Volterra series approach leads to the development of transfer
functions from which the response spectrum as well as statistics of the response
may be obtained. Response cumulants. computed up to fourth order via direct
integration or the Kac—Siegert technique. reveal the non-Gaussian character of
the response which was hidden by linearization and, when used in the framework
of some available non-Gaussian probability density function models, indicate
acceptable agreement with time-domain simulations of the original nonlinear
differential equations. In addition. the response power spectral density contains
an additional peak near the resonant frequency of the TLP, where input energy at
difference frequencies of the input spectrum lies, corroborating information
gleaned from the time-domain simulation.

INTRODUCTION wind loads and wave loads acting on TLPs are

nonlinear, for example, wind loading in the presence
The challenge of developing deep water oil fields has of the square of the fluctuating velocity term and the
placed a growing importance on the economics and wave drag force in the Morison equation1 which
safety issues concerning drilling and production plat- contains a nonlinear term involving the water particle
forms. The tension leg platform (TLP) is the most velocity. Furthermore, the hydrodynamic loads due to
promising structural concept among different structural potential effects (diffraction and radiation) contain
systems being considered for deep water applications. inherent quadratic load effects (e.g. Refs 1 and 2).
The compliant nature of TLP motions in the horizontal Historically, analyses of nonlinear systems in the
plane makes these platforms sensitive to low frequency frequency domain have been based on the statistical
oscillations due to wind and wave drift forces. Both the linearization approach (e.g. Refs 3—5). The linearization
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approach, however, fails to adequately represent
important features of the nonlinearity. Particularly, the
response power spectral density function spans only the
range of excitation frequencies while the energy at the
sum and difference frequency components is nonexis-
tent. Further, the response probability density function
remains Gaussian, giving rise to underprediction of the
response extremes which are very important for design
considerations.

The concept of quadratization or polynomial
approximation of nonlinear effects has been used in
the study of hydrodynamic loads on offshore structures
(e.g. Refs 6-20). Most of these studies are limited to
obtaining the second-order statistics of the loading or
response process while some are extended to extremes of
wave force statistics and higher-order response cumu-
lants. Spanos and Donley'* '° formulated a more
general quadratization technique for the treatment of
arbitrarily statistically asymmetric nonlinear systems.
The investigation established frequency domain moment
expressions up to the third order, but considered fourth-
order moment computations prohibitive, and developed
a probability density function estimation based on the
Gram-Charlier expansion. Kareem and Zhao' "
formulated an alternative quadratization method for
the analysis of nonlinear wind and wave loads on TLPs
which capitalized, in terms of computational efficiency.
on the Gaussianity of the first-order response solution.
An integral factorization developed in their studies
helped to make calculations of fourth-order response
statistics feasible, and more accurate probability density
approximations possible. References 17. 18 and 20 also
investigate a procedure termed equivalent statistical
cubicization for use in cases when the nonlinearity is
statistically symmetric. This paper addresses the
response of a TLP to wind and wave loads. The
nonlinear loading is expressed via quadratization in
terms of an equivalent polynomial that contains terms
up to quadratic order.

THEORETICAL BACKGROUND

Historically., two fundamental approaches exist for
solving nonlinear stochastic problems: one rooted in
the theory of Markov processes and the associated
Fokker—Planck equation, and the other based on
frequency domain analysis. Herein, we will pursue the
latter approach by assimilating a nonlinear system to a
quadratic form utilizing the method of equivalent
statistical quadratization and applying the Volterra
theory for system analysis in the frequency domain.
Thereby, we will be able to establish statistical
descriptors for the system response up to fourth-order
to more accurately characterize 1ts non-Gaussian nature.
The statistical quantities thus obtained may be employed
within several current frameworks for estimating

probability distributions and crossing rates of non-
Gaussian processes, with the ultimate goal of effectively
describing the extremes of the response process.

Volterra series

A Volterra series expansion may be viewed as a regular
expansion in power series, ‘with memory’.?! We may
treat the system with a polynomial nonlinear transfor-
mation as a Volterra equivalent system. The general
second-order Volterra equivalent system may be described

as the following,

x(1) = Jx‘hl(r)u(t—r) dT%—%JOo Ihz(T,U)

xu(t —)u(t — o) dr do = x(1) +1x,(1) (1)

where u(f) is an input process, 4, (7) and h(r,0) are
linear and second-order impulse response functions,
respectively, and x(#) and x,(¢) are linear and second-
order response components. Notice that the first-order
kernel is simply the impulse response function of a linear
system, while the higher-order kernels can be viewed as
higher-order impulse response functions which serve to
characterize the various orders of nonlinearities. The
general formulation of the kernels is not available, but
when the nonlinear transformation is in the polynomial
form, the kernels can be evaluated. The application of
this series to nonlinear systems was first investigated by
Wiener™* in 1942. Later, Barrett® reported on a
systematic study of the utility of the Volterra series for
analyzing physical systems.

The first term of eqn (1), representing the output of a
first-order Volterra system, is the same as the response
of a linear, time-invariant system. The second term in (1)
1s a two-dimensional convolution which represents the
output of a second-order Volterra system where &,(7, o)
is the second-order Volterra kernel and is generally
assumed symmetric. This kernel is related to the
quadratic transfer function by,

Hﬂ(u,‘l .uJ:) = [ J hz(T| s 7'3) e—zu;,‘r, C——MJZTZ dT[ de.

S @

Clearly. then. the response of the second-order Volterra
system will contain energy at frequencies which are, in
fact. the sums and differences of frequencies contained
in the input.

