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Abstract— We introduce and discuss a novel link model that
incorporates both uncertainty in the fading coefficients and the
node distances for ad hoc networks with randomly placed nodes.
The main result is the complete distribution of the received
power for a transmission between a node and its n-th nearest
neighbor. Several applications of the proposed fading model are
discussed, including connectivity, opportunistic communication,
and localization.

I. INTRODUCTION

In wireless networks, distances have a strong impact on the
signal strengths and the signal-to-noise-and-interference ratios
(SINRs), and, consequently, on the quality of the links. In
addition, given a transmitter-receiver distance d, the path loss
may deviate significantly from the expected value obtained
from a large-scale path loss model, usually of the form dα, a
phenomenon referred to as fading. Fading is commonly con-
sidered by the physical layer community, and distances in ad
hoc networks are normally taken into account by researchers
focusing on the higher layers, typically the network layer. It
is essential that both effects are considered jointly to obtain
an accurate link model. Hence the objective of this paper is
to propose a novel link model that is based on uncertainty on
both the fading state of the channel and the distance between
transmitter and receiver.

We focus on flat small-scale fading, in particular of the
Rayleigh type, and on networks whose nodes are distributed
according to a homogeneous Poisson point process (PPP).
These models have two advantages; they are analytically
tractable on the one hand, and they constitute worst or extreme
cases on the other hand, in the sense that most fading models
are more benign than Rayleigh fading, and all (homogeneous)
point processes have a smaller entropy than the PPP. For
the large-scale path loss, we employ the common power law
mentioned above, well aware of its shortcoming at small
distances [1], [2].

A. Static and Dynamic Fading Models

a) Disk and threshold models: In research on ad hoc
networks, two channel or link models are prevalent: the disk
or protocol model and the so-called physical model [3]. Both

are entirely deterministic. The disk model suffers from three
serious weaknesses: (1) It ignores the accumulated interference
from a potentially large number of distant interferers1; (2)
it wrongly suggests that the packet reception probabilities
decrease if all nodes scale their power by the same factor;
(3) it completely ignores the stochastic nature of the wireless
channel induced by noise and fading, which leads to inac-
curate analyses [4]2 and completely prevents the assessment
of diversity techniques [5]. The inaccuracy of the disk model
has also been emphasized in [6]–[10] and was demonstrated
experimentally [11]–[15].

The physical model is based on the more realistic assump-
tion that a certain SINR level s is needed for successful recep-
tion. It treats interference as noise and is still deterministic,
as the noise is modeled by its variance, and no fading is
considered. Therefore the physical model may more accurately
be denoted as a deterministic threshold model.

b) Threshold models with fading: Deterministic thresh-
old models may model the channel with sufficient accuracy
for certain types of networks. Most networks, however, exhibit
some type of fading [16]–[18], i.e., a stochastic variation in
the received signal power that may be caused by multipath
propagation, scattering, or obstruction. Fading is a spatial
phenomenon, i.e., the fading level depends on the position of
a node and only varies over time if the transmitting and/or
receiving nodes (or objects in their surroundings) move. To
make this distinction, we use the terms static and dynamic
fading. In static fading, only one channel realization is ob-
served over time (infinite coherence time), whereas a dynamic
fading process is usually ergodic. Static fading occurs in
networks with static nodes that are placed in rich-scattering
environments. A prominent example are sensor networks.

Fig. 1 shows a typical situation in a network with Rayleigh
fading and a path loss exponent of α = 2. In an 16×16 square,

1This is particularly important for path loss exponents near two. In fact,
for α = 2 the interference diverges as the number of nodes grows, and
even nearest-neighbor communication becomes impossible, which is not at
all apparent from the disk model.

2In this paper, it is shown that deterministic models give much more
optimistic results than the ones considering fading.



642 nodes are placed in a regular square grid. The figure
indicates which nodes can communicate directly with the base
station in the center, if for successful communication a path
gain of s = 0.1 is required. It is apparent that the successful
receivers do not form a simple disk. For comparison, a disk
of radius r = 1/

√
s (the transmission radius in a disk model)

is also drawn. Rayleigh fading permits transmissions over
substantially larger distances than r.

