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Cellular networks The big picture

Big picture in cellular networks

Frequency reuse 1: A single friend, many foes
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Cellular networks The big picture

The SIR walk and coverage at 0 dB
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Cellular networks The big picture

SIR distribution
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The fraction of a long curve (or large region) that is above the threshold θ
is the ccdf of the SIR at θ:

ps(θ) , F̄SIR(θ) , P(SIR > θ)

It is the fraction of the users with SIR > θ for each realization of the BS
and user processes.
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HIP model Definition

The HIP baseline model for HetNets

The HIP (homogeneous independent Poisson) model [DGBA12]
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Start with a homogeneous Poisson point process (PPP). Here λ = 6.
Then randomly color them to assign them to the different tiers.
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HIP model Definition

The HIP (homogeneous independent Poisson) model
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Randomly assign BS to each tier according to the relative densities. Here
λi = 1, 2, 3. Assign power levels Pi to each tier.
This model is doubly independent and thus highly tractable.
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HIP model Basic result

Basic result for downlink [NMH14]

Assumptions:

A user connects to the BS that is strongest on average, while all
others interfere.

Homogeneous path loss law ℓ(r) = r−α and Rayleigh fading.

Remarkably, the SIR distribution is independent of the number of tiers,
their densities, and their power levels:

ps(θ) , F̄SIR(θ) =
1

2F1(1,−δ; 1 − δ;−θ)

In particular, for α = 4,

ps(θ) = P(SIR > θ) = F̄SIR(θ) =
1

1 +
√
θ arctan

√
θ
.

So as far as the SIR is concerned, we can replace the multi-tier HIP model
by an equivalent single-tier model.
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HIP model Basic result

Conclusions from HIP SIR distribution

The SIR does not improve with small cells (but the per-user capacity does).

If there are enough BSs so that many of them are inactive densification provides an SIR

gain.

For θ = 1, ps = 56%.

Question: How to improve the SIR distribution?
⇒ Non-Poisson deployment
⇒ BS silencing
⇒ BS cooperation

How to quantify the improvement in the SIR distribution?
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Comparing SIR Distributions

Comparing SIR distributions

Two distributions
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How to quantify the improvement?
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Comparing SIR Distributions Vertical comparison

The standard comparison: vertical
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At -10 dB, the gap is 0.058. Or 6.4%.

At 0 dB, the gap is 0.22. Or 39%.

At 10 dB, the gap is 0.15. Or 73%.

At 20 dB, the gap is 0.05. Or 78%.
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Comparing SIR Distributions Horizontal comparison

A better choice: horizontal
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Use the horizontal gap instead.

This SIR gain is nearly constant
over θ in many cases.

ps(θ) = P(SIR > θ) ⇒ ps(θ) = P(SIR > θ/G ).

Can we quantify this gain?
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Comparing SIR Distributions The horizontal gap

Horizontal gap at probability p

The horizontal gap between two SIR ccdfs is

G (p) ,
F̄−1

SIR2
(p)

F̄−1
SIR1

(p)
, p ∈ (0, 1),

where F̄−1
SIR is the inverse of the ccdf of the SIR, and p is the target success

probability.
We also define the asymptotic gain (whenever the limit exists) as

G = lim
p→1

G (p).

Relevance

We will show that

G is relatively easy to determine.

G (p) ≈ G for all practical p (which is p ' 3/4).
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Comparing SIR Distributions ISR

The ISR and the MISR

Definition (ISR)

The interference-to-average-signal ratio is

ISR ,
I

Eh(S)
,

where Eh(S) is the desired signal power averaged over the fading.

Comments

The ISR is a random variable due to the random positions of BSs and
users. Its mean MISR is a function of the network geometry only.

If the desired signal comes from a BS at distance R , (Eh(S))
−1 = Rα.

If the interferers are located at distances Rk ,

MISR , E(ISR) = E

(

Rα
∑

hkR
−α
k

)

=
∑

E

(

R

Rk

)α

.
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Comparing SIR Distributions ISR

Relevance of the MISR [Hae14]
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Outage probability:

pout(θ) = P(hR−α < θI )

= P(h < θ ISR)

For exponential h:

= 1 − e−θ ISR

∼ θMISR, θ → 0.

So FSIR(θ) ∼ θMISR =⇒ F̄−1
SIR(p) ∼ (1 − p)/MISR, (p → 1).

So the asymptotic gain is the ratio of the two MISRs: G =
MISR1

MISR2

We need to find a reference MISR1 that is easy to calculate...
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Comparing SIR Distributions ISR

The MISR for the HIP model

For the (single-tier) HIP model,

MISR = E

(

Rα
1

∞
∑

k=2

R−α
k

)

=

∞
∑

k=2

E

(

R1

Rk

)α

,

where Rk is the distance to the k-th nearest BS.
The distribution of νk = R1/Rk is

Fνk (x) = 1 − (1 − x2)k−1, x ∈ [0, 1].

