
1

Arbutus: Network-Layer Load Balancing for
Wireless Sensor Networks

Daniele Puccinelli and Martin Haenggi
Network Communications and Information Processing Laboratory

Department of Electrical Engineering
University of Notre Dame

Notre Dame, IN, USA

Abstract—The hot spot problem is a typical byproduct of
the many-to-one traffic pattern that characterizes most wireless
sensor networks: the nodes with the best channel to the sink
are overloaded with traffic from the rest of the network and
experience a faster energy depletion rate than their peers.
Routing protocols for sensor networks typically use a reliability
metric to avoid lossy links and thus directly exacerbate the
problem. Significant advantages can be obtained by embedding a
load balancing scheme at the network layer, as we show with the
design and implementation of Arbutus, a novel routing protocol
for wireless sensor networks with a built-in load balancing
scheme. By imposing a special structure on the collection tree,
privileging longer hops, and accounting for network load in
the route selection process, Arbutus reduces the impact of hot
spots on network lifetime without a deterioration of the end-to-
end reliability performance. An implementation of Arbutus on
Berkeley motes and the MoteLab testbed shows a 30% reduction
in the network traffic load needed to achieve the same packet
delivery rate as an existing mote-oriented protocol. This provides
key benefits such as a significant lifetime gain and increased fault
tolerance.

I. INTRODUCTION

The standard use of a wireless sensor network (WSN) is
single-sink data collection, which naturally creates a many-to-
one traffic pattern from the sensing nodes to the sink. Given
the limited resources of WSNs, routing protocols normally
avoid lossy links at all costs. Nodes with particularly favorable
channels are thus likely to have a heavier workload than
their peers, as they are chosen to relay traffic that they do
not generate. This additional burden curtails the lifetime of
these critical nodes and leads to network partitioning [1]. This
phenomenon is known as the hot spot problem; it is the aim of
load balancing schemes to avoid the formation of hot spots,
or at least reduce the gravity of the problem and keep the
network layer from ruining the energy conservation efforts of
the lower layers.

The availability of multiple routes to the sink depends
on the topology of the network and its surroundings and is
constrained by the radio hardware and the physical layer. In
the best possible load balancing scenario, all nodes can reach
the sink in one hop and only send what they generate. At the
opposite end of the load balancing spectrum, one particular
relay or a small number thereof may be the only way for the
sink to reach a whole subsection of the network, thus forming
a topological bottleneck. An extreme case is a line network

A

G

F C

BE

D

S

Figure 1. A line network with nearest-neighbor routing. The width of each
link is proportional to the corresponding traffic volume.

where only nearest-neighbor routing is possible. An example
of this situation is shown in Fig. 1, which depicts a network
where each node can only receive data from its upstream
neighbor and can only send it to its downstream neighbor.
The closer a node is to the sink, the higher its workload: each
relay is a topological bottleneck with respect to the upstream
nodes.

In the presence of topological bottlenecks, load balancing
alone cannot help. For bottlenecks artificially created by a
routing strategy, however, we argue that a load balancing
scheme directly embedded at the network layer may provide
significant lifetime gains through a more efficient redistribution
of the workload. To validate our argument we propose Arbutus,
a novel cost-based routing protocol for WSNs with a built-in
load balancing strategy. The main goal is the avoidance of
a premature demise of the network given the constraints of
existing lower-end sensing nodes. In this paper we provide a
description of the architecture and a first performance eval-
uation of Arbutus, which we benchmark against an existing
routing protocol. All the results presented herein have been
obtained on MoteLab [2], a testbed of TMote Sky wireless
nodes physically located at Harvard University and available
for remote use through a web interface.

II. RELATED WORK

The significant resource constraints of lower-end nodes
combined with the peculiarity of a many-to-one or many-to-
few traffic pattern have discouraged the use of traditional ad
hoc wireless routing protocols [3]. Despite numerous research
efforts, WSN routing remains to this day a fairly open issue.
Given the experimental nature of our work, in this section we
will only focus on mote-oriented routing protocols that have
been implemented on actual sensor network platforms.

