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Abstract—Inter-cell interference coordination (ICIC) and
intra-cell diversity (ICD) play important roles in improving cel-
lular downlink coverage. Modeling cellular base stations (BSs) as
a homogeneous Poisson point process (PPP), this paper provides
explicit finite-integral expressions for the coverage probability
with ICIC and ICD, taking into account the temporal/spectral
correlation of the signal and interference. In addition, we
show that in the high-reliability regime, where the user outage
probability goes to zero, ICIC and ICD affect the network
coverage in drastically different ways: ICD can provide order

gain while ICIC only offers linear gain. In the high-spectral
efficiency regime where the SIR threshold goes to infinity, the
order difference in the coverage probability does not exist;
however a linear difference makes ICIC a better scheme than
ICD for realistic path loss exponents. Consequently, depending
on the SIR requirements, different combinations of ICIC and
ICD optimize the coverage probability.

I. INTRODUCTION

A. Motivation and Main Contributions

Recently, the Poisson point process (PPP) has been shown

to be a tractable and realistic model of cellular networks

[2]. However, the baseline PPP model predicts the coverage

probability of the typical user to be less than 60% if the signal-

to-interference-plus-noise ratio (SINR) is set to 0 dB—even

if noise is neglected. This is clearly insufficient to provide

reasonable user experiences in the network.

To improve the user experiences, in cellular systems, the

importance of inter-cell interference coordination (ICIC) and

intra-cell diversity (ICD) have long been recognized [3], [4].

Yet, so far, most of the PPP-based cellular analyses lack

a careful treatment of these two important aspects of the

network, partly due to the lack of a well-established approach

to deal with the resulting temporal or spectral correlation [5].

Modeling the cellular network as a homogeneous PPP,

this paper explicitly takes into account the temporal/spectral

correlation and analyzes the benefits of ICIC and ICD in

cellular downlink under idealized assumptions. Consider the

case where a user is always served by the BS that provides

the strongest signal averaged over small-scale fading but not

shadowing1. For ICD, we consider the case where the serving
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1Without shadowing, this is the nearest BS association policy as used, for
example, in [2].

BS always transmit to the user in M resource blocks (RBs)

simultaneously and the user always decodes from the RB with

the best SIR (selection combining). For ICIC, we assume

under K-BS coordination, the RBs that the user is assigned

are silenced at the next K − 1 strongest BSs.

Note that both of the schemes create extra load (reserved

RBs) in the network: ICIC at the adjacent cells and ICD

at the serving cell. Therefore, it is important to quantify

the benefits of ICIC and ICD in order to design efficient

systems. The main contribution of this paper is to provide

explicit expressions for the coverage probability with K-BS

coordination and M -RB selection combining. Notably, we

show that, in the high-reliability regime, where the outage

probability goes to zero, the coverage gains due to ICIC and

ICD are qualitatively different: ICD provides order gain while

ICIC only offers linear gain. In contrast, in the high-spectral

efficiency regime, where the SIR threshold goes to infinity,

such order difference does not exist and ICIC usually offers

larger (linear) gain than ICD in terms of coverage probability.

The techniques presented in this paper have the potential to

lead to a better understanding of the performance of more

complex cooperation schemes in wireless networks, which

inevitably involve temporal or spectral correlation.

B. ICIC, ICD and Related Works

Generally speaking, inter-cell interference coordination

(ICIC) assigns different time/frequency/spatial dimensions to

users from different cells and thus reduces the inter-cell

interference. Conventional ICIC schemes are mostly based on

the idea of frequency reuse. The resource allocation under

cell-centric ICIC is designed offline and does not depend on

the user deployment. While such schemes are advantageous

due to their simplicity and small signaling overhead, they

are clearly suboptimal since the pre-designed frequency reuse

pattern cannot cope well with the dynamics of user distribution

and channel variation. Therefore, there have been significant

efforts in facilitating ICIC schemes, where the interference co-

ordination (channel assignment) is based on real user locations

and channel conditions and enabled by multi-cell coordination.

Different user-centric (coordination-based) ICIC schemes in

OFDMA-based networks are well summarized in the recent

survey papers [6]–[8].

Conventionally, most of the performance analyses of ICIC

are based on network-level simulation, and the hexagonal-grid

model is frequently used [7]. Since real cellular deployments

are subject to many practical constraints, recently more and

more analyses are based on randomly distributed BSs, mostly

using the PPP as the model. These stochastic geometry-based

models not only provide alternatives to the classic grid models
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but also come with extra mathematical tractability [2], [9],

[10]. In terms of the treatment of ICIC, the most relevant

papers to this one are [11]–[13], where the authors analyzed

partial frequency reuse schemes using independent thinning.

The authors in [14], [15] considered BS coordination based

on clusters grouped by tessellations. Different from these

papers, this paper focuses on user-centric ICIC schemes where

the spatial correlation of the coordinated cells is explicitly

accounted for.

It is worth noting that ICIC is closely related to multi-cell

processing (MCP) and coordinated multipoint (CoMP) trans-

mission, see [14]–[17] and the references therein. MCP/CoMP

emphasizes the multi-antenna aspects of the cell coordination,

while the form of ICIC considered in this paper does not

take into account the use of MIMO (joint transmission)

techniques and thus is not subject to the considerable signaling

and processing overheads of typical MCP/CoMP schemes,

which include symbol-level synchronization and joint precoder

design [8]. Thus it can be considered as a simple form of

MCP/CoMP that is light on overhead.

Intra-cell diversity (ICD) describes the diversity gain

achieved by having the serving BS opportunistically assigns

users with their best channels. In cellular systems, diversity

exists in space, time, frequency and among users [4]. It is

well acknowledged that diversity can significantly boost the

network coverage. However, conventional analyses of diversity

usually do not include the treatment of interference, e.g., [18],

[19].

In order to analytically characterize diversity in wireless

networks with interference, a careful treatment of interference

correlation is necessary, otherwise the results may be mis-

leading. Therefore, there have been a few recent efforts in

understanding this correlation [20]–[25]. Notably, [20] shows

that in an ad hoc type network, simple retransmission schemes

do not result in diversity gain if interference correlation is

considered2. Analyzing the intra-cell diversity (ICD) under

interference correlation, this paper shows that a diversity gain

can be obtained in a cellular setting where the receiver is

always connected to the strongest BS, in sharp contrast with

the conclusion drawn from ad hoc type networks in [20].

C. Paper Organization

The rest of the paper is organized as follows: Section II

presents the system model and discusses the comparability

of ICIC and ICD. Sections III and IV derive the coverage

probability for the case with ICIC or ICD only, respectively,

and provide results on the asymptotic behavior of the coverage

probability in the high-reliability as well as high-spectral

efficiency regimes. The case with both ICIC and ICD is

analyzed in Section V. We validate our model and discuss

fundamental trade-offs between ICIC and ICD in Section VI.

The paper is concluded in Section VII.

2Different from conventional SNR-based diversity analysis, [20] calculates
the diversity gain by considering the case where signal to interference ratio
(SIR) goes to infinity, which is an analog of the classic (interference-less)
notional of diversity. This paper follows the same analogy.
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Fig. 1: A realization of the cellular network modeled by a homo-
geneous PPP Φ. The network is under K-BS (K = 5) coordination
with lognormal shadowing. The typical user is denoted by ◦, the BSs
by ×, the serving BS by ♦ and the coordinated non-serving BS by
�.

II. SYSTEM MODEL, THE PATH LOSS PROCESS WITH

SHADOWING (PLPS) AND THE COVERAGE PROBABILITY

A. System Model

Considering the typical user at the origin o, we use a

homogeneous Poisson point process (PPP) Φ ⊂ R
2 with

intensity λ to model the locations of BSs on the plane. To each

element of the ground process x ∈ Φ, we add independent

marks3 Sx ∈ R
+ and hm

x ∈ R
+, where m ∈ [M ] and

M ∈ N,4 to denote the (large-scale) shadowing and (power)

fading effect on the link from x to o at the m-th resource

block (RB), and the combined (marked) PPP is denoted as

Φ̂ = {(xi, Sxi
, (hm

xi
)Mm=1)}. In particular, under power law

path loss, the received power at the typical user o at the m-th

RB from a BS at x ∈ Φ is

Px = Sxh
m
x ‖x‖−α, (1)

where α is the path loss exponent. In this paper, we focus

on Rayleigh fading, i.e., hx is exponentially distributed with

unit mean but allow the shadowing distribution to be (almost)

arbitrary.

