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Overview

Part II

Overview

Cellular networks and the HIP model

Standard analysis of some transmission techniques for the PPP

Non-Poisson network analysis using ASAPPPa

◮ The idea of the horizontal shift (gain) of SIR distributions
◮ The relative distance process
◮ The MISRb and the EFIRc

◮ Asymptotic gains at 0 and ∞
◮ Examples

Concluding remarks

aApproximate SIR Analysis based on the PPP—or simply "as a PPP"
bMean interference-to-signal ratio
cExpected fading-to-interference ratio
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Cellular networks models Setup

From bipolar to cellular networks

From yesterday: A generic cellular network (downlink)

Base stations form a stationary
and ergodic point process and
all transmit at equal power.

Assume a user is located at o.
Its serving base station is the
nearest one (strongest on
average).

The other base stations are
interferers (frequency reuse 1).
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Cellular networks models Standard BS association

Single-tier cellular networks with reuse 1

SIR with strongest-base station (BS) association
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SIR ,
S

I

S = h‖x0‖−α

I =
∑

x∈Φ\{x0}

hx‖x‖−α

Φ: point process of BSs
x0: serving BS
h, (hx): iid fading
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Cellular networks models Standard BS association

The SIR walk and coverage at 0 dB
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Cellular networks models Standard BS association

SIR distribution
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The fraction of a long curve (or large region) that is above the threshold θ
is the ccdf of the SIR at θ:

ps(θ) , F̄SIR(θ) , P(SIR > θ)

It is the fraction of the users with SIR > θ for each realization of the BS
and user processes.
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Cellular networks models SIR analysis

Fact on SIR distributions

Only the PPP is tractable exactly—in some cases

If the base stations form a homogeneous Poisson point process (PPP):

ps(θ) , F̄SIR(θ) =
1

2F1(1,−δ; 1 − δ;−θ)
, δ , 2/α.

For δ = 1/2, ps(θ) =
(

1 +
√
θ arctan

√
θ
)−1

.

If the fading is not Rayleigh or if the point process
is not Poisson, it gets hard very quickly.

So let us enjoy the beauty of Poissonia a little
longer.

Poissonia
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Cellular networks models The HIP model

The HIP baseline model for HetNets

The HIP (homogeneous independent Poisson) modela

a
Dhillon et al., “Modeling and Analysis of K-Tier Downlink

Heterogeneous Cellular Networks”. 2012.
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2 Start with a homogeneous PPP.
Here λ = 6.

Choose a number of tiers and
intensities for each tier, say
λ1 = 1, λ2 = 2, and λ3 = 3.

Then randomly color the BSs
according to the intensities to
assign them to the different tiers:

P(tier = i) = λi/λ
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Cellular networks models The HIP model

The HIP (homogeneous independent Poisson) model
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Here λi = 1, 2, 3. Assign power levels Pi to each tier.
This model is doubly independent and thus highly tractable.
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Cellular networks models Equivalence to single-tier model

Equivalence of all HIP models

From the perspective of the typical user, this network is completely
equivalent to a single-tier Poisson model with unit power and unit density.

Hence for all HIP models (with
Rayleigh fading and power law path
loss), the SIR distribution is

ps(θ) , F̄SIR(θ) =
1

2F1(1,−δ; 1 − δ;−θ)
.

In particular, for δ = 1/2:

ps(10) = 20.00%

The typical user is not impressed with
this performance.
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α = 4 (δ = 1/2).
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Cellular networks models Equivalence to single-tier model

Explanation for equivalence

For a single tier with unit transmit power, let

Ξ = {ξi} , {x ∈ Φ: ‖x‖α/hx}.

The received powers from the nodes in Φ are {ξ−1}.
If Φ ⊂ R

2 is Poisson with intensity λ, then Ξ is Poisson with intensity
function µ(r) = λπδr δ−1

E(hδ).

For multiple independent Poisson tiers with transmit power Pk , the union

Ξ = {ξi} =
⋃

k∈[K ]

{x ∈ Φk : ‖x‖α/(Pkhx)}.

is a PPP with intensity function

µ(r) =
∑

k∈[K ]

πλkδP
δ
k r

δ−1
E(hδ) .