2

A number of cost-based routing protocols have been devel-
oped for motes using TinyOS [4], an operating system specif-
ically designed for WSNs. MintRoute [5], MultiHopLQI [6],
and Collection Tree Protocol (CTP) [7] represent successive
evolutions of a common cost-based paradigm defined in [5],
which recognizes that the volatility of the wireless channel
makes Boolean connectivity models not suitable for use in
lower-end sensor networks with low-power radios and limited
resources. Link estimation is seen as an essential tool for the
computation of reliability-oriented route selection metrics. The
sample application scenario is a sensor network with one sink
(or potentially multiple sinks in CTP) where each sensing node
generates traffic at a constant packet rate. Routing is broken
down into three major components: a Link Estimator (LE) that
continuously assesses the quality of the wireless links in the
network; a Routing Engine (RE) that determines the address
of the one-hop neighbor that provides the best progress toward
the sink according to a given cost function based on the output
of the LE; a Forwarding Engine (FE) that injects its own
traffic or relays upstream traffic by unicasting to the address
determined by the RE. The rationale behind this partitioning
is the separation of the data plane (FE) from the control plane
(RE), and the flexibility of choosing different LEs. The FE is
a standard block that can be used across different protocols;
the LE and the RE completely define a particular protocol.
Connectivity discovery and route maintenance are carried out
with the help of control beacons that diffuse global state used
locally for route selection.

MintRoute (Mint stands for MInimum Number of Trans-
missions) employs routing tables and works with a LE based
on the Expected Number of Transmissions (ETX) metric [8],
but can also employ packet delivery rate (PDR) estimates
based on sequence numbers. MintRoute adopts a neighborhood
management policy based on the FREQUENCY algorithm
[9] as a link blacklisting solution, thereby allowing a given
node to only keep track of a subset of its neighbors. This
way, MintRoute prevents the routing table from growing
beyond a given size. In MultiHopLQI, neither routing tables
nor blacklisting are used, and a new parent is adopted if
it advertises a lower cost than the current parent. The link
metric is Link Quality Information (LQI), an 802.15.4-specific
form of Channel State Information (CSI) used additively to
obtain the cost of a given route. MultiHopLQI avoids routing
tables by only keeping state for the best parent at a given
time; this measure drastically reduces memory usage and
control overhead. The most recent protocol in this family,
CTP [7], uses ETX and has a number of special features
such as link estimation from both control and data traffic and
transmission deferrals in case of parent node congestion. In
parallel to the aforementioned protocols, a lightweight data
collection protocol, Drain [10], was also developed along with
its counterpart for query dissemination, Drip. Drain operates
connectivity discovery and route maintenance through a sink-
initiated reactive flood and performs route selection based
on CSI and link-level acknowledgments (also employed by
MultiHopLQI). Drain, like MultiHopLQI, only keeps state for
one parent. None of these protocols explicitly pursues load
balancing.

III. PROTOCOL DESCRIPTION

Arbutus is a novel routing protocol for WSNs with an
embedded load balancing scheme. 1 Depth-limited beaconing
is employed for connectivity discovery and route maintenance,
and route selection is based on cross-layer bottleneck informa-
tion. Arbutus tends to minimize the hop count of the routes
under the constraints of the wireless channel. Among many
other advantages, a smaller hop count directly entails a smaller
control overhead [11]. The very structure of the collection
tree promotes a low hop count: a beacon is processed only
if it comes from a node at a lower depth, and all control
traffic from nodes at higher or equal depth is ignored. In
other words, a node at a given depth must choose a parent
of lower depth, with the added benefit that routing loops
are avoided by construction. It is also true, however, that a
subset of valid links are ignored, as they would lead to longer
routes. Though this greatly reduces the volume of control
traffic, in principle shorter and less reliable routes may be
chosen over longer and more reliable ones. Arbutus does not
employ routing tables: like in MultiHopLQI and Drain, state
information is only maintained for the current parent. Rather
than the additive approach normally used to spread global
state, Arbutus employs bottleneck information [12], [13], [14]
which can be obtained with min or max operations over local
information.

