Answer Key 1

Practice Exam 3.2

November 24, 2008

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this page. There are 12 multiple choice questions worth 7 points each. You start with 16 points.

You may not use a calculator.

MATH 10560: Calculus II

- 1. b c d e
- 7. b c d e
- 2. a b d e
- 8. a b d e
- 3. a b c e
- 9. | a | b | | d | e
- 4. a b c e
- 10. a | b | | d | e
- 5. a b d e
- 11. a b c d •
- 6. a c d e
- 12. a | | c | d | e

MATH 10560: Calculus II

Practice Exam 3.2

November 24, 2008

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this page. There are 12 multiple choice questions worth 7 points each. You start with 16 points.

You may not use a calculator.

- 1. a b c d e
- 7. a b c d e
- 2. a b c d e
- 8. a b c d e
- 3. a b c d e
- 9. a b c d e
- 4. a b c d e
- 10. a b c d e
- 5. a b c d e
- 11. a b c d e
- 6. a b c d e
- 12. a b c d e

- 1. Determine which phrase applies to the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sqrt{n+1}}{n^2+n-3}$
 - (a) converges absolutely

- (b) diverges
- (c) has an infinite radius of convergence
- (d) converges conditionally

- (e) is not alternating
- 2. Determine which of the following statements are true.
 - (I) If $\lim_{n\to\infty} a_n = 0$ then $\sum_{n=1}^{\infty} a_n$ converges.
 - (II) The Ratio Test cannot be used to determine whether $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converges.
 - (III) If $a_n > 0$ and $\sum_{n=1}^{\infty} a_n$ converges then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges.
 - (a) (I) and (II)
- (b) None

(c) (II) and (III)

- (d) (I) and (III)
- (e) (I), (II), and (III)
- 3. Find the interval of convergence of $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n3^n}$.
 - (a) (-1,5] (b) [-1,1] (c) [1,3] (d) [-1,5) (e) (1,3)

- 4. Use power series to compute $\lim_{x\to 0} \frac{\ln(1-x^6)+x^6}{\sin(x^4)-x^4}$.
 - (a) 1/2
- (b) 0
- (c) 1
- (d) 3
- (e) 1/6

- 5. A sequence is defined recursively by $a_1 = 1$ and $a_{n+1} = \frac{1}{4}(a_n + 5)$ for $n \ge 1$. Assuming the sequence is increasing and bounded above, find the limit $\lim_{n \to \infty} a_n$.
 - (a) 7/4
- (b) 2
- (c) 5/3
- (d) 3/2
- (e) 9/5

- 6. Derive the Taylor series for $f(x) = \ln(x)$ centered at a = 1.
 - (a) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$
- (b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^n$ (c) $-\sum_{n=1}^{\infty} \frac{1}{n} (x-1)^n$

- (d) $\sum_{n=1}^{\infty} (-1)^{n+1} (x-1)^n$ (e) $\sum_{n=1}^{\infty} \frac{1}{n} x^n$
- 7. Find a power series representation of $f(x) = \frac{x}{1 + 2x^2}$.
 - (a) $\sum_{n=0}^{\infty} (-2)^n x^{2n+1}$
- (b) $\sum_{n=0}^{\infty} \frac{1}{2^n} x^{2n+1}$
- (c) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} x^n$

- (d) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2} x^{n+1}$
- (e) $\sum_{n=0}^{\infty} 2^n x^{2n}$
- 8. Use the Binomial Series to expand $\frac{1}{(1-x^2)^{1/3}}$ as a power series.
 - (a) $1 + x^{2/3} + x^{4/3} + x^2 + \cdots$

- (b) $1 \frac{1}{3}x + \frac{2}{3}x^2 \frac{2}{9}x^3 + \cdots$
- (c) $1 + \frac{1}{3}x^2 + \frac{2}{9}x^4 + \frac{14}{81}x^6 + \cdots$
- (d) $1 + \frac{1}{3}x^2 + \frac{1}{9}x^4 + \frac{7}{27}x^6 + \cdots$
- (e) $1 \frac{1}{3}x^2 + \frac{1}{9}x^4 + \frac{7}{81}x^6 + \cdots$

- 9. Estimate the error of approximating the series $\sum_{n=2}^{\infty} \frac{n}{(n^2-1)^2}$ by $\frac{2}{3^2} + \frac{3}{8^2} + \frac{4}{15^2}$.
 - (a) 4/225
- (b) 3/16
- (c) 1/30
- (d) 1/48
- (e) 5/288

- 10. Find the sum of the series $\sum_{n=0}^{\infty} \frac{2}{5^{n+1}}$.
 - (a) 2
- (b) 5/4
- (c) 1/2
- (d) 2/5
- (e) 5/2
- 11. Determine which of the following statements applies to the series $\sum_{n=1}^{\infty} \frac{(-3)^{2n}}{n^n}$.
 - (a) Diverges by the root test.
 - (b) Converges by the alternating series test.
 - (c) Diverges by the alternating series test.
 - (d) The root and alternating series tests are inconclusive.
 - (e) Converges by the root test.
- 12. Determine which *one* of the following series converges.
 - (a) $\sum_{n=1}^{\infty} \frac{n-1}{n^2+1}$

- (b) $\sum_{n=1}^{\infty} \left(\frac{1}{n} \frac{1}{n+2} \right)$ (c) $\sum_{n=1}^{\infty} (-1)^n$

- (d) $\sum_{1}^{\infty} \sin\left(\frac{1}{n}\right)$
- (e) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}}$