TRIGONOMETRIC FORMULAS

MATH 126: CALCULUS II

Basic Identities

The functions $\cos(\theta)$ and $\sin(\theta)$ are defined to be the x and y coordinates of the point at an angle of θ on the unit circle. Therefore, $\sin(-\theta) = -\sin(\theta)$, $\cos(-\theta) = \cos(\theta)$, and $\sin^2(\theta) + \cos^2(\theta) = 1$. The other trigonometric functions are defined in terms of sine and cosine:

$$\tan(\theta) = \sin(\theta)/\cos(\theta) \qquad \cot(\theta) = \cos(\theta)/\sin(\theta) = 1/\tan(\theta)$$

$$\sec(\theta) = 1/\cos(\theta) \qquad \csc(\theta) = 1/\sin(\theta)$$

Dividing $\sin^2(\theta) + \cos^2(\theta) = 1$ by $\cos^2(\theta)$ or $\sin^2(\theta)$ gives $\tan^2(\theta) + 1 = \sec^2(\theta)$ and $1 + \cot^2(\theta) = \csc^2(\theta)$.

Addition Formulas

The following two addition formulas are fundamental:

$$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$

$$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

They can be used to prove simple identities like $\sin(\pi/2 - \theta) = \sin(\pi/2)\cos(\theta) + \cos(\pi/2)\sin(\theta) = \cos(\theta)$, or $\cos(x - \pi) = \cos(x)\cos(\pi) - \sin(x)\sin(\pi) = -\cos(x)$. If we set A = B in the addition formulas we get the double-angle formulas:

$$\sin(2A) = 2\sin(A)\cos(A)$$
 $\cos(2A) = \cos^2(A) - \sin^2(A)$

The formula for $\cos(2A)$ is often rewritten by replacing $\cos^2(A)$ with $1 - \sin^2(A)$ or replacing $\sin^2(A)$ with $1 - \cos^2(A)$ to get

$$cos(2A) = 1 - 2sin^{2}(A)$$
 $cos(2A) = 2cos^{2}(A) - 1$

Solving for $\sin^2(A)$ and $\cos^2(A)$ yields identities important for integration:

$$\sin^2(A) = \frac{1}{2}(1 - \cos(2A))$$
 $\cos^2(A) = \frac{1}{2}(1 + \cos(2A))$

The addition formulas can also be combined to give other formulas important for integration:

$$\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$$

 $\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$
 $\sin A \cos B = \frac{1}{2} [\sin(A - B) + \sin(A + B)]$

DERIVATIVES AND INTEGRALS

$$\sin'(x) = \cos(x) \qquad \qquad \sec'(x) = \sec(x)\tan(x)$$

$$\cos'(x) = -\sin(x) \qquad \qquad \csc'(x) = -\csc(x)\cot(x)$$

$$\tan'(x) = \sec^2(x) \qquad \qquad \cot'(x) = -\csc^2(x)$$

$$\int \sin(x) dx = -\cos(x) + C \qquad \qquad \int \sec(x) dx = \ln|\sec(x) + \tan(x)| + C$$

$$\int \cos(x) dx = \sin(x) + C \qquad \qquad \int \csc(x) dx = -\ln|\csc(x) + \cot(x)| + C$$

$$\int \tan(x) dx = \ln|\sec(x)| + C \qquad \qquad \int \cot(x) dx = -\ln|\csc(x)| + C$$

Date: Fall 2004.