Types of nonlinearities

In this study we will cast a nonlinear system in the form
of the Voiterra functional series up to the second order
for the purpose of statistical analysis. It is first
important to note that the statistical characteristics of
a given nonlinearity make it more or less conducive to
analysis by a particular order Volterra system. Indeed, a
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statistically symmetric nonlinear function, g(u), defined
as a function for which E[g(«)*"!] = 0 for all n, is not
treatable by the quadratization technique. Conversely, a
statistically asymmetric nonlinear function, g(u), for
which E[g(u)*"~"] is nonzero for all n, may be effectively
approximated by the present technique. Given a zero-
mean, Gaussian process, u(z), the functions g(u) =
(u+a)|u+al and g(u) = u® are examples of statisti-
cally asymmetric nonlinearities.'’

Modeling of wind and wave loads

The compliant nature of TLP motions in the horizontal
plane makes their surge response sensitive to wind-
induced drag force fluctuations. Some works covering
the second-order statistical characterization of the
response of a TLP under the dynamic effects of wind
are found in Refs 11 and 27-31. Kareem and Zhao'®
developed the analysis to include up to fourth-order
response statistics using an equivalent statistical quad-
ratization technique as well as the Kac—Siegert
approach. For more detail on the modeling of wind
loads, the reader is referred to Ref. 32.

Typical TLP structures, depending on their sub-
merged geometry and size, experience a combination
of wave-induced viscous and potential loads. The
viscous effects are generally described through the drag
term of the Morison equation. for example,

Fy(t,x)= J 0-5pCqylu{ v ooty — x(1)]

X (u( y,z.t) — xX(1)) ds. (3)

where F (¢, x) is the viscous force, S, is the submerged
surface area, p and Cy are water density and a force
coeflicient, respectively, and u is the water particle
velocity. The first-order diffraction loads are given by
the convolution of the wave surface elevation, n(r), with
an appropriate convolution kernel. The wave radiation
force is given in terms of frequency-dependent added
mass and radiation coefficients which can be obtained
from diffraction analysis.

The higher-order effects resulting from hydrodynamic
loads of viscous and potential origins introduce non-
linearity with the consequence of non-Gaussian statis-
tical features. These higher-order effects are attributable
to the following sources: (i) nonlinearity in Bernoulli’s
equation; (ii) nonlinearity in the Morison drag term; (iii)
nonlinearity in the free surface wave profile: (iv)
displacement and velocity dependence of wave-induced
forces; and (v) nonlinear diffraction (e.g. Refs I, 11-13.
16 and 33-41). The second-order forces can be expressed
in terms of the second-order kernel, hf)('rl,rg)‘ or the
quadratic transfer function Hfj( /1. f»). The hydro-
dynamic loads of potential origin can be conveniently
expressed in the above format. The quadratization
technique is necessary to express the second-order

viscous load effects on TLPs. Since the potential effects
do not require the quadratization procedure, the
objective of this study could be met by just treating
the drag-induced viscous loads. For this reason, the
computationally efficient Morison equation was used for
hydrodynamic loads instead of a combination of drag
and potential effects from the Morison equation and
diffraction theory.

The wave force is expressed in terms of the relative
velocity by a modified form of the Morison equation for
the drag force acting on the TLP in the surge direction,’

Fwave:Kmu_FKd|u+U_x|(u+U—x)a (4)

where K, = pCp, Ve; Ky = 1pCq 4. In this formulation,
the first term represents inertial force and the second
describes the viscous effects, where u, and & are water
particle velocity and acceleration, respectively, and U is
the current speed. Here, p is the water density, C,, and
Cy4 are the inertia and drag coefficients which are usually
determined from experimental data, and A, and V, are
related to the area and volume of the submerged portion
of the platform. The fluctuating water particle velocity,
u, 1s characterized by a spectral representation wherein a
Gaussian wave elevation spectrum, e¢.g. JONSWAP,
Pierson--Moskowitz, etc. (e.g. Refs 1 and 2), is chosen to
characterize a set of sea conditions and is related to the
spectrum of u by a linear transfer function.

Unlike the wind force, the viscous wave force is not
cast in a purely polynomial form, but must be so
approximated for the implementation of the Volterra
theory. Again, it is important to note that although the
wave process may be assumed as Gaussian, the
structural velocity in the preceding equations, due to
its nature as a response to a nonlinear forcing function,
is no longer Gaussian.

Equivalent statistical quadratization

In a quadratization approach, a statistically asymmetric
nonlinear system having an arbitrary form is approxi-
mated by a second-order polynomial expression for
analysis within the Volterra framework. In the approx-
imate quadratic representation of the system the linear
component is analogous to conventional statistical
linearization while the retention of a second-order
component gives the method its name.

The governing equation of a single-degree-of-freedom
nonlinear system containing statistically asymmetric
nonlinearities in both the system characteristics and
the excitation may be written,

Mi+ Cx+ Kx + g(x, %) = fL(v) + fu(v, X), (5)

where M, C, and K are the structural mass, damping
and stiffness, respectively, g(x,X) represents a system
nonlinearity, fi (v) and fy(v, x) represent the linear and
nonlinear forcing terms, respectively, and v is the input
wind velocity or water particle velocity process. The
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forthcoming discussion will outline the quadratization
procedure.

Slow drift approximation

To eliminate the computational difficulty imposed by
the non-Gaussian structural velocity, a slowly varying
drift approximation is invoked. For a system with low
natural frequency, the slowly varying drift motion plays
an important role. This leads to a reasonable assump-
tion, i.e. the higher-order nonlinear velocity terms can
be neglected. As an example, the nonlinear terms in the
wind and wave induced drag descriptions expanded in
Taylor series in terms of the second-order component.