Summing up the α-th moments E(ναk ), we obtain (remarkably) [Hae14]

MISR =
2

α− 2
.

This is the baseline MISR relative to which we can measure the gain G .
For α = 4, it is 1.
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Comparing SIR Distributions ISR

The ASAPPP approach

Gain relative to HIP

We can approximate the SIR distribution of arbitrary point processes and
transmission schemes by shifting the Poisson curve:

ps(θ) = pHIP
s

(

θ
MISR

MISRHIP

)

Acronym

ASAPPP stands for "approximate SIR analysis based on the PPP".

It also can be read as "as a PPP", since we are (first) treating the
network as if it was based on a PPP.

Thirdly, it is a strong ASAP, which means that it can be very efficient
in obtaining a good approximation on the SIR distribution.

M. Haenggi (ND & EPFL) ASAPPP 12/12/2014 17 / 38



Gains due to Deployment and Cooperation Deployment gain

Deployment gain [GH13, GH14]

−20 −15 −10 −5 0 5 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PPP and square lattice, α= 3.0

θ (dB)

P
(S

IR
>

θ)

 

 

PPP
square lattice
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For the square lattice, the gap (deployment gain) is quite exactly 3
dB—irrespective of α! For α = 4, psq

s = (1 +
√

θ/2 arctan
√

θ/2)−1.

For the triangular lattice, it is 3.4 dB. This is the maximum achievable.
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Gains due to Deployment and Cooperation Deployment gain

The bandgap of SIR distributions
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Poisson
triangular lattice

All (repulsive) deployments have SIRs that fall into this thin green region.

Higher gains can only be achieved using interference-mitigating and/or
signal-boosting schemes.
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Gains due to Deployment and Cooperation BS silencing

BS silencing: neutralize nearby foes [ZH14]
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Gains due to Deployment and Cooperation BS silencing

Gain due to BS silencing for HIP model [ZH14, Hae14]

Let ISR
(!n)

be the ISR obtained when the n − 1 strongest (on average)
interferers are silenced. All other BSs are still interfering.
So there is cooperation from n BSs, with the strongest one transmitting
and the other n − 1 being silent.
For HIP,

E(ISR
(!n)

) =
2

α− 2

Γ(1 + α/2)Γ(n + 1)

Γ(n + α/2)
.

So

Gsilence =
Γ(n + α/2)

Γ(1 + α/2)Γ(n + 1)
∼ (n + 1)α/2−1

Γ(1 + α/2)
.

For α = 4, in particular,

Gsilence =
n + 1

2
.
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Gains due to Deployment and Cooperation BS cooperation

Cooperation by joint transmission

BS cooperation: turn nearby foes into friends
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Gains due to Deployment and Cooperation BS cooperation

SIR with joint transmission from n BS [NMH14]

For the analysis of JT, we introduce the function

ψn(α) ,

1
∫

0

· · ·
1
∫

0

n

1 +
∑n−1

k=1 t
−α/2
k

dt1 · · · dtn−1.

This is the expected value

E

(

n

1 + ‖t‖−α/2
−α/2

)

, where t = (t1, . . . , tn−1) ∼ U([0, 1]n−1).

Since t
−α/2
k ≥ 1, certainly ψn(α) < 1. We have

ψ2(4) = 2− π

2
≈ 0.43 ; ψ3(4) =

9
√

2

4
π−3π−2+

9

2
arcsin

(

1

3

)

≈ 0.264.
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Gains due to Deployment and Cooperation BS cooperation

SIR with joint transmission from n BS

Let the desired signal consist of the superposition of the signals from the n

strongest (on average) BS in the HIP model. We have [NMH14]

E(ISR
(+n)

) =
2ψn(α)

α− 2
=⇒ Gcoop =

1

ψn(α)
.

For α = 4, n = 2:
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Single BS
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Gcoop =
2

4 − π
≈ 2.33.

The red curve is the exact ccdf
(given by an n-dim. integral).

So JT from 2 BSs in the HIP model
is better than even a triangular lat-
tice without JT.
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Gains due to Deployment and Cooperation Comparison of silencing and JT

SIR with cooperation from n BS: Silencing vs. joint transmission
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Joint transmission from n BSs
Silencing n−1 BSs

α = 3
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Joint transmission from n BSs
Silencing n−1 BSs
3/2*n

α = 4

For α = 3, the ratio approaches 4, while for α = 4, the ratio approaches 3.

Conjecture:
Gcoop

Gsilence
∼ 2 − δ

1 − δ
=

2 − 2/α

1 − 2/α
, n → ∞.
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Gains due to Deployment and Cooperation Cooperation for worst-case users

Cooperation for worst-case users

SIR at Voronoi vertices with cooperation
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At these locations (×), the user is
far away from any BS, and there
are two interfering BS at the
same distance.

In the Poisson model,

F̄×

SIR(θ) =
F̄ 2

SIR(θ)

(1 + θ)2
.