In any case, µ(r) ∝ r δ−1. The pre-constant does not matter for the SIR.
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Cellular networks models Equivalence to single-tier model

Path loss process

The point process Ξ = {ξi} ⊂ R
+ where {ξ−1

i } are the received
powers (with or without fading) is called the path loss process or
propagation process.

It is a key ingredient in many proofs of many results for cellular
networksa and HetNetsb.

The equivalence also holds for advanced transmission techniques, such
as BS cooperation and silencing.

Let us have a look at some of these advanced techniques.

a
Blaszczyszyn, Karray, and Keeler, “Using Poisson Processes to

Model Lattice Cellular Networks”. 2013.
b
Zhang and Haenggi, “A Stochastic Geometry Analysis of Inter-cell

Interference Coordination and Intra-cell Diversity”. 2014; Nigam,

Minero, and Haenggi, “Coordinated Multipoint Joint Transmission in

Heterogeneous Networks”. 2014.
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Advanced techniques for downlink BS silencing

BS silencing: neutralize nearby foes
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The strongest BS (on average) is the serving BS, while the n − 1
next-strongest ones are silenced. The model may include shadowing (which
stays constant over time).

M. Haenggi (ND & EPFL) Asymptotics of SIR Distributions May 2015 13 / 47



Advanced techniques for downlink BS silencing

SIR distribution for silencing (ICIC)

With BS silencing (or inter-cell interference coordination, ICIC) of n − 1
BSs, the SIR distribution isa

p
(!n)
s , P

(

power from serving BS

power from BSs beyond the nth
> θ

)

= (n − 1)δ

∫ 1

0

(1 − xδ)n−2xδ−1

(C1(θx , 1))
n dx ,

where C1(s,m) = 2F1(m,−δ; 1 − δ;−s).

This result does not depend on the shadowing distribution—as long as its
δ-th moment is finite.

a
Zhang and Haenggi, “A Stochastic Geometry Analysis of Inter-cell

Interference Coordination and Intra-cell Diversity”. 2014.
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Advanced techniques for downlink Intra-cell diversity

Intra-cell diversity from multiple resource blocks

Transmission over M resource blocks

Here, all base stations interfere, but the serving one uses M resource blocks
(with independent fading) to serve the user.
The success probability is the probability that the SIR in at least one of
them exceeds θ:

p
(∪M)
s , P

(

M
⋃

m=1

Sm

)

, where Sm = {SIRm > θ}.

For the joint success probability, we have

p
(∩M)
s , P

(

M
⋂

m=1

Sm

)

=
1

C1(θ,M)
=

1

2F1(M,−δ; 1 − δ;−θ)
.

p
(∪M)
s follows from inclusion/exclusion.
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Advanced techniques for downlink Comparison of ICIC and ICD

n-BS silencing (ICIC) vs. transmission over M RBs (ICD)
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Observation

ICIC provides a gain in the SIR but no diversity. ICD has a diversity gain of
M. As a result, ICD is superior at small values of θ (θ < −5 dB).
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Advanced techniques for downlink BS cooperation (CoMP)

Cooperation by joint transmission

BS cooperation: turn nearby foes into friends
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Advanced techniques for downlink BS cooperation (CoMP)

SIR distribution with BS cooperation

In the HIP model, let the users receive combined signals from the n

strongest (on average) BSs, denoted by C.

Channels are Rayleigh fading, and BSs use non-coherent joint
transmission.

The amplitude fading coefficients (gx ) are zero-mean unit-variance
complex Gaussian, and the signal power is

S =
∣

∣

∣

∑

x∈C

gx
√

Px‖x‖−α/2
∣

∣

∣

2
.

S is exponentially distributed with mean
∑

Px‖x‖−α.

The interference stems from Φ \ C.
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Advanced techniques for downlink BS cooperation (CoMP)

BS cooperation with non-coherent JT

Let
u = (u1, . . . , un)

~u = (un/u1, . . . , un/un)

Z (u) = ‖~u‖α/2θ−δ

F (x) =

∞
∫

x

r

1 + rα
dr

The success probability is independent

α = 4
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of power levels and densitiesa

ps(θ) =

∫

0<u1<...<un<∞

exp

(

−un

(

1 + 2
F (
√

Z (u))

Z (u)

))

du.

a
Nigam, Minero, and Haenggi, “Coordinated Multipoint Joint

Transmission in Heterogeneous Networks”. 2014.
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ASAPPP Non-Poisson networks

What is possible outside Poissonia?