X,, about the linear, Gaussian component, x,, are given
by

(w+ W—x)

2

= (w+ W %) - 2Ew+ W - 1.
(6)

lu+U—-x|(u+U—x%)=|u+U—- % [(u+ U —x))
—2E[Ju+ U — x]ixs. (7)

It is assumed as well that the second-order response
itself is small compared to the first-order response and

terms involving its higher-order powers may thus be
neglected.

Splitting technique

Returning to eqn (35), we now expand the nonlinear
functions in Taylor series in terms of the quadratic
response and its velocity, and apply the assumptions of
the previous section,

dg(x), %)) X, | gl X )

: : 5
glx. %) = gla, i) + ox 2 ox 2
+ O(x3.%3%)
. "\‘:
g(x,x)zg(rl \1)+ng ) +,U/g\/7- (8)

where g, and p,, are the expected values of the terms
they replace. Similarly,

v ) %

T 5 T owa).

In(u,X) = ful(v, X)) +

X»

Snlv, X) = fy(v. \1)_Nf»‘2:< (9)

By expanding in this way, two nonlinear functions of
Gaussian processes (the initial terms on the right-hand
sides of eqns (8) and (9)) remain along with two additional
damping terms and an additional stiffness term.

Quadratization procedure
Since the two nonlinearities discussed in the previous

section still have arbitrary forms, they must finally be
approximated in terms of quadratic polynomials for the

Volterra series technigue to be effective. To this end,
second-order approximations for both terms are written
as,

2 . )
~~ %(ﬁlxl + Box1 %) + B3X1)

L

In(u, X)) = ZJ dz oy (v — x;)

T Jo

glxy, %)

#53|) dsento =, (10)

where the summation indicates the total excitation
acting on each element of the structure. The unknown
coefficients in eqns (10) are solved for by mean-square
minimization of the following error terms,

¢ = E[(g(x1,%)) — %(@13‘12 + Brx1 % +535512))2],

L
ffZEKfN(U,fCl)—ZL dz ay(v - X;)
2
2ZJ dz ay U—x,)zﬂ, (11)

which yields linear systems of algebraic equations. An
advantage of the present technique is that none of the
expected values computed in (11) involve non-Gaussian
processes.
Now, letting,
L;

a, = Z J:J dz o and a, = ZJO dz oy,

i i
an equivalent set of Volterra system equations can be
written as, 2

M)+ (C+a))x; + Kx = fL(v) + ap,
M3, + (C 4 pgy + i) X + (K + pige) X2
(Bixi + Boxi%) + Baxi), (12)
for which the following transfer functions are derivable,

Hy"'(w) = Hy(w) H{" (),

= m(v- 1)’ -

Hx”'(w) = inx(‘l)(w),
Ho(w) = H,(w) ~ iwHy " (),
(fluid—structure interaction term)

(2
]-1)(~ (UJ] » wZ)

(2

Hx~ (wl \ wz)

= Hy(w + w2)Hf(2)(w17w2))

= i{wy +w) B (w,w9), (13)

where,
H{" (w) = Hi () + & H, (@),

H (w1, wy) = ayH,(w) Ho(w))

i{w +w)

(»31 + 5, 3 + ﬁ3w1w2>

< H{ M (wn) HiY (w))
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and
H(w) =K —w'M+iu(C+ap)
Hy(w) = [(K + prg) — w0’ M + iw(C + gy + pp)] !

In future developments, the following relationships
will be helpful,

HY () = # (~w),

H (wr,w2) = HE (=0 =), (14)

Response statistics

In the present case the response distribution is no longer
Gaussian, therefore, higher-order moments or cumu-
lants are needed to describe the response statistics. The
response statistics are considered in terms of the
response cumulants, k;, rather than the moments. The
first-order cumulant is the mean of the response and the
second-order cumulant is equal to its variance. The
third- and fourth-order cumulants are descriptors of the
skewness and kurtosis, respectively, of the process.
quantifying its departure from Gaussianity. The skew-
ness and kurtosis are given by

ks kq

M= and vy =5,
k" k3

(15)

The power spectrum and the first four cumulants can
be obtained from the following.”’

= kyb(w) + | H" (@) | ' D(w)

[ (2 =
+§[ |H ' (0,0 — 6) “D(0) D(w — 6) db.

Dy(w)

(16}

where the transfer functions are as defined in the

previous section, D,(w) is the two-sided spectrum of
x(#); and D{w) represents the two-sided spectrum of

(1)

For brev1t?/s sakea let &,"(1). HZ'(1.2). D(1)
represent Hx Dy H (w). w>) and D(w,) dw,, respec-
tively. The assomated cumulants are given below

I (2% \
ki=xo+3| HT1-DDI.

kzzj g HE (-1 Dl

N

+§J J Hy7 (1.2 H W (—1.=2) D(1) D(2).
k=3|m0

x D(2)+JX ]X} JX HL 2 HY (~1.3)

(2)

x Hy"'(=2,-3)D(1) D(2) D(3).

h:lzf J J B EY Q) B (-1,3)

—20 J-oC

x H{Y(=2,-3)D(1) D(2) D(3)

S

< H7(=2.4) 1 (=3, -4) D(1) D) D(3) D(4),
(17)

where x; in the expression for &, is the static response.

In general, expressions for the response cumulants of
Volterra systems are not available. Inspecting eqns (17),
even for the present case in which only terms up to the
second order are treated, the higher order cumulant
expressions become increasingly complex. In the sec-
tions to follow, two methods for evaluating higher-order
cumulants will be discussed.