Link blacklisting is employed to reduce the chances of using
asymmetric links, but is used with caution; [15] warns that it
may lead to network partitioning. Experiments with MoteLab
have shown cases where a node becomes unreachable for a
certain amount of time (ranging from minutes to days) due
to multipath fading: links that lie in the so-called transitional
connectivity region [16] may slip into the disconnected region
due to a change in the fading patterns of the environment (a
door is closed, a piece of furniture is moved, . . .). Motivated
by this observation, Arbutus’s control plane is augmented with
a dynamic blacklisting threshold adaptation scheme.

A key feature of Arbutus is its embedded load balancing
scheme. Since a pure reliability metric based on CSI overloads
the critical nodes, Arbutus also takes load into account: it
employs load estimates to identify overworked nodes and fuses
them with CSI to obtain a cross-layer route selection metric.

A. Definitions

Bottleneck link quality. Let (k, p(k)) = (p(k), k) represent a
link between k and its designated parent p(k), and let l(k,p(k)) ∈
[0, 1] represent a normalized estimate of the quality of this
link. We define the bottleneck link quality Lk seen by node k
over an h−hop route to the sink as

Lk = min
j=0..h−1

l(p j(k),p j+1(k)) (1)

where p0(k) = k, p2(k) = p(p(k)), . . .
Bottleneck load. We define the load βr of a relay r as

the ratio of the number of relayed data packets (not locally
generated) to the number of locally generated packets over a

1The name of an evergreen tree was whimsically chosen to indicate that
this routing protocol constructs a tree that does not lose its leaves.

3

given timeframe, which in this paper coincides with the entire
lifespan of r. We define the bottleneck load factor for node k,
Bk, as

Bk = max
j=0..h−1

βp j(k). (2)

Cost. The cost incurred by node i if it awards parent status
to node k, i.e., if it routes its traffic over node k, is represented
with the notation Ci

k.

B. Basic protocol description

State information. State at node k includes the parent
address p(k), the bottleneck link quality Lk, the bottleneck
load Bk, the depth Dk (hop distance to the sink), a parent
loss counter Hk, and a parent use counter Ok. The state
information contained in the outgoing beacon bk from node k
must include the parent address, the bottleneck link quality
Lk, the bottleneck load Bk, and the depth Dk. If node k
is the sink, it starts up with the initializations Lk � 1,
Bk � 0, and Dk � 0. If node k is not the sink, it runs a no-
route initialization by setting p(k) � INVALID NODE and
Dk � INVALID DEPT H. A beacon and the internal state
information of a node without a valid parent address will be
referred to as a no-route beacon and no-route state. Beacons
are to be sent in compliance with the beaconing management
policy. Every node k sets Hk � 0 and Ok � 0 at startup.

Control beacon filtering. Node i, upon reception of bk

(used to estimate l(k,i)), checks the three beacon processing
conditions:

1) p(i) = INVALID NODE and Dk �
INVALID DEPT H, i.e., node i is parentless and
node k has a valid route to the sink.

2) p(i) = k, i.e., node k is the current parent of node i.
3) Node k is not blacklisted2 by i and Dk < Di, i.e., its hop

distance to the sink is lower than the current depth.

If none of the three conditions above is met, no further
action is needed. If any of them is met, the control beacon is
accepted.

Parent management. Node i computes the cost of using
node k, Ci

k, based on the state information advertised in bk

and the newly computed l(k,i). If any of the following cost
update conditions is met:

1) p(i) = INVALID NODE (i has no valid parent).
2) p(i) = k (k is i’s parent).
3) Ci

k < Ci
p(i) (node k offers a lower cost of reaching the

sink than the current parent p(i)).

then p(i) = k if the following valid parent conditions are all
met:

1) p(k) � i (two-hop loop avoidance, i.e., node i is not the
parent of its prospective parent k).

2) Dk < INVALID DEPT H (the potential parent has a
route to the sink).

If all the valid parent conditions are met, then

• p(i) � k, i.e., node k is selected as the new parent of
node i.

2Blacklisting is performed based on an adaptive policy described at the
end of the present section.

• Li = min (l(k,i), Lk).
• Bi = max (βi, Bk).
• Di = Dk + 1.
• Ci

p(i) � Ci
k.