Ginibre point process (GPP)

For GPP with Rayleigh fadinga: ps(θ) =
∫

∞

0

e−v

[

∞
∏

j=0

1

j!

∫

∞

v

s je−s

1 + θ(v/s)α/2
ds

][

∞
∑

i=0

v i

(
∫

∞

v

s ie−s

1 + θ(v/s)α/2
ds

)−1 ]

dv

a
Miyoshi and Shirai, “A Cellular Network Model with Ginibre

Configured Base Stations”. 2014.
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ASAPPP Shape of SIR distributions

Observation on SIR distributions

Shape of SIR distributions

In many cellular papers, we find figures like this:
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It appears that: The curves all have the same shape—they are merely
shifted horizontally!
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ASAPPP Shape of SIR distributions

Different BS point processes
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Indeed—visually, the curves are shifts of each other. Since the shift (or
gain) is due to the deployment, we call it deployment gaina.

a
Guo and Haenggi, “Asymptotic Deployment Gain: A Simple

Approach to Characterize the SINR Distribution in General Cellular

Networks”. 2015.
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ASAPPP Horizontal gap (gain)

ASAPPP: Approximate SIR analysis based on the PPP
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If the SIR ccdfs were indeed just shifted:

ps,PPP(θ) , P(SIRPPP > θ) ⇒ ps(θ) = ps,PPP(θ/G).

G is the SIR shift (in dB) or the SIR gain or gap.
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ASAPPP Horizontal gap (gain)

Horizontal gap and asymptotics

The shift at threshold θ is

G (θ) ,
F̄−1

SIR(ps,PPP(θ))

θ
,

hence we have ps(θ) = ps,PPP(θ/G (θ)).

The asymptotic gains are

G0 , lim
θ↓0

G (θ); G∞ , lim
θ↑∞

G (θ).

So (if G0 and G∞ exist),

ps(θ) ∼ ps,PPP(θ/G0), θ → 0 ; ps(θ) ∼ ps,PPP(θ/G∞), θ → ∞.

Observation: G (θ) ≈ G0 for all θ, i.e., a shift by G0 results in an
approximation that is quite accurate over the entire distribution.
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ASAPPP Examples for gains

Example 1: Deployment gain of square lattice
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For the square lattice:

G0 = 3.19 dB for α = 3 and G0 = 3.14 dB for α = 4.

So applying a gain of 2 yields an accurate approximation. For α = 4,

p
sq
s (θ) ≈ (1 +

√

θ/2 arctan
√

θ/2)−1.
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ASAPPP Examples for gains

Example 2: Gain of joint transmission
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Again the ccdf for the cases without and with cooperation are very similar
in shape.

The shift here is G0 = 2/(4 − π) ≈ 2.33.
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ASAPPP MISR

The ISR and the MISR

Definition (ISR)

The interference-to-average-signal ratio is

ISR ,
I

Eh(S)
,

where Eh(S) is the desired signal power averaged over the fading.

Remarks

The ISR is a random variable due to the random positions of BSs and
users. Its mean MISR is a function of the network geometry only.

If the interferers are located at distances Rk ,

MISR , E(ISR) = E

(

Rα
∑

hkR
−α
k

)

=
∑

E

(

R

Rk

)α

.
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ASAPPP MISR

Relevance of the MISR for Rayleigh fading

pout(θ) = P(hR−α < θI ) = P(h < θ ISR)

Since h is exponential, letting θ → 0,

P(h < θ ISR | ISR) ∼ θ ISR ⇒ P(h < θ ISR) ∼ θMISR.

So the asymptotic gain at 0 is the ratio of the two MISRsa:

G0 =
MISRPPP

MISR

The MISR for the PPP is easily calculated to be

MISRPPP =
2

α− 2
=

δ

1 − δ
= δ + δ2 + δ3 + . . . .

a
Haenggi, “The Mean Interference-to-Signal Ratio and its Key Role

in Cellular and Amorphous Networks”. 2014.
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ASAPPP MISR

ASAPPP

The method of approximating the SIR ccdf by shifting the PPP’s ccdf is
called ASAPPP—"Approximate SIR analysis based on the PPP".