H(1,2) B2 (~1,3)

Direct integration method

The calculation of the fourth-order cumulant was
considered prohibitive, not only because of the
behavior of the integrand. but also due to very
extensive computational effort needed in evaluating the
multi-fold integrals. Bedrosian and Rice?! stated that
the four-fold integral in the above equations cannot be
carried out because of its complexity. Recently, Spanos
and Donley (e.g. Ref. 13) reported a similar difficulty.
The present paper simplifies the evaluation of the four-
fold integral by reducing it into a three-fold integral.

To further assist in factorizing the more complicated
integrals, the following one- and two-dimensional
transfer functions may be developed,

. ]
Crplw) = Hy )(WL

Ciifw) = [  H () (~o,w) D(a) doy

Wl)Hx(Z)(’—aa wy) D(a) da,

(18)

noting that Cj(~w)# C)j(w) and Cyplw,w,) Iis
Hermitian, lC sz(wl,wz):sz(w27w[). Then, the
cumulant expressions of (17) can be recast in the
following manner,

1 oC
"'1:»"0+§J Cao(1, 1) D(1),

hy = [1 | Cuo(1) [2D(1)

1{> [*> 2
5| | testi o0,

e
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k=3[ comen-non

+r jx Caol—1. 2)Coa(1.2) D(1) D(2).

-0C J—0C

k4=12j JCu(n) 200

3| [ resnaiom o) (19)
By this approach, the solution of the fourth-order
cumulant involves an effort equal to that needed for
solving the third-order cumulant without any compro-
mise on the accuracy.

Kac—Siegert technique

A second approach to evaluating response cumulants is
named after Kac and Siegert who first applied it to the
theory of noise m radio receivers with square law
detectors in 1947.% In fact, it may be taken as the
generalized Fourier series representation method.*
based on the theory of linear integral equations. Its
application to ocean engineering problems has been
reported in Refs 43-46. The following is a formulation
of the response cumulants up to fourth-order obtained
by employing the Kac-Siegert technique in the context
of quadratization.

The generalized Fourier series expansion can be
written in one- and two-dimensional forms,

‘C) == iaid)i(xi
=1
)= iif il (20)

i=1 j=1

The above expression is sometimes called the degenerate
kernel or separable kernel within the theory of integrai
equations. In the case when the second-order transfer
function, Q,(x,y), is Hermitian, the basis functions.
¢i(.), are chosen as the characteristic functions of the
following Fredholm homogeneous integral equation of
second kind,

b
J 0s(x.1)6() dy = Ao(x). 20

The nontrivial eigenvalues of eqn (21) are real and
corresponding eigenfunctions are orthogonal to one
another, ie. (¢, @) = &;. Due to this orthogonality.
Q,(x.y) may be recast as,

=D _Aoilx)e (). (22)
i=1

the convergence of which can be shown by Hilbert’s and
Mercer’s theorems.*
For the present application. the second-order system

function is

0 (x.) = G(x) H® (x, —y) G(»), (23)

where G(x) = D(x)"/?, and Q,(x, y) is Hermitian. Both
x and y represent frequencies, which are discretized as
{wj,i=1,2,..., N}, with equal intervals A.

The discrete form of the homogeneous integral
equation constitutes a linear algebraic eigenvalue prob-
lem as follows,

Z 2wy wy) Wi (w;) A
+ Z Qr(wj, —wi) Wi (= wj) A = Ag(w;), (24)
=
N
> Or(—w,w) Wip(w) A
=

N
+ Z Or(—w;, —

i=1

) Wio(—w) A = Ad(—wy), (25)

where W are the weighting factors determined by the
numerical method used to evaluate these equations. For
slowly varying drift response applications, Naess®
employed Newman’s approximation® and ignored the
interaction terms at sum frequencies, thus the second
term in eqn (24) and the first term in eqn (25) may be
eliminated. However, this assumption, though valid for
slow drift response, is not applicable in the case of
response due to wind loads. The preceding equations
can be solved numerically to obtain the eigenvalues and
the corresponding eigenvectors (see Appendix A). Then,
the system transfer functions can be obtained as,

2

N
Glw)) Hy (w1, = w2) Glwa) = D Nidi(wr) 8 (ws),
Py

"w)G Z ajo(w (26)

where, o = [T H “)( )G(w) ¢ (w) dw
Substituting these expressions into eqns (17) leads to
the following description of the cumulants:

1 M
ky :X0+‘2“Z)\i,
EZA
ky = 3Zai2)\i + ZA?, and
i=1 i=1

M M
ka=12) "alX +33 A, (27)
i=1 i=1

where the series expressions are truncated after M terms.

e
I
i M<
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It has been observed that the number of terms, M.
required for convergence is related to the system
damping.”® Indeed, for larger damping fewer terms
need to be retained.

A notable advantage of the Kac—Siegert approach is
that it provides information on the cumulants higher
than the fourth order. Usually, however, only the third-
and fourth-order cumulants are significant and possess
physical interpretations in terms of skewness and
kurtosis.

Time-domain simulation

The procedures laid out herein have been verified via a
Monte Carlo simulation technique given a prescribed
power spectrum, S{w), for a random process, ((1).
Sample time histories of either the wind or the wave
process, given the appropriate spectral representation,
may be generated according to,

N
(1) =3/ (28(w;) Awy) cos (wit + #). (28)
j=1

where 6, are independent random phases distributed
uniformly between 0 and 2, and w; = j Aw. Considera-
tion should be given to appropriately choosing Aw to
suitably discretize the particular spectrum of the process
being simulated, paying close attention to the trade-off
in terms of time resolution and the overall system
dynamics. The efficiency of this simulation procedure
may be boosted significantly by employing a fast
Fourier transform method (e.g. Refs 48 and 49).

