Definition: A subset A C R has measure 0 if
Aglélnzg(ln) =0

where {/,} is a finite or countable collection of open intervals and

Sets of Measure Zero
l(a,b)=b—a.

In other words, A has measure 0 if for every € > 0 there are open
intervals 1, b, ..., In, ... such that A C Ul, and > ¢(/,) <e.

Almost everywhere means except on a set of measure 0. Examples of sets of measure 0

> A finite, A= {x1,...,xk}
Proof: Given € > 0, let
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> A countable, e.g., A = Q, the rational numbers
Proof: Suppose
A= {x}2,. » The Cantor set A is constructed inductively.
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each remaining interval.
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If you expand numbers in a ternary expansion, so if x € [0,1] you
write

o0
a:
X:Zé, where a; = 0,1 or 2,
Jj=1

then

A={x€0,1] : x has no 1 in its ternary expansion}.
The map
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maps the Cantor set onto the unit interval.

To see that it has measure 0, notice that
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so A has measure 0.

So the Cantor set is uncountable.