Can we explain the unreasonable effectiveness of ASAPPP?

Can we calculate G0 and G∞? How close are they?

Can we show that the shape of the SIR distributions are similar by
comparing the asymptotics?

How sensitive are the gains to the path loss exponent and the fading
model?

Some of these question are addressed in (very) recent work with Radha
K. Gantia.

a
Ganti and Haenggi, “Asymptotics and Approximation of the SIR

Distribution in General Cellular Networks”. 2015, arXiv.
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ASAPPP RDP

RDP and MISR

Definition (The relative distance process (RDP))

For a stationary point process Φ with x0 = arg min{x ∈ Φ: ‖x‖}, let

R , {x ∈ Φ \ {x0} : ‖x0‖/‖x‖} ⊂ (0, 1).

MISR using the RDP

We have
ISR =

∑

y∈R

hyy
α

and

MISR = E

∑

y∈R

yα =

∫ 1

0
rαΛ(dr).

For the stationary PPP, Λ(dr) = 2r−3
dr .
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ASAPPP RDP

Pgfl and moment densities of the RDP of the PPP

For the PPP, the probability generating functional (pgfl) of the RDP is

GR[f ] , E

∏

x∈R

f (x) =
1

1 + 2
∫ 1
0 (1 − f (x))x−3dx

,

and the moment densities are

ρ(n)(t1, t2, . . . , tn) = n! 2n
n
∏

i=1

t−3
i .

Pgfl for general BS processes

For a general stationary process Φ, the pgfl can be expressed as

GR[f ] = λ

∫

R2

G!
o

[

f

( ‖x‖
‖ ·+x‖

)

1(·+ x ∈ b(o, ‖x‖)c)
]

dx .
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ASAPPP Generalized MISR

Generalized MISR

We define
MISRn , (E(ISR

n
))1/n.

For a Poisson cellular network with arbitrary fading,

E(ISR
n
) =

n
∑

k=1

k!Bn,k

(

δ

1 − δ
, . . . ,

δE(hn−k+1)

n− k + 1 − δ

)

,

where Bn,k are the Bell polynomials. A good lower bound on MISRn is
obtained by only considering the term n = k in the sum:

MISRn ≥ MISR1(n!)
1/n =

δ

1 − δ
(n!)1/n

The bound does not depend on the fading. For δ → 1 (α → 2), it is
asymptotically tight.
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ASAPPP Generalized MISR

Generalized MISR for PPP with Rayleigh fading
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ASAPPP Generalized MISR

Generalized MISR for PPP with Nakagami-m fading
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For the PPP, MISRn is essentially proportional to n. For Rayleigh fading,
MISRn ∼ (n/e)MISR1, n → ∞.

M. Haenggi (ND & EPFL) Asymptotics of SIR Distributions May 2015 34 / 47



ASAPPP Generalized MISR

Gain G0 for general fading

If Fh(x) ∼ cmx
m, x → 0,

ps(θ) ∼ 1 − cm E[(θ ISR)m], θ → 0,

and thus

G
(m)
0 =

(

E(ISR
m

PPP)

E(ISR
m
)

)1/m

=
MISRm,PPP

MISRm

.

The ASAPPP approximation follows as

p
(m)
s (θ) ≈ p

(m)
s,PPP(θ/G

(m)
0 ).

This applies more generally to any transmission scheme with diversity m.

If MISRm grows roughly in proportion to MISR1, G
(m)
0 ≈ G0, and G0 is

insensitive to the fading statistics.
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ASAPPP Generalized MISR

Deployment gain for lattice with Nakagami fading
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PPP
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Here the gain for m = 1 (Rayleigh fading) is applied, which is 3 dB. Indeed

G
(m)
0 ≈ G0 in this case.