Combined wind, wave and current effects

Typically, wind and wave loadings impinge concurrently
on a TLP in a given ocean environment. Indeed, wind
plays a part in generating waves but the exact
correlation between wind velocity fluctuations and
wave elevations has not yet been formalized. Herein,
the combined effect of wind and waves is viewed
through structural response motions. If we assume: (i)
that the total response is simply the sum of the response
due to wave loading and the response due to wind
loading; (ii) the wind loading is small relative to the
wave loading; (u1) the response velocity due to wind
loading is small relative to the response velocity due to
wave loading, the equations of motion due to combined
wind, wave and current Joadings are given by

Mx'Wi"d + ((‘+ Cu-a»ve)-\“Wind + K,\‘wmd
= Ky (w+ W — )7

MEY 4 (C A Coppg) X5 + K
= Kpti + Kglu+ U = 3" [(u - U = ™), (29)

where Cwind = _E[a/;vind //a’ﬂ and (‘wave - _E{aﬂvave/a-ﬂ

denote the damping introduced by the wind loads and
wave loads, fing and fyave, respectively.

The solution of the preceding equations is obtained
following the two procedures outlined earlier in the text.
Based on the assumptions made earlier, the total
response cumulants can be obtained by a simple
summation of the response cumulants due to all
loadings, (e.g. Ref. 47)

ctotal _ g wind wave
k™ =kn ™+ kp,

m=12734,... (30)

Probability distribution of response

Following the evaluation of the first four moments or
cumulants of response, the non-Gaussian distribution of
response processes can be obtained with a subsequent
estimation of the extreme value distribution. In this
study, Gram—Charlier Series, Hermite Moment Approach
and Maximum Entropy method are utilized. A short
description of each is given in Appendix B.

EXAMPLE

To illustrate the nonlinear effects introduced by wind
and wave loads, an idealized TLP model is utilized.
Since the wind force is already in a quadratic form, it is
readily cast as an equivalent Volterra system'® and only
the wave drag force is treated rigorously here. First,
the splitting technique is performed whereby the
nonlinearity in the right side of eqn (4) is expanded as
follows in a Taylor series in terms of second order
response velocity,

ut Ut x| U+x)=|u+U+%|(u+U+x)
2u+ U+x1|%3+0(x§). (31)

The slow drift approximation is employed, and in order
to eliminate a time-dependence of the additional damping
term on the right-hand side of eqn (31), the coefficient is
approximated by its expected value, i.e.

lu+ U+ x|(u+U+X)=ut U+ x|+ U+%x)
72E[|u+U+)'c1|]%2*. (32)

Since the initial term on the right-hand side in eqn (32)
is not cast in a polynomial form and as such is not yet
tractable by the Volterra approach, the quadratization
procedure is now invoked to approximate it in terms of
the relative fluid—structure velocity as follows,

lu+ U+ x| (u+ U+ X)) = ag+aoy(u— %)
+on(u — Xp)%. (33)

The polynomial approximation of eqn (33) may then be
tailored by minimizing the mean-square of the following
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1st order system X1

u(®) x| {velocity feedback) R x(1)

square device

2nd order system

X2

Fig. 1. Schematic of equivalent Volterra system for a TLP
under nonlinear loading.

error term,
e=|u+U—-x% [ {(u+U—%)—ay~-aju—x)
— an(u— %) (34)
This minimization produces a system of three equations
for the unknowns, «;,
1 0 o°][e
0 o> 0 &y
o> 0 3d*] [0y
Ellu+ U =% u+U -x)
= | Elu—x)u+U—x%|(u+U-=x))] |, (35
El(u— %) lu+ U =3[ (u+ U - x,)]
which when solved yields,
ag = 2Ua(rb; + b,); ay = 4o(rb) + b,), and
ay = 2by, (36)

where

b l ex r’ v and
=— ——: r=—: ‘
? V2 P 2 a

18 4 —&— Quadratization

—+—— Linearization

14 A & Simulation

Power spectrum (mZsec/rad)
b=
1
FN‘

0 0.2 0.4 0.6 0.8

Frequency (rad/sec)

Fig. 2. TLP response spectrum due to wave loading
(U = 0-4m/s).

20

—&— Quadratization

16 1 A Simulation

] k!

Power spectrum (mZsec/rad)
o > ®
1 t 1

&
i
>

0 0.2 0.4 0.6 0.8
Frequency (rad/sec)

Fig. 3. TLP response spectrum due to wave loading
(U = 0-0m/s).

o® = E[(u—%p)°).

Turning attention back the system (35), an important
advantage of the present technique may be noted in the
fact that all of the expected values taken involve only
Gaussian quantities and functions thereof. A more
detailed treatment of the expected values in the right-
hand-side vector is given in Appendix C.