Fig. 1 shows a realization of a PPP-modeled cellular net-

work under K-BS coordination with lognormal shadowing.

Due to the shadowing effect, the K strongest BSs under

coordination are not necessarily the K nearest BSs.

The base station locations (ground process Φ) and the

shadowing random variables Sx are static over time and

frequency (i.e., over all RBs), which is the main reason of

the spectral/temporal correlation of signal and interference. In

comparison, the (small-scale) fading hm
x is iid over RBs. Both

Sx and hm
x are iid over space (over x).

3For analytical tractability, the spatial shadowing correlation due to com-
mon obstacles is not considered in this model.

4We use [n], to denote the set {1, 2, · · · , n}.
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The user is assumed to be associated with the strongest

(without fading) BS and is called covered (without ICIC) at

the m-th RB iff

SIRm =
Sx0

hm
x0
‖x0‖

−α

∑

y∈Φ\{x0}
Syhm

y ‖y‖−α
> θ, (2)

where x0 = argmaxx∈Φ Sx‖x‖
−α is the serving BS.

B. The Path Loss Process with Shadowing (PLPS)

Definition 1 (The path loss process with shadowing). The

path loss process with shadowing (PLPS) Ξ is the point pro-

cess on R
+ mapped from Φ̂, where Ξ = {ξi =

‖x‖α

Sx
, x ∈ Φ}

and the indices i ∈ N are introduced such that ξk < ξj for all

k < j.

Note that the PLPS is an ordered process. It captures

the effect of shadowing and spatial node distribution of the

network at the same time, and consequently, determines the

BS association.

Lemma 1. The PLPS Ξ is a one-dimensional PPP with

intensity measure Λ((0, r]) = λπrδE[Sδ], where δ = 2/α,

S
d
= Sx and

d
= means equality in distribution.

The proof of Lemma 1 is analogous to that of [26, Lemma

1] and is omitted from the paper. The intensity measure of

the PLPS demonstrates the necessity of the δ-th moment

constraint on the shadowing random variable Sx. Without

this constraint, the aggregate received power (with or without

fading) is unbounded almost surely.

C. The Coverage Probability and Effective Load Model

Similar to the construction of Φ̂, We construct a marked

PLPS Ξ̂ = {(ξi, (h
m
ξi
)Mm=1, χξi)}, where we put two marks

on each element of the PLPS Ξ: hm
ξ = hm

x , m ∈ [M ], x ∈
Φ, are the iid fading random variables directly mapped from

Φ̂; χξ ∈ {0, 1} indicates whether a BS represented by ξ is

transmitting at the RB(s) assigned to the typical user5. In the

case where no ambiguity is introduced, we will use hm
i as an

abbreviation for hm
ξi

and χi as a short of χξi . For example, if

no ICIC is considered, we have χi = 1, ∀i,6 and the coverage

condition in (2) can be written in terms of the marked PLPS

as

SIRm =
hm
1 ξ−1

1
∑∞

i=2 h
m
i ξ−1

i

> θ. (3)

With ICIC, the value of χi is determined by the scheduling

policy. Given χi, the coverage condition at the m-th RB under

K-BS coordination can be expressed in terms of the marked

PLPS as

SIRK,m =
hm
1 ξ−1

1
∑∞

i=2 χihm
i ξ−1

i

> θ. (4)

By K-BS coordination (ICIC), we assume the K−1 strongest

non-serving BSs of the typical user do not transmit at the RBs

5It is assumed that the RBs are grouped into chunks of size M , i.e., each
BS either transmits at all the M RBs or does not transmit at any of these
RBs.

6We assume all the BSs are fully loaded, i.e., each RB is either used in
downlink transmission or silenced due to coordination.

to which the user is assigned7. Thus, we have χi = 0, ∀i ∈
[K] \ {1}.8 For i > K, the exact value of χi is hard to model

since the BSs can either transmit to its own users in the RB(s)

assigned to the typical user or reserve these RB(s) for users in

nearby cells, and the muted BSs can effectively “coordinate”

with multiple serving BSs at the same time. Therefore, the

resulting density of the active BSs outside the K coordinating

BSs is a complex function of the user distribution, (joint)

scheduling algorithms and shadowing distribution.

In order to maintain tractability, we assume χi, i > K are

iid Bernoulli random variables with (transmitting) probability

1/κ. Such modeling is justified by the random distribution

of the users and the shadowing effect [27]. Here, κ ∈ [1,K]
is called the effective load of ICIC. κ = K implies all the

coordinating BS clusters do not overlap while κ = 1 represents

the scenario where all the users assigned to the same RB(s) in

the network share the same K−1 muted BSs. The actual value

of κ lies between these two extremes9 and is determined by

the scheduling procedure which this paper does not explicitly

study. However, we assume that κ is known. The accuracy of

this model will be validated in Section VI.

Let SK,m , {SIRK,m > θ} be the event of coverage at the

m-th RB. We consider the coverage probability with inter-cell

interference coordination (ICIC) and intra-cell diversity (ICD)

formally defined as follows.

Definition 2. The coverage probability with K-BS coordina-

tion and M -RB selection combining is

P
c
K,M = P

∪c
K,M , P(∪M

m=1SK,m).

In other words, the typical user is covered iff the received

SIR at any of the M RBs is greater than θ. The superscript c

denotes coverage and ∪ stresses that P∪c
K,M is the probability

of being covered in at least one of the M RBs. (If there is

no possibility of confusion, we will use P
∪c
K,M and P

c
K,M

interchangeably.)

D. System Load and Comparability

In the baseline case without ICIC and ICD, each user

occupies a single RB at the serving BS. With (only) M -RB

selection combining, each user occupies M RBs at the serving

BS. Thus, the system load is increased by a factor of M .

The load effect of ICIC can be described by the effective

load κ since, as discussed above, in a network with K-BS

coordination there are 1/κ of the BSs actively serving the

users in a single RB whereas each BS serves one user in every

RB in the baseline case, i.e., the load is increased by a factor

of κ due to ICIC. The fundamental comparability of ICIC and

ICD comes from the similarity in introducing extra load in the

system and will be explored in more detail in Section VI.

7This can be implemented by letting the UE to identify the K strongest
BSs and then reserve the RBs at all of them.

8By default χ1 = 1.
9The statement is true under the full-load assumption. In the case where

some cells may contain no users, it is possible that κ > 1 while K = 1.
But this does not have a large influence on the accuracy of the analyses as is
shown in detail in Section VI.
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III. INTERCELL INTERFERENCE COORDINATION (ICIC)

This section focuses on the effect of ICIC on the coverage

probability. Since no ICD is considered, we will omit the

superscript m on the fading random variable hm
ξ , ξ ∈ Ξ,

for simplicity.

A. Integral Form of Coverage Probability

Our analysis will be relying on a statistical property of the

marked PLPS Ξ̂ stated in the following lemma.

Lemma 2. For Ξ̂ = {(ξi, hi, χi)}, let Xk = ξ1/ξk and Yk =
ξ−1
k /Ik, where Ik ,

∑∞
i=k+1 χihiξ

−1
i . For all k ∈ N, the two

random variables Xk and Yk are independent.

Proof: If k = 1, the lemma is trivially true, since X1 ≡ 1
while Y1 has some non-degenerate distribution.