• Hi � 0 and Oi � 0.

If any of the valid parent conditions is not met, then p(i) � k,
and, specifically:

• p(i) � INVALID NODE.
• Di � INVALID DEPT H.
• Ci

p(i) � MAXINT .

The idea behind the cost update conditions is that the routing
cost should be updated if no valid parent exists, if the beacon
is from the current parent, or if the beacon advertises a lower
cost. If any of the cost update conditions is true, then the
valid parent conditions kick in; if the prospective parent can
be accepted or the current parent can be confirmed, then the
internal state of node i is updated accordingly; otherwise, the
internal state of i is initialized to no-route state.

Parent loss counter Hi counts the beacons sent by node i
since a parent was (re)established. It is incremented every time
a beacon is sent, and it is periodically checked against the route
maintenance threshold TH . Given the beaconing frequency, the
number of sent beacons since the current parent was accepted
or confirmed indicates the time since a beacon was received
from the parent; in this sense, TH works as a timeout to detect
parent loss and the condition Hi > TH , if met, triggers route
maintenance at i. Parent use counter Oi counts the total number
of data packets sent (relayed and generated) by i to the current
parent p(i) since the latter was (re)awarded parent status. It is
incremented every time the data plane generates and sends a
packet, which it may only do if p(i) � INVALID NODE
and Dp(i) < INVALID DEPT H. Oi is periodically checked
against the parent use threshold Ω; the condition Oi > Ω is
used by i to monitor its own use of p(i).

Routing cost function. Upon reception of control beacon
bk node i computes the cost Ci

k of granting parent status to
node k. Arbutus fuses physical layer and network layer in-
formation into a cross-layer cost function Ci

k = f (l(k,i), Li, Bk);
specifically, we use

Ci
k = 2 − l(k,i) − Li + 2Bk. (3)

Note that Bi is advertised in the outgoing beacon, but Bk is
used in the cost function. In [17], it is stated that a lifetime-
maximizing protocol should be adaptive to the network age by
favoring the nodes with the best channels in the initial stages of
operation, and by shifting to the nodes with the most residual
energy later on. This is what Arbutus does: initially Bk � 1,
and a parent is chosen if it offers a reliable route, but later on
the traffic load kicks in and residual energy is also accounted
for.

Beaconing management and route maintenance. Control
beacons are sent by any node k at the rate fs (fast beaconing
frequency) starting with a uniformly random delay after the
microcontroller boots. Afterwards, the beaconing frequency at
node k is managed as follows.

• Slow beaconing: upon reception of a data packet ad-
dressed to node k or if Ok > Ω, fb � fs (slow beaconing

4

frequency) is (re)enforced. Fast beaconing is used until
node k successfully advertises its route, i.e., until it is the
intended receiver of a data packet, which means that it
has been granted parent status. If node k does not have
child nodes, it will never be the intended receiver of a data
packet; for this reason, fast beaconing is also discontinued
when Ok > Ω, i.e., once k has sent at least Ω (parent use
threshold) data packets to the same parent.

• Fast beaconing: node k, if the route maintenance con-
dition Hk > TH is met (in case of parent loss or if k
remains parentless at startup for longer than the duration
of the route maintenance threshold TH), performs a no-
route initialization and employs fs (fast beaconing) to
rapidly inform the child nodes that a route to the sink no
longer exists. Dynamic blacklisting threshold adaptation
is initiated.

Adaptive link blacklisting policy. Let Θ(t) be a time-
varying link blacklisting threshold with Θ(0) = Θ0, let bn

indicate the time when the n−th beacon is sent (assume
b0 = 0), and let g(t) be a time-varying threshold adjustment
function. The link blacklisting policy at node i dictates that if
the link estimate l(k,i) based on bk received at time bn lies above
a dynamically adapted threshold Θ(bn) = Θ(bn−1)+g(bn), then
node i does not blacklist link (k, i) and processes bk. The
threshold is decreased (by a constant value d) when a route is
needed and cannot be found, presumably due to the absence
of sufficiently good links. More precisely, the threshold is
adjusted as follows: g(bn) = −d if the n−th outgoing beacon is
a no-route beacon and Hi > TH (route maintenance condition),
g(bn) = d if the n−th outgoing beacon is not a no-route beacon
but the n−1−th is, and g(bn) = 0 otherwise. The idea is that, at
time bn, node i refuses to use a downstream neighbor k such
that l(k,i) < Θ(bn) unless there are no alternatives, in which
case the threshold is forced down and k eventually gets used.