Now the equations of motion for wave excitation can
be expressed as

M3, +(C +ay)x; + Kx; = Kyt + aqu,
a
M3, + (C+a)) %, + Kx; :?Z(u—xl)z, (37)
where ay, = Ky, ay = Kgoy; and a, =2Kj05. A
schematic of this system is given in Fig. 1. The static

0.20

0.18 A

—+— Direct integration

0.16 7 Kac-Siegert

0.14 71 —o— Newman approximation

0.12 1

0.10 A

Skewness

0.08 7
0.06 7

0.04

) S

0.02

T T

0 0.2 0.4 0.6 0.8 1.0 1.2
Current speed (m/sec)

Fig. 4. Skewness of TLP response due to wave loading as it
varies with current speed.
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Fig. 5. Kurtosis of TLP response due to wave loading as it
varies with current speed.

response of this system may be given as.
%
Xo =
It is then desired to characterize the time-varying system
response in the frequency domain. Thus, the following
transfer functions are developed to relate x|, (u — X,).

and x,, respectively, to the input water particle velocity
spectrum

(38)

Hx(])(w) = (Kpiw+a)H(w).

Hy (w1, w)) = @y H(w; + wy) Hy(wy) Hy(w2), (40)

where H(w) = [K —w?M +iw(C +a;)]". The cumu-
lants of the response based on these frequency domain
formulations are given in the earlier discussion.

Similarly, the equations of motion under the wind
force are given by

Mx| +(C+a))x + Kx; = ayw,
MXQ + (C+ al))'cz + sz = %(W - xl)zv (41)

where ay = K,W?; a, =2K,W; and a, =2K,. The
static response has the same form as eqn (38) and the
transfer function for x;, now has the form,

H" (w) = a H(w). (42)

The transfer functions for (w — x|) and x, maintain the
same form as H, and Hx(z) in eqn (40). Finally, note in
eqns (37) and (41) the presence of terms containing
(u—x,)* and (w — x,)* which are squares of Gaussian
fluid--structure interaction processes and include
nonlinear damping terms.

The TLP is modeled as a single degree of freedom
system with structural and added mass, M = 7-1286 x
107 kg, stiffness, K = 2-8143 x 103 N/m and a structural
damping ratio, C/2Muwy, of 0-05. Also, K,, =4 x 10’
and Ky = 6 x 10° are the inertia and drag coefficients,
respectively. The input wave elevation spectrum is
modelled by a Pierson—Moskowitz spectrum character-
1zed by a significant wave height of 12m and a peak
frequency of 0-395rad/s, well above the resonance

H,(w) =1 —in,f"'(w). (39} region for the TLP surge mode. Nonetheless, Figs 2
Wind
X wind
Wind | |
+ i
Wave - ——
X,

total

Wave

————

XWIVC

Fig. 6. Schematic of wind wave interaction on a TLP.
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Fig. 7. Third-order cumulant of TLP response due separately
to wind and wave loadings.

and 3 indicate a surge response peak due to the second
order forces in the resonance region of the TLP which is
captured by the quadratization technique in the first
figure, but is not seen in the response obtained from
linearization. The same figures also illustrate that the
presence of currents increases the quadratic contribu-
tion. Figure 3, which illustrates the case when no current
is present, reveals the limitation of the quadratization
technique. That is, the procedure degenerates to
linearization when the nonlinearity becomes statisti-
cally symmetric. Nevertheless, this type of higher-order
response energy may be captured by a cubicization
approach”‘zo which is beyond the scope of this study.
Application of three techniques, direct integration.
Kac-Siegert approach, and Newman's approximation.*’
to obtain the skewness and kurtosis of the response to

1.0 1
I
—— Wind
0.8 1
—=— Wave
i
0.6
<
g
s
A
0.4 7
0.2 1
0 0.2 0.4 0.6 0.8 1.0 1.2

Current speed (m/sec)

Fig. 8. Fourth-order cumulant of TLP response due separately
to wind and wave loadings.

1.0
0.8 -
0.6
<
E
<
Al
0.4 4
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j a Simulation
0 0.2 0.4 0.6 0.8 1.0 1.2

Current speed (m/sec)

Fig. 9. Third-order cumulant of TLP response due to
combined wind—wave loading.

eqn (37) is illustrated in Figs 4 and 5. The graphical
similarity of all results in these figures indicates that
Newman’s approximation, which ignores sum frequency
contributions of the second-order force, is adequate for
analyzing TLP surge response due to wave loads.
Figure 6 is a schematic of a TLP under the influence
of concurrent wind and wave loadings, i.e. a combi-
nation of eqns (37) and (41) as described in the earlier
discussion. For this example, we assume a mean wind
speed of 20m/s and K,, = 1250. In Figs 7 and 8, the
third- and fourth-order response cumulants are given
over a range of current speeds. Clearly, from these
illustrations, the wave load effects are dominant over
those due to wind loads in terms of higher-order TLP
response statistics. The combined response cumulants
due to both wind and wave loads compare acceptably to
those obtained via numerical simulation in Figs 9 and

1.2

—— Quadratic

4 Simulation

kq (m*)

0 0.2 0.4 0.6 0.8 1.0 1.2

Current speed (m/sec)

Fig. 10. Fourth-order cumulant of TLP response due to
combined wind—wave loading.
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Fig. 11. TLP response due to combined wind-wave loading
(U = 0-4my/s).

10, thus supporting the use of the simplified, wind-wave
combination model proposed in this study. Comparing
the spectrum of Fig. 11 to that of Fig. 2, it is observed
that the dynamics of the wind produce a significant low
frequency peak in the response of the combined system.
The low frequency peak diminishes with increasing
current speed, indicating the importance of the hydro-
dynamic damping introduced by larger currents on the
wind load response of the system. More detail is given in
Ref. 32.