For k ≥ 2, x1 ∈ [0, 1] and x2 ∈ R
+, the joint ccdf of ξ1/ξk

and ξk/Ik can be expressed as

P(Xk > x1, Y1 > x2)

= Eξk

[

P

(
ξ1
ξk

> x1,
ξ−1
k

Ik
> x2

)

| ξk

]

(a)
= Eξk

[

P

(
ξ1
ξk

> x1

)

P

(
ξ−1
k

Ik
> x2

)

| ξk

]

(b)
= P

(
ξ1
ξk

> x1

)

Eξk

[

P

(
ξ−1
k

Ik
> x2

)

| ξk

]

= P

(
ξ1
ξk

> x1

)

P

(
ξ−1
k

Ik
> x2

)

,

where (a) is due to the fact that {ξi, i < k} and {ξi, i > k} are

conditionally independent given ξk by the Poisson property

and {hi}, {χi} are iid and independent from Ξ. (b) holds

since, conditioning on ξk implies that there are k − 1 points

on [0, ξk). Thus, thanks to the Poisson property, it can be

shown that given ξk, ξ1/ξk follows the same distribution as

that of the minimum of k − 1 iid random variables with cdf

min{xδ, 1}1R+(x).10 Since the resulting conditional distribu-

tion of ξ1/ξk does not depend on ξk, this distribution is also

the marginal distribution of ξ1/ξk as is stated in the lemma.

Furthermore, due to Lemma 1, it is straightforward to obtain

the ccdf of ξ1/ξk, ∀k ≥ 2, which is formalized in the

following lemma.

Lemma 3. For all k ∈ N \ {1}, The ccdf of ξ1/ξk is

P

(
ξ1
ξk

> x

)

= (1− xδ)k−1, x ∈ [0, 1].

Proof: As discussed in the proof of Lemma 2, by the

Poisson property and the intensity measure of Ξ given in

Lemma 1, conditioned on ξk, k > 1, ξi/ξk
d
= Xi:k−1, where

Xi:k−1 denotes the i-th order statistics of k − 1 iid random

variables with cdf P(X < x) = min{xδ, 1}1R+(x). Thus,

10In fact, for general inhomogeneous PPP on R
+ of intensity measure Λ(·),

given there are N points on [0, x0) the joint distribution of the locations
of the N points is the same as that of N iid random variables with cdf
Λ([0, x))/Λ([0, x0)) [10, Theorem 2.25].

P( ξ1ξk > x) is the probability that all the k − 1 iid random

variables are larger than x.

Lemma 4. For Ξ̂ = {(ξi, hi)}, let

Iρ =
∑

ξ∈Ξ∩(ρ,∞)

χξhξξ
−1

for ρ > 0. The Laplace transform of ρIρ is

LρIρ(s) = exp

(

−
λ

κ
πE[Sδ]C(s)ρδ

)

, (5)

where C(s) = sδ
1−δ 2F1(1, 1− δ; 2− δ;−s) and 2F1(a, b; c; z)

is the Gauss hypergeometric function.

Proof: First, we can calculate the Laplace transform of

Iρ using the probability generating functional (PGFL) of PPP

[10], i.e.,

LIρ(s) = E[exp(−s
∑

ξ∈Ξ∩(ρ,∞)

χξhξξ
−1)]

= EΞ

∏

ξ∈Ξ∩(ρ,∞)

Eh,χ[exp(−sχhξ−1)]

= exp

(

−Eh,χ

[∫ ∞

ρ

(1− e−sχh/x)Λ(dx)

])

,

where χ is a Bernoulli random variable with mean 1
κ , Λ(·)

is the intensity measure of Ξ and by Lemma 1, Λ(dx) =
λπE[Sδ]δxδ−1dx. Then, straightforward algebraic manipula-

tion yields

LIρ(s) =

exp

(

−
λ

κ
πE[Sδ]Eh

[

(sh)δγ(1− δ,
sh

ρ
)− ρδ(1− e−

sh
ρ )

])

.

Since, for an arbitrary random variable X and constant u,

LuX(s) ≡ LX(us), we have

LρIρ(s) = LIρ(sρ) = exp

(

−
λ

κ
πE[Sδ]C(s)ρδ

)

, (6)

where C(s) = Eh[(sh)
δγ(1 − δ, sh) + e−sh − 1]. The proof

is completed by considering the exponential distribution of h.

Here, Iρ can be understood as the interference from BSs

having a (non-fading) received power weaker than ρ−1. In the

case without shadowing, i.e., Sx ≡ 1, it can also be understood

as the interference coming from outside a disk centered at the

typical user with radius ρ
1
α .

Lemma 5. The Laplace transform of ξkIk is

LξkIk(s) =
1

(Cκ(s, 1))
k
, (7)

where Cκ(s,m) = κ−1
κ + 1

κ 2F1(m,−δ; 1− δ;−s).

Proof: First, the pdf of ξk can be derived analogously to

the derivation of [26, Lemma 3] as

fξk(x) = (λπE[Sδ])k
δxkδ−1

Γ(k)
exp

(
−λπE[Sδ]xδ

)
.
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Then, thanks to Lemma 4, the Laplace transform of ξkIξk
can be obtained by deconditioning LρIρ(s) (given ρ) over the

distribution of ξk. This leads to

LξkIk(s) =
1

(
1 + 1

κC(s)
)k

,

where 1 + 1
κC(s) = Cκ(s, 1).

Note that although the path loss exponent α is not explicitly

taken as a parameter of Cκ(·, ·), Cκ(·, ·) depends on α by

definition. Thus, the value of α affects all the results.

Since we consider Rayleigh fading, the coverage probability

without ICIC is just the Laplace transform of ξ1I1. The special

case of k = κ = 1 of Lemma 5 corresponds to the well-

known coverage probability in cellular networks (under the

PPP model) without ICIC or ICD [2],

P
c
1,1 =

1

C1(θ, 1)
.

Note that since we consider the full load case and κ ∈ [1,K],
K = 1 implies κ = 1. In the more general case K > 1, κ
depends on the user distribution and the scheduling policy and

thus is hard to determine. However, treating κ as a parameter

we obtain the following theorem addressing the case with non-

trivial coordination.

Theorem 1 (K-BS coordination). The coverage probability

for the typical user under K-cell coordination (K > 1) is

P
c
K,1 = (K − 1)

∫ 1

0

(1− xδ)K−2δxδ−1

(Cκ(θx, 1))
K

dx, (8)

where Cκ(s,m) = κ−1
κ + 1

κ 2F1(m,−δ; 1− δ;−s).

Proof: The coverage probability can be written in terms

of the PLPS as

P
c
K,1 = P(h1ξ

−1
1 > θIK) = P

(
h1ξ

−1
K

IK
> θ

ξ1
ξK

)

, (9)

where h1 is exponentially distributed with mean 1, and thus

P(
h1ξ

−1

K

IK
> x) = LξKIK (x). Since h1ξ

−1
K /IK and ξ1/ξK

are statistically independent (Lemma 2), we can calculate the

coverage probability by

P
c
K,1 =

∫ 1

0

LξKIK (θx)dFξ1/ξK (x), (10)

where Fξ1/ξK (x) = 1 − (1 − xδ)K−1 is the cdf of ξ1/ξK
given by Lemma 3. The theorem is thus proved by change of

variables.

The finite integral in (8) can be straightforwardly evaluated

numerically.

Remark 1. The Gauss hypergeometric function can be cum-

bersome to evaluate numerically, especially when embedded

in an integral, as in (8). Alternatively, C1 can be expressed as

C1(s,m) =
1

(s+ 1)m
+ sδmBu

1
s+1

(m+ δ, 1− δ),

and Cκ(s,m) = κ−1
κ + 1

κC1(s,m). Here, Bu
x(a, b) =

∫ 1

x
ya−1(1 − y)b−1dy, x ∈ [0, 1], is the upper incomplete

beta function, which can be calculated much more efficiently
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Fig. 2: The coverage probability under K-BS coordination, Pc
K,1, for

K = 1, 2, 3, 4, 5 (lower to upper) and κ = K and κ = 1. The path
loss exponent α = 4. When K = 1, the dashed line and solid line
overlap.

in many cases. In Matlab, the speed-up compared with the

hypergeometric function is at least a factor of 30.