With BS cooperation from the 3
equidistant BSs, for α = 4,

F̄
×,coop

SIR (θ) = F̄ 2
SIR(θ/3) =

(

1 +
√

θ/3 arctan(
√

θ/3)
)

−2
.
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Gains due to Deployment and Cooperation Cooperation for worst-case users

With ASAPPP
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For worst-case users with
n ∈ {1, 2, 3} BSs cooperating,

E(ISR) =
4 + (3 − n)(α− 2)

n(α− 2)
.

So for n = 3, the ratio of the two
MISRs is

Gcoop =
MISR

MISRcoop
= 3 +

3

2
(α− 2).

The shape of the curve does not change, it is merely shifted.

This indicates that BS cooperation of k BSs (non-coherent joint
transmission) does not provide a diversity gain.
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Effectiveness of ASAPPP

The unreasonable effectiveness of ASAPPP

Why is shifting so accurate?

Not fully clear (yet).
Intuition: cdfs all have the same shape (single inflection point), and in the
case of the SIR, both tails can only differ in the pre-constant.

For small θ, by definition of the diversity gain d ,

1 − ps(θ) = Θ(θd), θ → 0.

Theorem (Tail of SIR distribution)

For all stationary point processes and all fading distributions,

ps(θ) = Θ(θ−δ), θ → ∞.

For HIP with Rayleigh fading, ps(θ) ∼ sinc δ θ−δ.
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HetNet modeling Dependencies

Back to modeling

Introducing dependencies

Intra-tier dependence: BS of one tier are not placed independently.

Inter-tier dependence: BS of different tiers are not placed
independently.

Intra-tier dependence

The HIP model is conservative since it may place BSs arbitrarily close
to each other. The lattice model is extreme.

Current and future real-world deployments fall in between. It is
unlikely to have two BSs very close, so the BSs form a soft-core or
hard-core process. In other words, the BSs process is repulsive.
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HetNet modeling The Ginibre point process

The Ginibre model [DZH14]

Realizations of PPP and the Ginibre point process (GPP) on b(o, 8)
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The GPP exhibits repulsion—just as BSs in a cellular network.
Its pair correlation function is g(r) = 1 − e−r2 .
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HetNet modeling The Ginibre point process

The Ginibre point process

The GPP is a motion-invariant determinantal point process.

Remarkable property: If Φ = {x1, x2, . . .} ⊂ R
2 is a GPP, then

{‖x1‖2, ‖x2‖2, . . .} d
= {y1, y2, . . .}

where (yk) are independent gamma distributed random variables with pdf

fyk (x) =
xk−1e−x

Γ(k)
; E(yk) = k .

The intensity is 1/π but can be adjusted by scaling.

The GPP can be made less repulsive by independently deleting points
with probability 1 − β and re-scaling. This β-GPP approaches the
PPP in the limit as β → 0.

M. Haenggi (ND & EPFL) ASAPPP 12/12/2014 31 / 38



HetNet modeling The Ginibre point process

The Ginibre point process in action

We would like to model these two deployments:
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HetNet modeling The Ginibre point process

The Ginibre point process in action

SIR distributions for different path loss exponents:
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Experimental Data w. α=3
Experimental Data w. α=2.5
The fitted β−GPP

For the rural region, β = 0.2. For the urban region, β = 0.9.

Other models that fit well are the Strauss process and the perturbed lattice
[GH13]. They are less tractable, though.
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HetNet modeling The Ginibre point process

The Ginibre process and the MISR
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MISR−based gain for β−GPP

So quite exactly Gβ ≈ 1 + β/2 (barely depends on α).
The square lattice has a gain of 2, so the 1-GPP falls exactly in between
the PPP and the lattice.

Also: The 1-GPP provides the same SIR distribution as a PPP with 1-BS
silencing.
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HetNet modeling Dependence

Two-tier models with intra- and inter-tier dependence

Intra-tier dependence

For a single tier, the Ginibre process models the repulsion.
For a capacity-oriented deployment, a cluster process can be used for the
small cells [DZH15].
In this case, the users do not form a PPP—a Cox process with higher
densities in the hotspots may be suitable as a model.

Inter-tier dependence

Since small cells are not deployed close to macro-BSs, they can be assumed
to form a Poisson hole process [DZH15].
The macro-BSs may still be assumed to form a PPP.
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Conclusions

Conclusions

The SIR distribution is a key metric from which other metric can be
derived (spectral efficiency, rate, throughput, delay, reliability).

ASAPPP: The SIR gain of a deployment/architecture/scheme is best
measured as the horizontal gap relative to the Poisson model.

For α = 4 : ps(θ) ≈
1

1 +
√
θMISR arctan

√
θMISR

The MISR is easy to obtain by simulation if it cannot be calculated.

Joint transmission provides a fixed gain over BS silencing as the
number of cooperating BSs increases.

Future work should also include models with intra- and inter-tier
dependence. The Ginibre point process is promising as a repulsive
model due to its tractability.
Having data to verify the models would be very helpful.
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