IV. PERFORMANCE EVALUATION

A. Baseline protocol

We choose MultiHopLQI as a baseline (as in [18]). Key
differences between Arbutus and MultiHopLQI lie in the tree
construction process, link estimation, and route selection. For
tree construction, a parent is chosen if it offers a better route
to the sink; CSI-based link costs are added up to obtain route
costs. MultiHopLQI always picks the most reliable links and
does not explicitly pursue load balancing. A certain amount
of load balancing, however, is obtained in the presence of
fading, which modifies link quality values and occasionally
influences parent selection. We intend to benchmark Arbutus
against MultiHopLQI to ascertain that the use of suboptimal
links does not significantly deteriorate the overall performance
of the protocol. We compare the two protocols with respect to
standard routing performance metrics such as average PDR at
the sink (computed as the ratio of the sum of the packets
received from all nodes to the number of nodes) and hop
count; to gauge the load balancing performance, we introduce
a novel figure of merit, which we denote as relaying cost-
to-benefit ratio. In a many-to-one traffic scenario where all
nodes transmit at the same rate, the only factor that introduces

a spread in the energy consumption of individual nodes is
the relayed load. Therefore, we can estimate the lifetime gain
based on ratio of the relayed load to the delivered load. Let N
be the set of all nodes in a network, let R be the subset of all
relays, and let us indicate the PDR for a node i at the sink as
Πi. In the economy of routing, the benefit is the total number
of data packets received by the sink, whereas the cost is the
total of all relayed data packets. The cost-to-benefit ratio η is
thus defined as

η �
∑

i∈N βi
∑

i∈R Πi
. (4)

The advantage of using the cost-to-benefit ratio is that it
allows an estimate of the benefits of load balancing without
the need to wait for energy depletion.

B. Implementation details

MoteLab’s TMote Sky nodes are equipped with the CC2420
radio from Chipcon, which makes CSI available in two dif-
ferent forms: it provides a measure of the Received Signal
Strength (RSS) with a 1dB resolution and the value of the
correlation between the received codeword and the codebook
entry associated to it by the decoder, made available in the
aforementioned LQI field in compliance with the 802.15.4
protocol. LQI provides soft information about bad links (it
correlates well with the PDR of a link), while RSS provides
soft information about good links (it ranges from about -
50dBm to about -90dBm, but typically anything above -80dBm
corresponds to a unitary PDR in the absence of interference).
RSS is supplied by most radios, whereas LQI is specific
to 802.15.4-compliant devices. In implementing Arbutus, we
leverage on both: we employ two blacklisting sub-strategies
(and thus need two thresholds, ΘRSS

0 and ΘLQI
0), and the end

decision is the logic AND of their outcomes. LQI alone is
used for the routing cost function.

In the experimental evaluation, all nodes in the network
generate traffic of fixed size (30 bytes for both protocols) at a
constant rate. Specifically, node k generates and sends a data
packet to parent p(k) (as determined by the control plane) with
traffic generation rate fgen. In Arbutus, upon reception of a data
packet from node i (p(i) = k), node k enters it into a queue
of length Q and forwards it to p(k) (queueing is necessary
as k may have several child nodes). Data packet generation
and forwarding are halted when p(k) = INVALID NODE.
Arbutus comes with several tunable parameters; in particular,
we set fb =1 pkt/min, fs =6 pkts/min, ΘRSS

0 = −88dBm,
and ΘLQI

0 =50. Link-level acknowledgments and retransmis-
sions are not used for either protocol (we operate with a
heavily congested network, and retransmissions would not
help [19]). Both protocols are built on top of a B-MAC
medium access layer [20]. It is worth pointing out that the
beaconing frequency normally used by this implementation
of Arbutus (fb) is roughly half of the beaconing frequency
used in MultiHopLQI, which guarantees Arbutus to incur a
significantly lower control overhead.