The response statistics obtained through application
of the quadratization technique are useful in character-
izing the overall distribution and crossing rates of the
non-Gaussian response. Figure 12 is the probability
distribution of the response due to the combination of
wind and wave loading. In this figure, the departure
from Gaussianity is readily evident in the tails of

0.1

0.01

0.001 -

0.0001 -Aif ——— Hermite

—=— Gram-Charlier

—%— Maximum entropy

Probability density function

—o— QGaussian

4 Simulation

0= T T T T ; 7 D - J
-8 —6 —-4 -2 0 2 4 6 8 10

Response

Fig. 12. PDF of TLP response due to combined wind-wave
loading.
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Response

Fig. 13. Crossing rates of the TLP response process due to
wind—wave loading.

the distribution and is captured by including the
higher-order cumulant information gleaned from the
present techniques in the probability density approxi-
mations. The best approximations seem to be given in
these figures by the moment-based Hermite method and
the maximum entropy method. The ability to character-
ize the tail contributions of these probability density
functions will greatly enhance the accuracy of the
prediction of response extremes. Indeed, Fig. 13 illu-
strates favorable approximation of the crossing rate of
the system response to combined wind and wave loading
by the moment-based Hermite approximation. Further,
Fig. 14 exemplifies the difference between the peak
distribution of the non-Gaussian response to wave loads
and a similar Gaussian response.

0.4

-—o— Gaussian

—— Hermite

Probability density function

Peak of response

Fig. 14. Distribution of TLP response maxima due to wave
load.
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CONCLUDING REMARKS

The quadratization approach presented in this paper
addresses the treatment of nonlinearities in the fre-
quency domain analysis that result from wind and wave
loadings on TLPs. The results obtained in terms of TLP
response spectra and cumulants are in good agreement
with simulation results. The higher-order cumulants are
used to determine the response probability distributions
and crossing rates using available approximating
techniques. The subsequently derived response distribu-
tions are also in good agreement with simulated results.
For the case when the nonlinearity in question is
statistically symmetric, e.g. waves with no current, the
quadratization technique reduces, in effect, to lineariza-
tion. To address this, a cubicization technique which
involves recasting the response in this case as the sum of
the outputs of a first-order and a third-order Volterra
system will be presented in a future work.
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APPENDIX A: PRESENT FORMULATION OF THE
KAC-SIEGERT TECHNIQUE

The Fredholm homogeneous integral equation of the
second kind is given by

= /\(]5((4)1 )a
(A1)

where G(w) = v/D(w), and D(w) is a two-sided
spectrum. The discrete form of eqn (A.l1) for N
frequency points can be written as,

ZG

N

+ 57 Glan) Ha? (wi,wy) Glwy) 7 () W3 A = Ap(wi),

=1

xz‘ H (W), — wy) Glw)) Gws) p(ws) duw,

H(z) (wi, — wj) G(wy) Swj) W; A

(A2)

where the mesh interval, A, is constant for simplicity
and an integration weighting factor, Wj, is included for
improved accuracy.

We thus have a linear eigenvalue problem of
dimension N which is expressible in matrix form as,

AW [{o} + [BI[W [{¢}" = M¢}, (A.3)
where
= Glw) HP (i, — w;) Glw)) A
By = Gluw) Hi (w;,0) Glwy) A, (A.4)

and [W] is a diagonal matrix, whose elements are
determined by the numerical integration method chosen.
As an example, the weighting factor elements for the
composite Simpson’s rule are,

W=t Wy =4 Wiy =%, Wyona=4%,

Wy ivo = §7 WN,N = %

Noting that eqn (A.3) is not Hermitian due to the
involvement of the matrix of weighting factors, we

introduce another diagonal matrix [V'], where V;; =
+/W.,. Then, a new vector may be specified as,

{2} =[V[{e} (A.5)
Multiplying both sides of (A.3) by [V ] leaves,
V]4lVI{e} + [VIBIV{®} = M2} (A.6)

To solve eqn (A.6), we begin by rewriting [4], [B], and
{®} in terms of their real and imaginary parts, i.e.

(A] = [AR] +i[A41],
[B] = [Bg] +i[B], and
{®} = {Pr} +i{P1}.

Then the real matrix form which is equivalent to eqn
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(A.6) is expressible as,

V][4r +BrlV] [V][B - 4)[V] ] [%r

VA +B[V] Ve — Be][V]]]| T

D

=) . (A7)
P

which is symmetric when [4g]. Br|. and [B] are
symmetric and [4,]" = —[4].

Solving eqn (A.7) yields 2 N real eigenvalues and 2N
eigenvectors. Then, normalizing the eigenvectors and
recombining the complex vectors, we have,

{ey =1y =V {Pr +i®}. (A8)

According to the work by Kac and Siegert.”’ the nth-
order cumulant. &, is obtained from.

N
nt 5o hos (n—1)
kn:Z<7p{)\i (=8 )+ /\i). (A9)

i=1 -

where p; is the first-order system coeflicient, given by

N
Pi :zHx\“(w.i)G(wﬂ@i*(w_;)W;A. (A.10)
i=1

APPENDIX B: PROBABILITY DENSITY AND
CROSSING RATE APPROXIMATION METHODS

Gram—Charlier series distribution. This method is
based on expanding the distribution of a non-Gaussian
random variable, x, in a Hermite series with a Gaussian
‘parent function.” The simplest form of this method is
expressible as (e.g. Ref. 50)

1 (x — ml)2
polx) = V7o d I v

x {1 +§H3(x ;ml) +:4%H4(X Aam]) + }

(B.1)

The Gram—Charlier series distribution, however, has
an inherent shortcoming in its limited ability to
characterize the tail regions of the distribution and,
thus, the extremes of a given process. In fact, this type of
series expansion can exhibit negative probabilities in the
tail regions.