Fig. 2 demonstrates the effect of ICIC on the coverage

probability for κ = 1 and κ = K. The former case may

be interpreted as a lower bound and the latter case an upper

bound. As expected, the larger K, the higher the coverage

probability for all θ. On the other hand, the marginal gain

of cell coordination decreases with increasing K since the

interference, if any, from far away BSs is attenuated by the

long link distance and affects the SIR less.

Fig. 2 also shows that larger κ results in larger coordination

gain in terms of SIR. This is due to the fact that coordination

not only mutes the strongest K − 1 interferers but also thins

the interfering BSs outside the coordinating cluster. However,

this does not mean that the system will be better-off by

implementing a larger κ. Instead, from the load perspective,

the (SIR) gain is accompanied with the loss in bandwidth

(increased load) since fewer BSs are actively serving users.

The SIR-load trade-off will be further discussed along with

the model validation in Section VI.

B. ICIC in the High-Reliability Regime

While the finite integral expression given in Theorem 1 is

easy to evaluate numerically, it is also desirable to find a sim-

pler estimate that lends itself to a more direct interpretation of

the benefit of ICIC. This subsection investigates the asymptotic

behavior of ICIC when θ → 0. Note that θ → 0 refers to the

high-reliability regime since in this limit the typical user is

covered almost surely.

In practice, the high-reliability regime (θ → 0) is usually

where the control channels operate. In the LTE system (nar-

rowband), the lowest MCS mode for downlink transmission

supports an SINR about -7 dB and thus may also be suitable

for the high-reliability analysis. In wide-band systems (e.g.,

CDMA, UWB), the system is more robust against interference



6

2 2.5 3 3.5 4 4.5 5 5.5 6
10

−1

10
0

10
1

α

a
K

K = 5

K = 1

✓
✓

✓
✓✓✴

Fig. 3: The asymptotic coverage probability coefficient aK from
Proposition 1 as a function of the path loss exponent α under K-cell
coordination (for K = 1, 2, 3, 4, 5, upper to lower).

and noise. Thus, θ is much smaller and the high-reliability

analysis is more applicable.

Proposition 1. Let Po
K,1 = 1−P

c
K,1 be the outage probability

of the typical user for K ∈ N. Then,

P
o
K,1 ∼ aKθ, as θ → 0, (11)

where

aK =
1

κ

K!

(1 + δ−1)K−1

δ

1− δ

and (x)n =
∏n−1

i=0 (x+i) is the (Pochhammer) rising factorial.

Proof: See Appendix A.

Proposition 1 shows that for pure ICIC schemes, the number

of coordinating BSs only linearly affects the outage probability

in the high-reliability regime. However, depending on the value

of θ, even the linear effect may be significant. In Fig. 3, we

plot the coefficient aK for K = 1, 2, 3, 4, 5 as a function of the

path loss exponent α, assuming κ = 1. The difference (in ratio)

between aK for different K indicates the usefulness of ICIC,

and this figure shows that ICIC is more useful when the path

loss exponent α is large. This is consistent with intuition, since

the smaller the path loss exponent, the more the interference

depends on the far-away interferers and thus the less useful

the local interference coordination is. For other values of κ,

the same trend can be observed.

C. ICIC in High Spectral Efficiency Regime

The other asymptotic regime is when θ → ∞. In this

regime, the coverage probability goes to zero while the spectral

efficiency goes to infinity. Thus, it is of interest to study how

the coverage probability decays with θ.

Proposition 2. The coverage probability of the typical user

for K-BS (K > 1) coordination satisfies

P
c
K,1 ∼ bKθ−δ, as θ → ∞, (12)

where bK = (K − 1)
∫∞

0
δxδ−1

(Cκ(x,1))
K dx.

Proof: We prove the proposition by studying the asymp-

totic behavior of θδPc
K,1. Using Theorem 1 and a change of

variable, we have

θδPc
K,1 = (K − 1)

∫ θ

0

δxδ−1(1− xδ/θδ)K−2

(Cκ(x, 1))
K

dx. (13)

Considering the sequence of functions (indexed by θ)

fθ(x) ,
xδ−1(1− xδ/θδ)K−2

(Cκ(x, 1))
K

,

we have θ′ > θ ⇒ fθ′(x) > fθ(x), ∀x, and fθ(x) converges

to f(x) , xδ−1/(Cκ(x, 1))
K

as θ → ∞. Therefore,

lim
θ→∞

θδPc
K,1 = lim

θ→∞
(K − 1)δ

∫ θ

0

fθ(x)dx

(a)

≤ (K − 1)δ lim
θ→∞

∫ ∞

0

fθ(x)dx

(b)
= (K − 1)δ

∫ ∞

0

f(x)dx,

where (b) is due to the monotone convergence theorem.

Further, since fθ(x) ≤ f(x) and limx→∞ f(x) = 0, we have

limθ→∞

∫∞

θ
fθ(x)dx = 0. This allows replacing the inequality

(a) with equality and completes the proof.

Proposition 2 shows, just like in the high-reliability regime,

that P
c
K,1 = Θ(θδ) is not affected by the particular choice

of K and κ. Since δ = 2/α, the coverage probability decays

faster when α is smaller in the high spectral efficiency regime,

consistent with intuition.

IV. INTRA-CELL DIVERSITY (ICD)

ICIC creates additional load to the neighboring cells by

reserving the RBs at the coordinated BSs. The extra load

improves the coverage probability as it reduces the inter-cell

interference.

In contrast, with selection combining (SC), the serving BS

transmits to the typical user at M RBs simultaneously, and the

user is covered if the maximum SIR (over the M RBs) exceeds

θ. Like ICIC, SC can also improve the network coverage at

the cost of introducing extra load to the BSs. Different from

ICIC, SC takes advantage of the intra-cell diversity (ICD) by

reserving RBs at the serving cell.

This section provides a baseline analysis on the coverage

with ICD (but without ICIC).

A. General Coverage Expression

Theorem 2. The joint success probability of transmission over

M RBs (without ICIC) is

P
∩c
1,M = P(

M⋂

m=1

S1,m) =
1

C1(θ,M)
.

Since the proof of Theorem 2 is a degenerate version of

that of a more general result stated in Theorem 3, we defer

the discussion of the proof to Section V. A similar result was
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RBs without ICIC for M = 1, 2, 3, 4, 5 (lower to upper). Here, α =
4.

obtained in [24] where a slightly different framework was used

and the shadowing effect not explicitly modeled.

Due to the inclusion-exclusion principle, we have the cov-

erage probability with selection combining over M RBs:

Corollary 1 (M -RB selection combining). The coverage

probability over M RBs without BS-coordination is

P
∪c
1,M =

M∑

m=1

(−1)m+1

(
M

m

)

P
∩c
1,m,

where P
∩c
1,m is given by Theorem 2.

Fig. 4 compares the coverage probability under M -RB

selection combining, P∪c
1,M for M = 1, · · · , 5. As expected,

the more RBs assigned to the users, the higher the coverage

probability. Also, similar to the ICIC case, the marginal gain

in coverage probability due to ICD diminishes with M .

However, comparing Figs. 4 and 2, we can already observe

dramatic difference: with the same overhead, the coverage gain

of ICD looks more evident than that of ICIC in the high-

reliability regime, i.e., when θ → 0. This observation will be

formalized in the following subsection.

B. ICD in the High-Reliability Regime

Proposition 3. Let P∩o
1,M = 1−P

∪c
1,M be the outage probability

of the typical user under M -RB selection combining. We have

P
∩o
1,M ∼ aMθM , as θ → 0,

where aM = ∂M

∂xM (1F1(−δ; 1− δ;x))
−1∣∣

x=0
and 1F1(a; b; z)

is the confluent hypergeometric function of the first kind.

The proof of Proposition 3 can be found in Appendix B.