5

1 2 3 4 5 6

0.3

0.4

0.5

0.6

0.7

0.8
A

v.
 P

D
R

Packets per second per node

Arbutus
Baseline

1 2 3 4 5 6
0.5

1

1.5

2

2.5

η

Packets per second per node

Arbutus
Baseline

Figure 2. Average PDR and η for Arbutus and MultiHopLQI. At low loads,
the use of suboptimal links comes at the cost of a slightly lower PDR.

0 5 10 15 20
0

1

2

3

4

5

6

7

8

106

Time [min]

Lo
ad

106
110

Arbutus
Baseline

Figure 3. Time evolution of the load of all the relays in our sample
experiment. The considerable difference in the workload of node 106 is due
to the load balancing action of Arbutus reflected by the value of η (0.8 for
Arbutus, 1.2 for the baseline protocol MultiHopLQI).

C. Experimental results on the MoteLab testbed

We first focus on a subset of the MoteLab testbed and use a
23-mote network whose nodes are distributed on two different
floors. We use four different values of fgen (1, 2, 4, and 6
pkts/sec per node) and let every node generate traffic addressed
to the sink. Arbutus constructs a slightly shallower collection
tree, with an average depth of 1.9 (2.1 for MultiHopLQI)
and an average maximum depth of 3 (3.2 for MultiHopLQI)
over all our experiments with this subnetwork. Fig. 2 shows
the average PDR at the sink, computed as the average of
the PDR for each node over the whole experiment, and the
cost-to-benefit ratio η as were obtained by repeating a data
collection experiment (of the duration of at least 15 minutes)
on the 23-mote subnetwork 4 times for each value of fgen.
Despite not always favoring the most reliable links, Arbutus

Arbutus Baseline Ratio

Average fraction of nodes reached 0.88 0.80 1.10
Average PDR 0.33 0.27 1.21

Average same-floor PDR 0.62 0.57 1.09
Average hop count 4.1 4.6 0.91

Maximum hop count 8.7 8.9 0.98
Average η 5.00 7.13 0.70

Table I
B    ML  (fgen = 1 /).

almost performs as well as MultiHopLQI in terms of end-to-
end reliability at lower traffic loads, and performs considerably
better as the traffic generation rate is increased. By actively
balancing the traffic load, Arbutus constructs a more efficient
tree and needs a smaller per-relay load to achieve a better
average PDR at the sink. In order to appreciate the meaning
of η and its impact on performance, Fig. 3 shows one instance
of the time evolution of the load of each relay with both
protocols. In this particular experiment (fgen = 2 pkts/sec),
η = 0.8 for Arbutus and η = 1.2 for MultiHopLQI. While
MultiHopLQI peruses node 106 to take advantage of its high-
quality connectivity to the sink, Arbutus redistributes the load
over 106 and 110 and reduces the overall amount of traffic load
to be relayed by employing shorter routes; the load balancing
benefits also show in terms of PDR (in this experiment it is
0.59 for Arbutus and 0.48 for MultiHopLQI).

To properly benchmark Arbutus against MultiHopLQI, we
now present the results of our experiments with the complete
MoteLab testbed, which is extremely challenging in terms of
load balancing. Its nodes are distributed across three floors
with limited inter-floor connectivity, resulting in the presence
of topological bottlenecks. We choose 5 different sink assign-
ments, perform at least 3 experiments for each assignment at
various times of the day and night (we use fgen=1 pkt/sec), and
then average all values; the results of our benchmarking are
shown in Table I. The average PDR is computed as the average
of the PDR for each working node3 in the testbed measured
by the sink over the whole experiment. Similarly, the average
same-floor PDR is computed over all working nodes located
on the same floor as the sink. On average, the performance of
Arbutus is substantially better; considering that the working
nodes in the testbed during our experiments ranged from
83 to 96 (the average number of working nodes over all
experiments is 89), this benchmarking confirms Arbutus’s
scalability properties. Arbutus’s tree is slightly shallower, as
its average depth is 91% of the depth of MultiHopLQI’s.