For the speeds occurring in an ad hoc network, a dynamic
fading process varies relatively slowly over time, so the coher-
ence time usually equals or exceeds the packet transmission
time. For moderate levels of mobility, in particular in TDMA
or frequency hopping channels, a block fading model [19] may
be justified, meaning that the channel stays constant during the
transmission of a packet but changes between transmissions.

For this class of stochastic threshold models, the reception
probability for a certain link distance d is given by

pr(d) = P[γ(d) > s] = P

[
GPtd

−α

N + I
> s

]

, (1)

where γ is the SINR, Pt is the transmit power, α the path
loss exponent, G a constant depending upon antenna gain and
wavelength3, N the noise variance, and I the total interference.
The purpose of this paper is to draw attention to the fact that
the distance d, often assumed to be known, is itself subject to
uncertainty and thus needs to be modeled as a random variable
D. The reception probability is then given by the expectation
of (1) with respect to D, i.e.,

pr = ED

[
P[γ(D) > s | D]

]
(2)

Note that we restrict ourselves to the interference-free case.
In the case of Rayleigh fading, noise and interference can be
treated independently [20], so an interference analysis would
simply yield an additional factor in the reception probability.

B. Node Distribution: The Poisson Point Process

A well accepted model for the node distribution4 is the
homogeneous Poisson point process of intensity λ. For the
simplicity of our exposition, we will focus on infinite net-
works, and without loss of generality, we can assume λ = 1
(scale-invariance). From the Poisson property, the following
result can immediately be derived [21]: For a 2-dimensional
network, the distance Dn between a node and its n-th neighbor
has the generalized gamma probability density function (pdf)

fDn(r) = e−πr2 2(πr2)n

r(n − 1)!
, (3)

In particular, the distance to the nearest neighbor is Rayleigh
distributed with mean 1/2, and the squared ordered distances
D2

n are Erlang with parameter π, i.e., E[D2
n] = n/π.

Fig. 2 shows the same situation as in Fig. 1, but for an actual
PPP of intensity 1 rather than a grid arrangement.

3In general, G � dα, but since the constants do not matter for what we
are doing, we will assume G = 1.

4In particular, if nodes move around randomly and independently, or if
sensor nodes are deployed from an airplane in large quantities.
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Fig. 1. From 642 nodes arranged in a grid of size 16× 16, this plot shows
the ones that can communicate directly with a node situated at the origin in a
Rayleigh fading environment and a path loss exponent of α = 2. The required
path gain for a node to be reachable is s = 0.1. The radius of the disk is
chosen such that the same number of nodes could be reached under the disk
model, i.e., r = 1/

√
s ≈ 3.16. Clearly, with Rayleigh fading, much further

nodes can be reached than under the disk model.
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Fig. 2. Same situation as in Fig. 1, but for an actual Poisson point process
of intensity 1. The reachable nodes are indicated by a bold ×. The expected
number of nodes in the fading and non-fading cases are equal.



II. A JOINT LINK MODEL FOR n-TH NEAREST-NEIGHBOR

COMMUNICATION

A. Distribution of Path Gain

In this section we determine and discuss the path gain from a
node to its n-th nearest neighbor, or, equivalently, the received
power at a node if its n-th nearest neighbor transmits at unit
power. The main result is the following theorem:

Theorem 1 Consider a node in a Rayleigh fading network
whose nodes are distributed according to a Poisson point
process in R

2 with intensity 1. Let Qn denote the (power)
path gain between the node and its n-th nearest neighbor for
a path loss exponent of 2. The cumulative density function
(cdf) of Qn is

FQn(x) = 1 − πn

(π + x)n
. (4)

Proof: Given the distance Dn, the path gain Qn is exponen-
tially distributed with mean D−2

n due to the Rayleigh fading
assumption, and D2

n is Erlang as mentioned previously. Let
A := D2

n, and denote the fading random variable (exponen-
tially distributed with mean 1) by Qf . We obtain

FQn(x) = P[Qf < Ax] (5)

= EA[1 − e−Ax] (6)

=

∫
∞

0

(1 − eax)

(
πnan−1

Γ(n)
e−πa

)

da (7)

= 1 − πn

(π + x)n
. (8)

�

Note that this result can also be obtained by calculating the
distribution of the ratio Qf

n/Qd
n, i.e., the ratio of the exponen-

tial fading part and the Erlang distance part. In particular, for
n = 1, (4) is the cdf of the ratio of two exponential random
variables whose means have a ratio π. The pdf is

fQn(x) =
nπn

(π + x)n+1
, (9)

and the first and second moments are

E[Qn] =
π

n − 1
for n > 1 , (10)

E[Q2
n] =

2π2

(n − 1)(n − 2)
for n > 2 . (11)

Generally, given n, the highest existing (finite) moment
is E[Qn−1

n ] = πn−1. The variance is decreasing quickly:
Var(Qn) = O(1/n2).