Remark 2. Although Proposition 3 provides a neat expression

for the constant in front of θM in the expansion of the outage

probability, numerically evaluating the M -th derivative of the

reciprocal of confluent hypergeometric function may not be

straightforward. A relatively simple approach is to resort to Faà

di Bruno’s formula. Alternatively, one can directly consider

(28) and simplify it by introducing the Bell polynomial [28]:

aM =
M∑

i=1

(−1)ii!BellM,i(τ̄(1), τ̄(2), · · · , τ̄(M − i+ 1)),

where

τ̄(j) , j!τ(j) =
(−δ)j
(1− δ)j

,

and

Bellm,i(x1, · · · , xm−i+1) =

1

i!

∑k
i=1

ji=m
∑

ji≥1

(
m

j1, · · · , ji

)

xj1 · · ·xji ,

which can be efficiently evaluated numerically11.

To better understand Proposition 3 we introduce the fol-

lowing definition of the diversity gain in interference-limited

networks, which is consistent with the diversity gain defined

in [20] and is analogous to the conventional diversity defined

(only) for interference-less cases, see e.g., [4].

Definition 3 (Diversity (order) gain in interference-limited

networks). The diversity (order) gain, or simply diversity, of

interference-limited networks is

d , lim
θ→0

logP(SIR < θ)

log θ
.

Clearly, Proposition 3 shows that a diversity gain can be

obtained by selection combining—in sharp contrast with the

results presented in [20], where the authors show that there is

no such gain in retransmission. The reason of the difference

lies in the different association assumptions. [20] considers the

case where the desired transmitter is at a fixed distance to the

receiver which is independent from the interferer distribution.

However, this paper assumes that the user is associated with

the strongest BS (on average). In other words, the signal

strength from the desired transmitter and the interference are

correlated. Proposition 3 together with [20] demonstrates that

this correlation is critical in terms of the time/spectral diversity.

Propositions 1 and 3 quantitatively explain the visual con-

trast between Figs. 2 and 4 in the high-reliability regime

(θ → 0). While ICIC reduces the interference by muting

nearby interferers, the number of coordinated BSs only affects

the outage probability by the coefficient and does not change

the fact that Po
K,1 = Θ(θ) as θ → 0. In contrast, ICD affects

the outage probability by both the coefficient and the exponent.

Fig. 5 compares the asymptotic approximation, i.e., aMθM ,

with the exact expression provided in Corollary 1. A rea-

sonably accurate match can be found for small θ, and the

range where the approximation is accurate is larger when

M is smaller. Thus, despite the fact that the main purpose

of Proposition 3 was to indicate the qualitative behavior of

ICD, the analytical tractability of aM also provides useful

11There was a typo in the version published in the December issue of IEEE

Transactions on Wireless Communication where τ̄ was mistaken as τ . The
typo this corrected in this manuscript.
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probability P

∩o
1,M with M -RB joint transmission for M = 1, 2, 3, 4, 5

(upper to lower). Here, α = 4.

approximations in applications with small coding rate, e.g.,

spread spectrum/UWB communication, node discovery, etc.

C. ICD in High Spectral Efficiency Regime

For completeness, we also consider the high spectral effi-

ciency regime where θ → ∞.

Proposition 4. The coverage probability of the typical user

under M -RB selection combining satisfies

P
c
1,M ∼ bMθ−δ, as θ → ∞, (14)

where bM =
∑M

m=1(−1)m+1
(
M
m

) Γ(m)
Γ(1−δ)Γ(m+δ) .

Proof: We proceed by (first) considering θδP∩c
1,M . By

Theorem 2, we have

θδP∩c
1,M =

θδ

2F1(m,−δ; 1− δ;−θ)

(a)
=

(
θ

1 + θ

)δ
1

2F1(−δ, 1− δ −m; 1− δ; θ
1+θ )

where (a) comes from [29, eqn. 9.131]. Since 2F1(−δ, 1 −
δ − m; 1 − δ; 1) = Γ(1− δ)Γ(m+ δ)/Γ(m), we have

limθ→∞ θδP∩c
1,M = Γ(m)

Γ(1−δ)Γ(m+δ) , which leads to the propo-

sition thanks to Corollary 1.

Comparing Propositions 2 and 4, we see that unlike the

high-reliability regime, the coverage probabilities of ICIC

and ICD do not have order difference in the high spectral

efficiency regime. However, the difference in coefficients (bK
and bM ) can also incur significant difference in the coverage

probability. Fig. 6 compares the coefficients for different path

loss exponent α assuming κ = 1. Note that κ = 1 corresponds

to the smallest possible bK . Yet, even so, bK still dominates

bM for most realistic α. This implies that ICIC is often more

effective than ICD in the high spectral efficiency regime.
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Fig. 6: bK (K = 1, 2, 3, 4, 5) in Proposition 2 and bM (M =
1, 2, 3, 4, 5) in Proposition 4 for different values of α, Here, κ = 1.

V. ICIC AND ICD

Sections III and IV provided the coverage analysis in

cellular networks with ICIC and ICD separately. This section

considers the scenario where the network takes advantage

of ICIC and ICD at the same time. In particular, we will

evaluate the coverage probability P
∪c
K,M when the typical user

is assigned with M RBs with independent fading at the serving

BS and all the M RBs are also reserved at the K−1 strongest

non-serving BSs.

A. The General Coverage Expression

In order to derive the coverage probability, we first gen-

eralize Lemma 5 beyond Rayleigh fading. In particular, for a

generic fading random variable H , we introduce the following

definition.

Definition 4. For a PLPS Ξ = {ξi}, let IHk be the interference

from the BSs weaker (without fading) than the k-th strongest

BS, i.e., IHk =
∑

i>k Hiξ
−1
i , where Hi

d
= H, ∀i ∈ N, are iid.

Similarly, we define IHρ =
∑

ξ∈Ξ∩(ρ,∞) Hξξ
−1
ρ to be the

interference from BSs with average (over fading) received

power less than ρ−1. Then, we obtain a more general version

of Lemma 5 as follows.

Lemma 6. For general fading random variables H ≥ 0 and

E[Hδ] < ∞, the Laplace transform of ξkI
H
k is

LξkIH
k
(s) =

1
(
1− 1

κ + 1
κEH [e−sH + sδHδγ(1− δ, sH)]

)k
.

(15)

Proof: The proof of the lemma follows exactly that of

Lemmas 4 and 5. The only difference is that we do not factor

in the distribution of the fading random variable H . More
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precisely, we can first show

LξρIH
ρ
(s) =

exp

(

−
λ

κ
πE[Sδ]ρδEH [e−sH + sδHδγ(1− δ, sH)− 1]

)

.

Then, integrating ρ over the distribution of ξk gives the desired

result.

Note that the condition E[Hδ] < ∞ in Lemma 6 is sufficient

(but not necessary) to guarantee the existence of the Laplace

transform.

As will become clear shortly, for the purpose of this section,

the most important case of H is when H is a gamma random

variable with pdf fH(x) = 1
Γ(m)x

m−1e−x, where m ∈ N. For

this case, we have the following lemma.

Lemma 7. For m ∈ N, if H is a gamma random variable

with pdf fH(x) = 1
Γ(m)x

m−1e−x,

LξkIH
k
(s) =

1

(Cκ(s,m))
k
.

Almost trivially based on Lemma 6, Lemma 7 helps to show

the following theorem.

Theorem 3. For all M ∈ N and K > 1, the joint coverage

probability over M -RBs under K-cell coordination is

P
∩c
K,M = P(

M⋂

m=1

SK,m) = (K − 1)

∫ 1

0

(1− xδ)K−2δxδ−1

(Cκ(θx,M))
K

dx.

Proof: Let hm
i be the fading coefficient from the i-

th strongest (on average) BS at RB m for m ∈ [M ]. By

definition, we have

P
∩c
K,M = EΞP

(

hm
1 ξ−1

1 > θ
∑

i>K

χih
m
i ξ−1

i , ∀m ∈ [M ]

)

(16)

Due to the conditional independence (given Ξ) across m, (16)

can be further simplified as

P
∩c
K,M = EΞ

M∏

m=1

P

(

hm
1 > θξ1

∑

i>K

χih
m
i ξ−1

i

)

= EΞE

M∏

m=1

exp

(

−θξ1
∑

i>K

χih
m
i ξ−1

i

)

, (17)

= EΞE exp









−θξ1
∑

i>K

χi

M∑

m=1

hm
i

︸ ︷︷ ︸

Hi

ξ−1
i









,

where the inner expectation in (17) is taken over hm
i for m ∈

[M ] and i ∈ N, and due to the independence (across m and

i) and (exponential) distribution of hm
i , Hi are iid gamma

distributed with pdf f(x) = 1
Γ(M)x

M−1e−x.