How about G∞? Is it close to G0?
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ASAPPP EFIR

EFIR

Definition (Expected fading-to-interference ratio (EFIR))

Let I∞ ,
∑

x∈Φ hx‖x‖−α and let h be a fading random variable
independent of all (hx). The expected fading-to-interference ratio (EFIR) is
defined as

EFIR ,

(

λπE!
o

[

(

h

I∞

)δ
])1/δ

, δ , 2/α,

where E
!
o is the expectation w.r.t. the reduced Palm measure of Φ.

EFIR properties

The EFIR does not depend on λ, since E
!
o(I

−δ
∞ ) ∝ 1/λ. It does not depend

on the distribution of the distance to the serving BS, either.

For the PPP with arbitrary fading:

EFIRPPP = (sinc δ)1/δ = (sinc(2/α))α/2 / 1 − δ.
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ASAPPP EFIR

SIR tail and G∞

Theorem (SIR tail)

For all stationary BS point processes Φ, where the typical user is served by

the nearest BS, with arbitrary fading,

ps(θ) ∼
(

θ

EFIR

)−δ

, θ → ∞.

Corollary

G∞ =
EFIR

EFIRPPP
=

(

λπE!
o(I

−δ
∞ )E(hδ)

sinc δ

)1/δ

.

Implication on tail of SIR distribution

The asymptotic behavior ps(θ) = Θ(θ−δ) is unavoidable for the singular
path loss law and stationary BS deployment.
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ASAPPP Example: Square lattice

Scaled success probability ps(θ)θ
δ for square lattice
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Square lattice with Rayleigh fading for α=4

 

 

Simulation
EFIR−based Asymptote
Analytical upper bound
Analytical lower bound

The curve approaches EFIRδ. The EFIR is bounded as

(πΓ(1 + δ))1/δ

Z (2/δ)
≤ EFIRsq ≤

( π

sinc δ

)1/δ 1

Z (2/δ)
,

where Z is the Epstein zeta function. The asymptote is at
√

EFIR ≈ 1.19.
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ASAPPP Summary

Summary: MISR and EFIR

For θ → 0 and Rayleigh fading:

ps(θ) ∼ 1 − θMISR ; G0 =
MISRPPP

MISR

For θ → ∞ and arbitrary fading:

ps(θ) ∼
(

θ

EFIR

)−δ

; G∞ =
EFIR

EFIRPPP

The reference MISR and EFIR for the PPP have very simple expressions:

MISRPPP =
δ

1 − δ
; EFIRPPP = (sinc δ)1/δ

They are efficiently obtained by simulation for arbitrary point processes.
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ASAPPP Comparison of gains

Asymptotic gains for lattices
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G0 barely depends on α, while G∞ slightly increases.
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ASAPPP Comparison of gains

Insensitivity of G0 to α

Recall: MISR =
∫ 1
0 rαλ(r)dr , where λ is the intensity function of the RDP.
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Relative intensity of RDPs of square and triangular lattices.

The straight line corresponds to 1/G0,sq and 1/G0,tri. It is essentially the
average of the relative densities.
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ASAPPP Comparison of gains

The gains for the β-Ginibre process
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So quite exactly (and almost independently of α):

G0(β) ≈ 1 + β/2; G∞(β) ≈ 1 + β.

The square lattice has gains of 2 and 3.5, so the 1-GPP falls quite exactly
in between the PPP and the square lattice, both for G0 and G∞.
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ASAPPP Gain trajectories

Gain trajectories G (θ) and asymptotics for lattices
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The gap is relatively constant over more than 5 orders of magnitude for θ.

It is not monotonic, but probably G (θ) ≤ max{G0,G∞}.
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Conclusions

Conclusions

The world outside Poissonia is harsh. Even for the PPP, the SIR ccdfs
for advanced transmission techniques (including MIMO) are unwieldy.

To explain the unreasonable effectiveness of the ASAPPP method

ps(θ) ≈ ps,PPP(θ/G0),

we have compared G0 with G∞, which is the gap at θ → ∞.

The asymptotic gains G0 and G∞ are given by the MISR and the
EFIR, respectively. The MISR is closely related to the relative distance
process and can be generalized for different types of fading.

G0 and G∞ are insensitive to fading, and G0 is insensitive to α.

The ASAPPP method is relatively accurate over the entire range of θ
and highly accurate for ps(θ) > 3/4 (or θ < 10).

A lot more work can and needs to be done.
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