For the differential entropy h(Qn) := E[− ln fQn(Qn)], we
obtain

h(Qn) =
n + 1

n
+ ln

(π

n

)

, (12)

which is (as expected due to the decreasing variance) mono-
tonically decreasing with increasing n.

In the Appendix, we give some remarks on the path gain
distribution for path loss exponents other than 2 and for 3-
dimensional networks.
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Fig. 3. Pdf of the joint amplitude fading process H (solid line) and Rayleigh
pdfs with mean

√
π (dashed) and mean π3/2/2 (dotted, same mean as the

joint process).

B. Nearest-neighbor Communication

Communication to the nearest neighbor is of particular
importance, so we discuss this case in more detail here. With
Q := Q1, we have for cdf and pdf:

FQ(x) =
x

π + x
; fQ(x) =

π

(π + x)2
. (13)

The pdf of the amplitude H :=
√

Q is

fH(x) =
d

dx
P[
√

Q < x] =
2xπ

(π + x2)2
, (14)

with mean E[H ] = π3/2/2. In Fig. 3, this joint fading process
is compared with two Rayleigh pdf curves, one with mean

√
π

and the other with the same mean as H . As can be seen, the
main difference is the long tail.

The fact that the expected path gain E[Q] diverges may not
be desirable. It is a consequence of the singularity of the path
loss model at d = 0 and the fact that the PPP allows points
to be arbitrarily close. While the latter fact is a consequence
of the PPP assumption, the first one is clearly impractical for
small distances. There is certainly a cap on the path gain, say ĝ,
which results in Q = Qf min(ĝ, D−2). The same calculation
as before in this case yields the cdf

P[Q < x] =
x

π + x
e−(π+x)/ĝ + 1 − e−x/ĝ , (15)

and the mean received power is

E[Q] = ĝ(1 − e−π/ĝ) + πΓic(0,
π

ĝ
) , (16)

where Γic is the incomplete gamma function5. As expected,
limĝ→∞ E[Q] = ∞. From this more realistic joint power

5More specifically, the upper incomplete gamma function as defined in
Maple or Mathematica, i.e., Γic(a, 0) = Γ(a). Note that Matlab’s gam-
mainc function is the normalized lower incomplete gamma function, and
the arguments are flipped: Γic(a, z) = Γ(a)(1−gammainc(z, a)).



fading process, the corresponding amplitude fading process
can be derived.

For the n-th nearest neighbors with larger n, mean and
variance are finite (see (11)) since the probability of small
distances decreases.

III. APPLICATIONS

In this section we discuss a few applications of the link
model. We will focus on the simple path loss model where
there is no cap on the path gain.

A. Connectivity

In accordance with the stochastic threshold model, we that
a certain path gain s (or more) is needed for successful
communication. Denote two nodes to be connected if they
can communicate under this model.

Corollary 1 Let In be the event that the node under consider-
ation is disconnected from all its n nearest neighbors. Under
the same assumptions as in the theorem,

P[In] =

n∏

k=1

(

1 − πk

(π + s)k

)

. (17)

The probability P[I∞] of being completely isolated is

P[I∞] =

(

θ′1(0,
√

b)

2b1/8

)1/3

, (18)

where b := π/(π + s) and θ′1(z, q) is the derivative (with
respect to z) of the first Jacobi Elliptic function6. P[I∞] is
bounded by

1 − π

π + s
− π2

(π + s)2
< P[I∞] < e−π/s . (19)