Further, writing ξ1 as ξ1
ξK

ξK and letting ΞK = {ξi}
∞
i=K+1,

we obtain the following expression by taking advantage of the
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Fig. 7: The outage probability P
∩o
K,M under K-BS coordination over

M RBs for K = 1, 2, 3, 4, 5 (upper to lower) and M = 1, 2. Here,
κ = 1.

statistical independence shown in Lemma 1:

P
∩c
K,M = E ξ1

ξK

LξkIH
K

(

θ
ξ1
ξK

)

,

where LξKIH
K
(·) is given in Lemma 7. The proof is completed

by plugging in Lemma 3.

Note that although Theorem 3 does not explicitly address

the case K = 1, the same proof technique applies to this

(easier) case, where the treatment of the random variable

ξ1/ξK is unnecessary since it has a degenerate distribution

(≡ 1). Thus, the proof of Theorem 2 is evident and omitted

from the paper.

Due to the inclusion-exclusion principle, we immediately

obtain the following corollary.

Corollary 2 (K-BS coordination and M -RB selection

combining). The coverage probability over M RBs with K
BS-coordination is

P
∪c
K,M =

M∑

m=1

(−1)m+1

(
M

m

)

P
∩c
K,m, (18)

where P
∩c
K,m is given by Theorem 3.

B. The High-Reliability Regime

Proposition 5. Let P∩o
K,M = 1 − P

∪c
K,M be the outage prob-

ability of the typical user under M -RB selection combining

and K-BS coordination. We have

P
∩o
K,M ∼ a(K,M)θM , as θ → 0,

where a(K,M) > 0 , ∀K,M ∈ N.

Proposition 5 combines Proposition 1 and 3. Its proof is

analogous to that of Proposition 3 (but more tedious) and is

thus omitted from the paper. Proposition 5 gives quantitative

evidence on why a pure ICD scheme maximizes the coverage

probability in the high-reliability regime.
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In Fig. 7, we plot the outage probability for difference num-

ber of coordinated cell K = 1, 2, 3, 4, 5 and in-cell diversity

M = 1, 2 assuming κ = 1 and observe the consistency with

Proposition 5.

VI. NUMERICAL VALIDATION

A. The Effective Load Model

In Section II, we introduced the effective load κ and

modeled the impact of the out-of-cluster coordination on the

interference by independent thinning of the interferer field with

retaining probability 1/κ. Although, remarkably, κ disappears

when considering the diversity order of the network, it is still

of interest to evaluate the accuracy of such modeling in the

non-asymptotic regime. To this end, we set up the following

ICIC simulation to validate the effective load model.

We consider the users are distributed as a homogeneous

PPP Φu with density λu independent from the BS process

Φ. We assume a single channel and a random scheduling

policy where we pick every user exactly once at a random

order. A picked user is scheduled iff its strongest BSs are

not (already) serving another user or coordinating (i.e., being

muted) with user(s) in other cell(s) and its second to K-

th strongest BSs are not transmitting (serving other users).

Thus, after the scheduling phase, there are at most Φ(B)
users scheduled where B ⊂ R

2 is the simulation region since

there are at most Φ(B) serving BSs. In reality, the number of

scheduled users is often much less than Φ(B) since 1) there

is always a positive probability that there are empty cells due

to the randomness in BS and user locations12; 2) when K > 1
some BSs are muted due to coordination. The ratio between

the number of BSs Φ(B) and the number of scheduled users

(which equals the number of serving BSs) is consistent with

the definition of the effective load κ and thus is a natural

estimate. Under lognormal shadowing with standard deviation

σ, we empirically measured κ as in Table I. It is observed

that our simulation results in the estimates κ̂ that can be well

approximated by an affine function of K and the function

depends on the shadowing variance. The fact that more severe

shadowing results in smaller κ can be explained in the case

K = 1. In this case, the only reason that κ > 1 is the existence

of empty cells and the larger κ is the more empty cells there

are. Independent shadowing reduces the spatial correlation of

the sizes of nearby Poisson Voronoi cells and thus naturally

reduces the variance of the number of users in each cell,

resulting in a smaller number of empty cells.

TABLE I: Estimated κ

K 1 2 3 4 5

σ = 0 dB 1.0101 1.7166 2.3640 2.9889 3.6018
σ = 6 dB 1.0022 1.6385 2.1904 2.7145 3.2206
σ = 10 dB 1.0008 1.6129 2.1096 2.5730 3.0152

Fig. 8a compares the coverage probability under K-BS

coordination predicted by Theorem 1 using the estimated κ
from Table I with the simulation results. We picked the case

12This also implies that the full-load assumption does not hold (exactly) in
the simulation.

where σ = 0 dB since this is the worst case in terms of

matching analytical results with the simulation due to the size

correlation of Poisson Voronoi cells. To see this more clearly,

consider the case K = 1, where the simulation and analysis

match almost completely in the figure. The match is expected

but not entirely trivial since the process of transmitting BSs

is no longer a PPP. More specifically, a BS is transmitting iff

there is at least one user in its Voronoi cell, i.e., the ground

process Φ is thinned by the user process Φu. However, the

thinning events are spatially dependent due to the dependence

in the sizes of the Voronoi cells. As a result, clustered BSs

are less likely to be serving users at the same time and thus

the resulting transmitting BS process is more regular than a

PPP. Yet, Fig. 8a shows that the deviation from a PPP is small

when λu = 10λ.13

Shadowing breaks the spatial dependence of the interfering

field (transmitting BSs) and consequently improves the accu-

racy of the analysis. When σ = 10 dB, the difference between

the simulated coverage probability and the one predicted in

Theorem 1 are almost visually indistinguishable (Fig. 8b).

These results validate the effective load model for analyzing

ICIC in the non-asymptotic regime.

B. ICIC-ICD Trade-off

The analyses in Sections III, IV and V shows the signifi-

cantly different behavior of ICIC and ICD schemes despite the

fact that both the schemes improves the coverage probability

through generating extra load in the system. In particular,

Propositions 1, 3 and 5 show that when θ → 0, ICD will

have a larger impact on the coverage probability due to the

diversity gain. In contrast, Propositions 2 and 4 suggest that

when θ → ∞, ICIC will be more effective since the linear gain

is typically larger (Fig. 6). Intuitively, a ICIC-ICD combined

scheme should present a trade-off between the performance in

these two regimes.

To make a fair comparison between different ICIC-ICD

combined schemes, we need to control their load on the system

in terms of RBs used. By the construction of the model, we

observe that the load introduced by ICIC is the effective load

κ times the load without ICIC since 1/κ is the fraction of

active transmitting BSs, which, in the single-channel case, is

proportional to the number (or, density) of users being served.

Similarly, the load introduced by ICD is M times the load

without ICD since M RBs are grouped to serve a single user

(while without ICD they could be used to serve M users).

Thus, under both K-BS coordination and M -RB selection

combining, the system load is proportional to κM which we

term ICIC-ICD load factor.

Fig. 9 plots the coverage probability of three ICIC-ICD

combined schemes with different but similar ICIC-ICD load

factor κM using both the analytical result and simulation. As

is shown in the figure, a hybrid ICIC-ICD scheme (i.e., with

K,M > 1) provides a trade-off between the good performance

of ICIC and ICD in the two asymptotic regimes. In general, a

hybrid scheme could provide the highest coverage probability

13In fact, the match for K = 1 is still quite good for smaller user densities,
say λu = 5λ.
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Fig. 8: The coverage probability comparison between the analytical coverage probability derived in Theorem 1 and the simulation results
with K = 1, 2, 3, 4, 5. Here, the BS density λ = 1, user density λu = 10. Lognormal shadowing with variance σ2 (in dB2) is considered.
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Fig. 9: The coverage probability under K-BS coordination and M -
RB selection combining P

∪c
K,M with different combinations (K,M).