Moment-based Hermite transformation methods. In
this method, the non-Gaussian variable is expanded in
Hermite polynomials in terms of a standardized
Gaussian process.”>*! This transformation is valid for
a non-normal process, x(z), which is expressible as a
monotonic function of a standard normal process, u(1).

Having made this transformation, the probability
density function of x may be derived as,

2
o= o] S

Maximum entropy methods. In statistical mechanics,
the entropy of a given state is directly related to its
probability of occurrence. According to the principle of
maximum entropy in one dimension, an appropriate
probability density function, p(x), must maximize the
entropy functional,

H=- Jp(x) Inp(x)dx, (B.3)

while satisfying constraints specified via moment equa-
tions or moment values. Applying the constraints, in the
present case the moment values themselves from our
Volterra system analysis, via the Lagrange multiplier
technique of variational calculus, the maximum entropy
distribution is expressible as,

N
pu(x) = exp(—Z)\kxk>, (B.4)
k=0

where N is the number of moments given and the
coefficients (Lagrange multipliers) may be determined
by matching the moments according to,

JW pm(x)dx=m,,  n=0,1,...,N. (BS5)

and solving iteratively for the Lagrange multipliers. It
has been noted, in addition, that since this system is
highly nonlinear, the determination of these unknown
coefficients or Lagrange multipliers is sensitive to the
initial values chosen.” A discussion of an efficient
scheme for determining the starting values for the J; is
given in Ref. 19.

Mean upcrossing rate and distribution of maxima

The distribution of the maxima of a process can be
approximated in terms of its mean upcrossing rate.
Mathematically, the mean upcrossing rate is,

) = [ ipaato ) (B.6)

This expression involves the joint probability density
function of a random process and its first time
derivative, which is difficult to obtain for an arbitrary
non-Gaussian process. However, the crossing rate may
be easily derived from the crossings of nonlinear
transformations of Gaussian processes.”' In the case of
a moment-based Hermite transformation as described
above wherein a non-Gaussian process, x(¢), is related
to a Gaussian process, u(t), the crossing rate may be
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written as,

v(x) =1 exp<—u;(x)>. (B.7)

where 1 is the zero-crossing rate given by o,/2n. The
variance of the velocity of the parent Gaussian process is
expressible in terms of the variances of the non-
Gaussian process and its velocity.

An approximate distribution of the maxima of a non-
Gaussian response may also be obtained using the
Hermite method as,

- B.&
2 dx (B8]

Z

PE(X) = u(x)exp <~ “-("')) du(x)

For more detail, the reader is referred to Ref. 32.

APPENDIX C: CALCULATION OF EXPECTED
VALUES FOR QUADRATIZATION OF WAVE
FORCE

Here we will illustrate the computation of the expected
values appearing in the right-hand side vector of eqn
(35). Letting v =u — X;. v is a zero-mean Gaussian
process with standard deviation., 0. The probability
density function of v is thus,

| = .
fv(b) = MCXP(‘ :—2;) ((1)

Proceeding, then, we wish to first compute.

e Ul + U

1
Sx V2no
X ex v d I‘\ v+ U _1
—— |dv = v ) e
P 20 J v V2ra

U2 > . |
X exp ~ 357 dv + l(1'+L)‘77
. 2ro

X exp <~;—~7> de. (C.2)
o2

Expanding the polynomial in ¢ and employing the
properties of the even and odd functions in the
expansion, we are left with

E[lv+Ul(e+U)] = [

Letting 3 = v/0, and integrating the last term above by
parts, we have finally,

, 5 Uje
E[Jlv+Ul(v+ U)]=2(U"+0o )L Wr

2 2
2U U
X exXp <— )’7) dy + \/—2_Z exp (— F) . (C3)

Next, we will compute,

, > |
Elvjv+U (v+U)]:J v|v+Ul(v+U)\/2_
- o

2 .
V- x 5 1
— dv = v+ U
”Xp( 2az> 7 Lﬂ“ N

2
X eXp (— #) dv. (C4)

Again, expanding the polynomial in v and employing
even and odd function properties, we have,

20° Ul
Elvir+Ul(v+U)] = .__2: exp(—ﬁ>

x 1 v?
+2 v —exp| - — | dv
.[U V2o p( 202)

+4 [L Uv? : ex v’ d
v ——— | dw.
Jo V2o P 202

Integrating the latter two terms by parts yields,
U/a 1

(v+ U)] =4Uc?* JO N

L PP (C.5)
X exp 5 |y NG p 57 .

Finally, we wish to compute

Elo|v+ U

.

v o4 Ul(v+ U)

| U2 J:’O 2 2
x ex — 5 d'U E— vo(v + U
e p( 20L> LU )

1 v’ 2 2
x exp| —— | dv+ J vi(v+ U
Ve p< zﬁ) L el

1 v?
—— ] dv. C.6
Xmﬁ""( zaz) ’ (C6)

Following the same procedure as laid out previously,
multiplying out the polynomial in v and taking
advantage of the even or odd character of each term

E[v*[v4 Ul(w+ U) :J
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in the expansion, we have,

U

1
E* v+ Ul(w+ U :2J 4
[v7] j (v )] o oo

?/2 b u 3 1
X exp By dv+2U“L 1"-\/2_7rcr

v’ > 51
x exp| — = dv+4L’J '
p( 20‘) u ' V2no

Integrating each of the terms above by parts one or
more times, we are left with
Elor Ules 0) =207 4300 [ L
v v =20
L 0 V2w

2 3 2
¥ 2Ueo U
X exXp (— 7) dy + o exp( 202). (C.7)