Proof: The link to node n is in outage with probability FQn(s)
given in (4). All neighbors are independent, so the probability
of being disconnected from the nearest n of them is (17). For
n → ∞, (18) is a known identity for this infinite product.
To obtain the upper bound on P[I∞], we use the logarithmic
inequality ln(1 − x) < −x, which yields

ln P[I∞] < −
∞∑

k=1

πk

(π + s)k
= −π/s. (20)

The lower bound follows from a direct expansion of (17) and
truncating after the second term. Similarly, a Taylor expansion
of (18) yields P[I∞] = 1 − b − b2 + O(b5). �

Fig. 4 shows the probabilities P[In] as a function of n for
s = 1 and s = 3. Note that irrespective of s, P[In] converges to
P[I∞] after taking into consideration at most n = 10 nodes.
Fig. 5 displays P[I∞] as a function of s, together with the
bounds (19). As can be seen, the bounds are quite tight, in
particular at higher s. In a static fading scenario, P[I∞] is the
probability that a node is completely isolated for all times. In a
dynamic (block) fading case, it is the probability that nobody
can be reached in that particular time slot.

6Mathematica: EllipticThetaPrime[1,z,q]
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Fig. 4. Probability P[In] of being disconnected from the n nearest neighbors
for SNR threshold s = 1, 3.
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Fig. 5. Probability P[I∞] of a node being completely isolated (solid) and
bounds (19) (dashed) as a function of the threshold s.

B. Opportunistic Transmission

Here we investigate the question how frequently it oc-
curs that more distant nodes have better channels, i.e., that
“distance” with respect to signal strength does not coincide
with geometrical distance. This problem is of interest in
opportunistic transmission as well as RSSI-based localization.

Corollary 2 Let Mn := {k ∈ Z | k > −n, k 6= 0}. For the
same assumptions as in the theorem,

P[Qn < Qn+m] =
n

2n + m
, m ∈ Mn . (21)



Proof: We have for m ∈ Mn

P[Qn < Qn+m] = E
[
P[Qn < Qn+m | Qn+m]

]
(22)

=

∫
∞

0

(

1 − πn

(π + x)n

)
(n + m)πn+m

(π + x)n+m+1
dx (23)

= 1 − n + m

2n + m

∫
∞

0

(2n + m)π2n+m

(π + x)2n+m+1

︸ ︷︷ ︸

fQ2n+m
(x)

dx , (24)

so the last integral is 1. �

So, for any fixed m ∈ Mn,

lim
n→∞

P[Qn < Qn+m] =
1

2
, (25)

i.e., the path gains become comparable. This is not surprising,
since as n → ∞, the difference of the distances to node n and
n + m for any fixed m goes to zero.

Note that the probability (21) must exhibit the symmetry
property P[Qn < Qn+m] = 1 − P[Qn+m < Qn]. Indeed,

n

2n + m
= 1 − n + m

2(n + m) − m
. (26)

A more general question is what is the probability Pn,m

that the path gain to node n is larger than all the path gains
to nodes n + 1, n + 2, . . . , n + m, i.e., to determine

Pn,m = P[Qn > max
n<k6n+m

{Qk}] (27)

= E

[ n+m∏

k=n+1

1 −
(

π

π + Qn

)k ]

. (28)

Finding a closed-form expression of this expectation for
general n, m seems elusive. For the case m = 2, we obtain
without effort by expanding the product in (28)

P[Qn > max{Qn+1, Qn+2}] =
4n2 + 11n + 6

12n2 + 18n + 6
, (29)

which shows that the probability that Qn is larger than both
the closest two more distant nodes goes to 1/3 as n increases.
If more nodes are considered, the probability will still be a
rational function with rapidly increasing but equal numerator
and denominator orders.

For the case n → ∞, it can be shown that

lim
n→∞

Pn,m =
1

m + 1
. (30)

Again, this result agrees with intuition, since as n → ∞, the
distances to nodes n, n + 1, . . . , n + m all become equal, and
each node in this group of m+1 nodes has the same probability
of having the largest path gain.