The 30% average reduction in the relaying cost-to-benefit
ratio η shows the added value of Arbutus’s built-in load balanc-
ing scheme. MultiHopLQI always picks the best channel but
introduces imbalance in the process, overburdening the critical
nodes with extra load; in the short term, this leads to packet
loss (interference and congestion) that offsets the benefits of
using the best links, while in the long run it curtails network
lifetime. Fading induced by activity in the environment [21] is
the main reason for the significant differences between day and
night experiments; results also vary considerably depending

3A MoteLab node is a working node if it can be programmed to send
packets over the wired backchannel. At any given time, not all nodes in the
testbed are working as some are disabled for reasons beyond our control.

6

on the particular sink assignment. Over our experiments, the
standard deviation σ of η is 2.5 for Arbutus and 2.8 for
MultiHopLQI. The reduced amount of control traffic employed
by Arbutus comes at a delay price: the average time of first
contact (defined as the time the first data packet is received
by the sink) is about 20s higher; this is only an issue at
startup, and could be improved with a more refined adaptive
blacklisting scheme. On the contrary, the average latency of
Arbutus is considerably lower, as it is proportional to the hop
count (no retransmissions).

V. CONCLUSIONS AND RESEARCH DIRECTIONS

Arbutus, our lightweight routing protocol for WSNs, effec-
tively embeds a load balancing scheme at the network layer.
Benchmarking experiments on the MoteLab testbed show that
the end-to-end reliability performance of Arbutus compares
favorably with the baseline protocol, MultiHopLQI. In addi-
tion to that, the relaying cost-to-benefit ratio of the baseline
protocol is reduced by 30%, i.e., Arbutus can achieve the same
data delivery performance with a reduced network load. This
can translate into a significant lifetime gain: a reduced load
implies energy savings for the network as a whole, but in
particular for the critical nodes, whose workload is reduced
insofar as allowed by the topology of the network. At the
same time, if the per-node load is decreased, node failures
are, on average, not as critical, and the network benefits from
an improved fault tolerance.

In this paper, we employ Arbutus in static energy conditions:
the nodes are wall-powered, and we estimate energy consump-
tion based on load. The main problem with this approach is
that we do not consider the potentially disruptive effects of
node depletion. Our idea, which we are implementing in our
current work, is to emulate battery discharge at the nodes based
on a simple estimate of the radio energy consumption at the
individual nodes.

Several aspects of the protocol can be improved. The main
issue with the basic version of Arbutus presented herein is
the large number of parameters, which require careful calibra-
tions. Calibrations are particularly critical for the blacklisting
strategy, which can cause partitioning if the thresholds are not
set properly.

The work in this paper also provides the experimental
motivation for a study of topological bottlenecks in sensor
networks and the constraints imposed by network topology
on load balancing. If a node is a topological bottleneck, its
neighbors will send their traffic through it, as no other node
provides a route to the sink. In a similar case, network-layer
load balancing cannot be enough, and additional measures are
necessary to address the hot spot problem. One direction worth
pursuing is the augmentation of Arbutus with sink mobility or
sink repositioning support.

ACKNOWLEDGMENTS

The authors would like to thank Geoff Werner-Allen and
Matt Welsh for making their MoteLab testbed available
to the community. The support of NSF (CNS 04-47869)
and CRANE/DTRA (N00164-07-8510) is gratefully acknowl-
edged.

R

[1] M. Haenggi. Energy-Balancing Strategies for Wireless Sensor Networks.
In IEEE International Symposium on Circuits and Systems (ISCAS’03),
Bangkok, Thailand, May 2003.

[2] G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: a wireless
sensor network testbed. In Proceedings of the 4th international sym-
posium on Information Processing in Sensor Networks (IPSN’05), Los
Angeles, CA, USA, April 2005.

[3] T. Stathopoulos. Exploiting Heterogeneity for Routing in Wireless Sensor
Networks. PhD thesis, University of California at Los Angeles, October
2006.

[4] TinyOS. http://www.tinyos.net.
[5] A. Woo, T. Tong, and D. Culler. Taming the Underlying Challenges of

Reliable Multihop Routing in Sensor Networks. In Proceedings of the
1st International Conference on Embedded Networked Sensor Systems
(SenSys’03), Los Angeles, CA, USA, November 2003.