Here, α = 4, σ = 0 dB. The left figure shows the part for θ ∈

[−20 dB,−5 dB] and the right figure for θ ∈ [−5 dB, 20 dB].

for intermediate θ, and the crossing point depends on all the

system parameters.

C. ICIC-ICD-Load Trade-off

Another more fundamental trade-off is between the load

and the ICIC-ICD combined schemes. In other words, how

to find the optimal combination (K,M) that takes the load

into account. While the complexity of this problem prohibits

a detailed exploration in this paper, we give a simple example

to explain the trade-off.

Assume all the users in the network are transmitting at the

same rate log(1 + θ) and the network employs the random

scheduling procedure as described in Section VI-A. Then the

(average) throughput of the typical scheduled user is log(1 +

θ)P∪c
K,M in the interference-limited network. Under the ICIC

and ICD schemes, the number of user being served per RB

is (on average) 1/κM times those who can be served in the

baseline case without ICIC and ICD. Therefore, for fixed θ,

the spatially averaged (per user) throughput is proportional to

P
∪c
K,M/κM . Intuitively, it is the product of the probability of

a random chosen user being scheduled (∝ 1/κM ) and the

probability of successful transmission (P∪c
K,M ). Then we can

find optimal combination

(K∗,M∗) = argmax
(K,M)∈N2

P
∪c
K,M

κM
(19)

using exhaustive search. Alternatively, we can enforce an

outage constraint and find the optimal (K,M) combination

such that

(K∗,M∗) = argmax
(K,M)∈N2

P
∪c
K,M

κM
1[1−ǫ,1](P

∪c
K,M) (20)

Fig. 10 plots the exhaustive search result for (K∗,M∗)
defined in (19) and (20). In the simulation, we limit our search

space for both K and M to {1, 2, · · · , 20} and we use the

affine function κ = η0 + η1K to approximate κ, which turns

out to be an accurate fit in our simulation (see the data in

Table I).

Fig. 10 shows that as θ increases, it is beneficial to increase

K. This is consistent with the result derived in Proposi-

tions 2 and 4 and Fig. 6, which show that ICIC is more

effective in improving coverage probability for large θ. If there

is no outage constraint, it is more desirable to keep both K
and M (and thus the load factor) small. This is true especially

for small θ since the impact of (K,M) on P
∪c
K,M is small

(P∪c
K,M ≈ 1) but both κ (a function of K) and M linearly

affect the load factor and thus the average throughput.

The incentive to increase (K,M) is higher if an outage

constraint is imposed. Although it is still more desirable to

increase K (both due to its usefulness in the high-spectral
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Fig. 10: The optimal (K∗,M∗) as a function of θ. The top subfigure
is optimized for average throughput, see (19). The bottom subfigure
is optimized for average throughput under an outage constraint, see
(20) with ǫ = 0.05. 10 dB shadowing is considered.

efficiency regime and its smaller impact on the load factor), the

increase in M also has a non-trivial impact: a slight increase

in M could significantly reduce the optimal value of K. This

is an observation of practical importance, since the cost of

increasing K is usually much higher than that of increasing

M due to the signaling overhead that ICIC requires.

VII. CONCLUSIONS

This paper provides explicit expressions for the coverage

probability of inter-cell interference coordination (ICIC) and

intra-cell diversity (ICD) in cellular networks modeled by a

homogeneous Poisson point process (PPP). Examining the

high-reliability regime, we demonstrate a drastically different

behavior of ICIC and ICD despite their similarity in creating

extra load in the network. In particular, ICD, under the form of

selection combining (SC), provides diversity gain while ICIC

can only linearly affect the outage probability in the high-

reliability regime. In contrast, in the high-spectral efficiency

regime, ICIC provides higher coverage probability for realistic

path loss exponents. All the analytical results derived in the

paper are invariant to the network density and the shadowing

distribution.

The fact that ICD under selection combining provides

diversity gain in cellular networks even with temporal/spectral

interference correlation contrasts with the corresponding re-

sults in ad hoc networks, where [20] shows no such gain

exists. This shows that the spatial dependence between the

desired transmitter and the interferers is critical in harnessing

the diversity gain.

In the non-asymptotic regime, we propose an effective load

model to analyze the effect of ICIC. The model is validated

with simulations and proven to be very accurate. Using these

analytical results, we explore the fundamental trade-off be-

tween ICIC-ICD and system load in cellular systems.

APPENDIX A

PROOF OF PROPOSITION 1

Proof: We prove the theorem by calculating limθ→0
P

o
K,1

θ .

First, consider the case where K = 1. Since P
o
K,1 = 1−P

c
K,1,

we have

lim
θ→0

P
o
K,1

θ
= lim

θ→0

Cκ(θ, 1)− 1

θCκ(θ, 1)
= lim

θ→0
C ′

κ(θ, 1),

where C ′
κ(x, 1) =

d
dxCκ(x, 1), and the last equality is due to

L’Hospital’s rule and the fact that C1(0, 1) = 1. Moreover, we

have

lim
θ→0

C ′
κ(θ, 1) =

1

κ
C ′

1(0, 1) =
1

κ

δ

1− δ
(21)

due to the series expansion of the Gauss hypergeometric

function 2F1(a, b; c; z) =
∑∞

n=0
(a)n(b)n

(c)n
zn

n! . Thus, we proved

(11) is true for K = 1.

For K ≥ 2, by Theorem 1, we have

P
o
K,1 =

(K − 1)δ

∫ 1

0

(

1−
1

(Cκ(θx, 1))K

)

(1− xδ)K−2xδ−1dx,

where the integral, by change of variable y = θx, can be

written as

1

θδ

∫ θ

0

∆K(y)

(

1−
yδ

θδ

)K−2

yδ−1dy,

where ∆K(y) = 1− (Cκ(y, 1))
−K . Therefore, we have

lim
θ→0

P
o
K,1

θ
= lim

θ→0

(K − 1)δ

θδ+1

∫ θ

0

∆K(y)

(

1−
yδ

θδ

)K−2

yδ−1dy,

where the RHS can be simplified by (repetitively) applying

L’Hospital’s rule as follows:

lim
θ→0

(K − 1)δ

θδ+1

∫ θ

0

∆K(y)

(

1−
yδ

θδ

)K−2

yδ−1dy

= lim
θ→0

(K − 2)2δ
2

(δ + 1)θ2δ+1

∫ θ

0

∆K(y)

(

1−
yδ

θδ

)K−3

y2δ−1dy

= · · ·

=
(K − 1)!δK−1

∏K−2
k=1 (kδ + 1)

lim
θ→0

1

θ(K−1)δ+1

∫ θ

0

∆K(y)y(K−1)δ−1dy

=
(K − 1)!δK−1

∏K−1
k=1 (kδ + 1)

lim
θ→0

∆K(θ)

θ
, (22)

where

lim
θ→0

∆K(θ)

θ
= lim

θ→0

(Cκ(θ, 1))
K − 1

θ(Cκ(θ, 1))K
.

Note that limθ→0 Cκ(θ, 1) = 1 and thus limθ→0
∆K(θ)

θ =

limθ→0
(Cκ(θ,1))

K−1
θ , which by L’Hospital’s rule can be fur-

ther simplified as K limθ→0(Cκ(θ, 1))
K−1C ′

κ(θ, 1). There-

fore, thanks to (21), we have

lim
θ→0

∆K(θ)

θ
= KC ′

κ(0, 1) =
K

κ

δ

1− δ
. (23)

Combining (22) and (23) completes the proof.
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APPENDIX B

PROOF OF PROPOSITION 3

In order the prove Proposition 3, we first introduce two

useful lemmas. Letting D
k
u = ∂k

∂uk , the following lemma states

a simple algebraic fact which will turn out to be useful in the

asymptotic analysis.