C. Routing

So far, we have assumed that a node may transmit to any
reachable node, without any preference in direction. Clearly,
if the goal is to communicate with a remote destination node
rather than broadcasting, the next relay node should roughly
be located in the direction of that destination, such that actual
progress is made. We use the model suggested in [20], i.e., we

assume that only nodes within an angle ±φ/2 of the source-
destination axis are possible relay nodes. The squared ordered
distances D2

n in this case are still Erlang, but with parameter
φ/2. The cdf of Qn is obtained simply by replacing π by φ/2,
i.e.,

F φ
Qn

(x) = 1 −
(

φ/2

φ/2 + x

)n

, (31)

and the mean number of nodes that can be reached within this
sector φ is E[Nφ] = φ/(2s).

D. Localization and Channel State Information

Here we present some thoughts of how the proposed model
is to be interpreted in the context of training and localization.

If a receiving node measures the path gain of a transmission,
what can we say about the distance? The path gain distribution
permits an ML on the index of the node n̂ that is transmitting:
For a received power x:

n̂(x) = arg maxn fQn(x) (32)

The ML decision n̂ is the following:

n̂(x) = n ⇐⇒ π

n
6 x <

π

n − 1
(33)

So, the ML decision is n̂(x) = dπ/xe. This is of course related
to the fact E[D2

n] = n/π.
The purpose of training is to acquire knowledge of the

channel state. In our framework, channel state information
(CSI) includes the combined information on fading state and
distance. From measuring RSSI, it is not possible to decide
on the fading state Qf , since a low path loss may just as well
be from a short distance rather than good fading.

One way to disentangle actual fading state and distance
is localization, which reduces the uncertainty in the link
distance D, i.e., to find an estimate D̂ with smaller variance
or differential entropy than D. For many node localization
schemes, a Gaussian model N (d0, σ

2) seems reasonable for
D̂, where d0 denotes the actual distance and σ2 the variance
or residual uncertainty. This implies that localization turns
Rayleigh distances into Ricean distances, where the Ricean
K factor depends monotonically on σ−2.

Another important aspect is the coherence time. While
the coherence time of the Rayleigh fading part is related
to wavelength and velocity and may be relatively short, the
coherence time of the distance component will be significanly
larger in most cases. So the combined fading values will not
be independent from packet to packet.

IV. CONCLUDING REMARKS

We have proposed a link model that incorporates the two
main types of uncertainty in the channels of wireless ad hoc
networks, namely the fading state and the link distance. The
model is characterized by the distribution of the path gain.
Several applications are discussed: connectivity, opportunistic
communication, and localization. Related to connectivity, it
turns out that the expected number of nodes that can be



reached is the same as in the non-fading case. However, the
probability of a node being isolated is smaller.

The fading model is particularly simple in the case where
the number of network dimensions equals the path loss expo-
nent.

We expect the proposed model to provide better insight
into the behavior of large ad hoc networks and to find many
useful applications, e.g., in throughput and outage analyses,
connectivity, the design of flooding algorithms, and RSSI-
based localization.

APPENDIX

A. Other Path Loss Exponents

From (3), the cdf of Dα
n is

FDα
n
(x) = 1 − Γic(n, πr2/α)

Γ(n)
. (34)

Thus we obtain for the cdf of Qn, analogously to (8):

FQn(x) =

∫
∞

0

(1 − e−ax)

(

2

α

πne−πr2/α

r2n/α−1

Γ(n)

)

(35)

For α = 4, we find:

FQn(x) = 1 − πnx−
1
2
−

n
2 A(n, x)

2Γ(n)
(36)

with

A(n, x) :=
√

x Γ
(n

2

)

1F1

(
n

2
,
1

2
,
π2

4x

)

− πΓ

(
1 + n

2

)

1F1

(
1 + n

2
,
3

2
,
π2

4x

)

, (37)

where 1F1 is the confluent hypergeometric function of the
first kind7.

For α = 3, FQn(x) involves a general hypergeometric
function 2F2.

B. 3-Dimensional Networks

In the 3-dimensional case, the cdf of Dα
n is [21]

FDα
n
(x) = 1 − Γic(n, 4

3πr3/α)

Γ(n)
. (38)

Similarly to the two-dimensional case, we obtain a particularly
simple joint fading model when the path loss exponent equals
the number of dimensions: For α = 3, the cubed ordered
distances are Erlang with parameter 3/(4π). So we obtain the
distribution of the path gain simply by replacing π by 4/(3π)
in (4).

7Also called Kummer’s function of the first kind. Mathematica: Hyper-
geometric1F1[a,b,z].
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