[6] MultiHopLQI. http://www.tinyos.net/tinyos-1.x/tos/lib/MultiHopLQI.
[7] Collection Tree Protocol (CTP). http://www.tinyos.net/tinyos-2.x/doc/

html/tep123.html.
[8] D. De Couto, D. Aguayo, J. Bicket, and R. Morris. A High-Throughput

Path Metric for Multi-Hop Wireless Routing. In Proceedings of the 9th
Annual International Conference on Mobile Computing and Networking
(MobiCom’03), San Diego, CA, USA, 2003.

[9] E. Demaine, A. Lopez-Ortiz, and J. Munro. Frequency Estimation of
Internet Packet Streams with Limited Space. In Proceedings of the
10th Annual European Symposium on Algorithms (ESA’02), Rome, Italy,
September 2002.

[10] G. Tolle and D. Culler. Design of an Application-Cooperative Man-
agement System for Wireless Sensor Networks. In Second European
Workshop on Wireless Sensor Networks (EWSN’05), Istanbul, Turkey,
January 2005.

[11] M. Haenggi and D. Puccinelli. Routing in Ad Hoc Networks: A Case
for Long Hops. IEEE Communications Magazine, 43, October 2005.

[12] D. Puccinelli, E. Sifakis, and M. Haenggi. A Cross-Layer Approach
to Energy Balancing in Wireless Sensor Networks. In Workshop on
Networked Embedded Sensing and Control (NESC’05), Notre Dame,
IN, USA, September 2005.

[13] D. Puccinelli, M. Brennan, and M. Haenggi. Reactive sink mobility
in wireless sensor networks. In Proceedings of the 1st International
MobiSys Workshop on Mobile Opportunistic Networking (MobiOpp’07),
San Juan, Puerto Rico, June 2007.

[14] B. Chen, K. Muniswamy-Reddy, and M. Welsh. Ad-hoc multicast
routing on resource-limited sensor nodes. In Proceedings of the second
international workshop on Multi-hop ad hoc networks: from theory to
reality (REALMAN’06), Florence, Italy, May 2006.

[15] O. Gnawali, M. Yarvis, J. Heidemann, and R. Govindan. Interaction of
retransmission, blacklisting, and routing metrics for reliability in sensor
network routing. In Proceedings of the First IEEE Conference on Sensor
and Adhoc Communication and Networks (SECON’04), pages 34–43,
Santa Clara, CA, USA, October 2004. IEEE.

[16] M. Zuniga and B. Krishnamachari. Analyzing the Transitional Region
in Low Power Wireless Links. In Proceedings of the First IEEE
International Conference on Sensor and Ad hoc Communications and
Networks (SECON’04), Santa Clara, CA, USA, October 2004.

[17] Q. Zhao, A. Swami, and L. Tong. The Interplay Between Signal
Processing and Networking in Sensor Networks. IEEE Signal Processing
Magazine, 23(4):84–93, July 2006.

[18] M. Wachs, J. Choi, J. Lee, K. Srinivasan, Z. Chen, M. Jain, and P. Levis.
Visibility: A New Metric for Protocol Design. In Proceedings of the Fifth
ACM Conference on Embedded Networked Sensor Systems (SenSys’07),
Sidney, Australia, November 2007.

[19] U. Malesci and S. Madden. A Measurement-based Analysis of the
Interaction Between Network Layers in TinyOS. In European Workshop
on Wireless Sensor Networks (EWSN’06), Zurich, Switzerland, February
2006.

[20] J. Polastre, J. Hill, and D. Culler. Versatile Low Power Media Access for
Wireless Sensor Networks. In Proceedings of the 2nd ACM Conference
on Embedded Networked Sensor Systems (ACM SenSys’04), Baltimore,
MD, November 2004.

[21] D. Puccinelli and M. Haenggi. Spatial Diversity Benefits by Means of
Induced Fading. In Third IEEE International Conference on Sensor and
Ad Hoc Communications and Networks (SECON’06), Reston, VA, USA,
September 2006.