Lemma 8. For any c ∈ R, we have

D
k
u

(

1−
1

c(1 + u)

)M
∣
∣
∣
∣
∣
u=0

=

k∑

j=1

(
M

j

)(
k

j

)

j!(M)k−j(−1)k−j

(

1−
1

c

)M−j

.

Proof: First, expressing
(

1− 1
c(1+u)

)M

as (cu + c −

1)M ( 1
c(1+u) )

M , by the Leibniz rule, we can expand the k-th

order derivative as

D
k
u

(

1−
1

c(1 + u)

)M

=

k∑

j=0

(
k

j

)

D
j
u(cu+ c− 1)MD

k−j
u

1

cM (1 + u)M
,

where

D
j
u(cu+ c− 1)M

∣
∣
u=0

= D
j
u

M∑

m=1

(
M

m

)

(cu)m(c− 1)M−m

∣
∣
∣
∣
∣
u=0

=

(
M

j

)

j!cj(c− 1)M−j ,

and

D
k−j
u

1

cM (1 + u)M

∣
∣
∣
∣
u=0

=
(−1)k−j

cM
(M)k−j .

This gives the desired expansion.

Thanks to Lemma 8, we have the following result.

Lemma 9. Given n arbitrary nonnegative integers

k1, k2, · · · , kn ∈ N ∪ {0} and An ,
∑n

i=1 ki ≥ 1, we

have

M∑

m=1

(
M

m

)

(−1)m+An

n∏

i=1

(m)ki
=

{

0, if An < M

M !, if An = M

for all M ∈ N.

Proof: We prove the lemma by induction. First, consider

the case where n = 1. Then for all k1 > 0, we have

M∑

m=1

(−1)k1+m

(
M

m

)

(m)k1

=

M∑

m=1

(−1)m
(
M

m

)

D
k1

u

1

(1 + u)m

∣
∣
∣
∣
u=0

= D
k1

u

((

1−
1

1 + u

)M

− 1

)∣
∣
∣
∣
∣
u=0

= D
k1

u

uM

(1 + u)M

∣
∣
∣
∣
u=0

,

where the k1-th derivative can be expanded by the Leibniz

rule, i.e.,

D
k1

u

uM

(1 + u)M
=

k1∑

i=0

(
k1
i

)
(
D

i
uu

M
)
(

D
k1−i
u

1

(1 + u)M

)

,

which is 0 when u = 0 if k1 < M . When k1 = M , the only

non-zero term in the sum is the one with i = k1 = M and

thus is D
k1
u

uM

(1+u)M
|u=0 = M !. Therefore, the lemma is true

for n = 1.

Second, we prove it for the case 0 < An < M with general

n by induction. Assume

M∑

m=1

(
M

m

)

(−1)m+An−1

n−1∏

i=1

(m)ki
=

M∑

m=1

(
M

m

)

(−1)m
n−1∏

i=1

D
ki
ui

(
1

1 + ui

)m∣
∣
∣
∣ui=0
i∈[n]

= 0,

for all n− 1 nonnegative integers {ki}
n−1
i=1 with 0 < An−1 =

∑n−1
i=1 ki < M . Then, we consider the case for n, move all

the D
ki
ui

to the front and, analogous to the n = 1 case, obtain

M∑

m=1

(
M

m

)

(−1)
m+

n∑

i=1

ki
n∏

i=1

(m)ki
=

(
n∏

i=1

D
ki
ui

)(

1−
1

∏n
i=1(1 + ui)

)M
∣
∣
∣
∣
∣ui=0
i∈[n]

. (24)

Expanding only the kn-th order derivative using Lemma 8, we

can express (24) as

(
n−1∏

i=1

D
ki
ui

)
kn∑

j=1

akn,j,M

(

1−
1

∏n−1
i=1 (1 + ui)

)M−j

, (25)

where akn,j,M =
(
M
j

)(
kn

j

)
j!(M)kn−j(−1)kn−j is indepen-

dent from ki and ui for all i ∈ [n − 1]. We then can move

the derivative operators inside the summation. Further, since

j ≤ kn < M −
∑n−1

i=1 ki, we have
∑n−1

i=1 ki < M − j for all

j in the summation, which leads to the observation that

(
n−1∏

i=1

D
ki
ui

)(

1−
1

∏n−1
i=1 (1 + ui)

)M−j
∣
∣
∣
∣
∣
∣ui=0
i∈[n]

= 0, ∀j ∈ [kn]

by our assumption on the n−1 case. Thus the lemma is proved

for the case 0 < An < M for all n ∈ N.

For the case An = M , we see, by the first part of the proof,

that
(

n−1∏

i=1

D
ki
ui

)(

1−
1

∏n−1
i=1 (1 + ui)

)M−j
∣
∣
∣
∣
∣
∣ui=0
i∈[n]

can be non-zero only if j = kn. Thus (25) can be simplified

to

(
M

kn

)

kn!

(
n−1∏

i=1

D
ki
ui

)(

1−
1

∏n−1
i=1 (1 + ui)

)M−kn

∣
∣
∣
∣
∣
∣ui=0
i∈[n]

,
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which is M ! if we assume the lemma is true for n− 1. Since

n is arbitrarily chosen, the lemma is proved for all n ∈ N.

With Lemmas 8 and 9, we are able to proceed with the

proof of Proposition 3 as follows.

Proof (of Proposition 3): By Corollary 1, we have

P
∩o
1,M = 1−

M∑

m=1

(−1)m+1

(
M

m

)
1

C1(θ,m)

=

M∑

m=1

(−1)m+1

(
M

m

)(

1−
1

C1(θ,m)

)

. (26)

We then proceed the proof by considering the Taylor expansion

of 1/C1(x,m) at x = 0. To find the n-th derivative of

1/C1(x,m) we treat 1
C1(x,m) as a composite of f(x) = x−1

and C1(x,m), where the derivatives of C1(x,m) is available

by the series expansion of hypergeometric function mentioned

before. Then, by Faà di Bruno’s formula [28], we have

D
n
x

(
1

C1(x,m)

)∣
∣
∣
∣
x=0

=

∑

b∈Bn

n!(
∑n

i=1 bi)!
∏n

i=1(bi!)

n∏

i=1

(
(m)i(−δ)i
(1− δ)ii!

)bi

, (27)

where Bn is the set of n-tuples of non-negative integers (bi)
n
i=1

with
∑n

i=1 ibi = n, and b = (bi)
n
i=1. (27) directly leads to the

Taylor expansion of 1/C1(θ,m), which combined with (26)

leads to a series expansion of P∩o
1,M as function of θ,

P
∩o
1,M =

M∑

m=1

(−1)m
(
M

m

) ∞∑

n=1

θn
∑

b∈Bn

(
n∑

i=1

bi)!

n∏

i=1

(bi!)

n∏

i=1

(
(m)iτ(i)

)bi
,

where τ(i) , (−δ)i
(1−δ)ii!

. Rearranging the sums and products in

expression above yields P
∩o
1,M =

∑∞
n=1 anθ

n, where

an =
∑

b∈Bn

(
n∑

i=1

bi)!

n∏

i=1

(bi!)

n∏

i=1

(
τ(i)

)bi
M∑

m=1

(−1)m
(
M

m

) n∏

i=1

(
(m)i

)bi
.

Recall that b ∈ Bn indicates
∑n

i=1 ibi = n. By Lemma 9,

we have an = 0 for all n < M , i.e., P∩o
1,M = O(θM ) as θ → 0.

Further, Lemma 9 helps us to obtain the coefficient in front

of θM , i.e.,

aM =
∑

b∈BM

M !(−1)
∑M

i=1
bi(
∑M

i=1 bi)!
∏M

i=1(bi!)

M∏

i=1

(
τ(i)

)bi
, (28)

which leads to the concise expression in the proposition by

reusing Faà di Bruno’s formula.
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Math. Monthly, vol. 109, pp. 217–234, 2002.
[29] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and

Products, 7th ed. Academic Press, 2007.


