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Abstract

In wireless networks, the knowledge of nodal distances is essential for performance analysis and

protocol design. When determining distance distributionsin random networks, the underlying nodal

arrangement is almost universally taken to be a stationary Poisson point process. While this may be

a good approximation in some cases, there are also certain shortcomings to this model such as the

fact that in practical networks, the number of nodes in disjoint areas are not independent. This paper

considers a more realistic network model where a known and fixed number of nodes are independently

distributed in a given region and characterizes the distribution of the Euclidean internode distances. The

key finding is that when the nodes are uniformly randomly placed inside a ball of arbitrary dimensions,

the probability density function of the internode distances follows a generalized beta distribution. This

result is applied to study wireless network characteristics such as energy consumption, interference,

outage and connectivity.
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I. INTRODUCTION

A. Motivation

In wireless channels, the received signal strength falls off with distance according to a power

law, at a rate termed the large scale path loss exponent (PLE)[1]. Given a link distance

l, the signal power at the receiver is attenuated by a factor ofl−α, where α is the PLE.

Consequently, in wireless networks, distances between nodes strongly impact the signal-to-noise-

and-interference ratios (SINRs), and, in turn, the link reliabilities. The knowledge of the nodal

distances is therefore essential for the performance analysis and the design of efficient protocols

and algorithms.

In many wireless networks, nodes can be assumed to be scattered randomly over an area or

volume; the distance distributions then follow from the spatial stochastic process governing the

locations of the nodes. For the sake of analytical convenience, the arrangement of nodes in a

random network is commonly taken to be a homogeneous (or stationary) Poisson point process

(PPP). For the resulting so-called “Poisson network” of density λ, the number of nodes in any

given setV of Lebesgue measure|V | is Poisson with meanλ|V |, and the numbers of nodes

in disjoint sets are independent. Even though the PPP assumption can lead to some insightful

results, practical networks differ from Poisson networks in certain aspects. First, networks are

usually formed by scattering a fixed (and finite) number of nodes in a given area. In this case,

the nodal arrangement is abinomial point process (BPP), which we define shortly. Secondly,

since the area or volume of deployment is necessarily finite,the point process formed is non-

stationary and often non-isotropic, meaning that the network characteristics as seen from a node’s

perspective such as the nearest-neighbor distance or the interference distribution is not the same

for all nodes. Furthermore, the numbers of nodes in disjointsets are not independent; in the case

of the BPP, they are governed by a multinomial distribution.

Definition: Formally, a BPPΦ, is formed as a result of distributingN points independently
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uniformly in a compact setW .

The density of the BPP at any locationx is defined to beλ(x) = N
|W |

1(x). In this paper, we

considerW ⊂ R
d (d is an arbitrary positive integer). For any setV ⊂ R

d, the number of points in

V , Φ(V ), is binomial(n, p) with parametersn = N andp = |V ∩W |/|W | [3]. By this property,

the number of nodes in disjoint sets are joint via a multinomial distribution. Accordingly, for

disjoint setsV1, . . . , Vk andn = n1 + . . . + nk, we have

Pr(Φ(V1) = n1, . . . , Φ(Vk) = nk) =
n!

n1! · · ·nk!

|V1 ∩ W |n1 · · · |Vk ∩ W |nk

|W |n
.

If the number of nodes or users is known, the PPP is clearly nota good model, since

realizations of the process may have more nodes than the number of nodes deployed or no

nodes at all. In particular when the number of nodes is small,the Poisson model is inaccurate.

The main shortcoming of the Poisson assumption is, however,the independence of the number

of nodes in disjoint areas. For example, if all theN nodes are located in a certain part of the

network area, the remaining area is necessarily empty. Thissimple fact is not captured by the

Poisson model. This motivates the need to study and accurately characterize finite uniformly

random networks, in an attempt to extend the plethora of results for the PPP to the often more

realistic case of the BPP. We call this new model abinomial network, and it applies to mobile

ad hoc and sensor networks and wireless networks with infrastructure, such as cellular telephony

networks.

In this paper, we analytically characterize the distribution of internode distances in a binomial

network wherein a known number of nodes are independently distributed in a compact set. As

a special case, we derive the Euclidean distance propertiesin a d-dimensional isotropic1 BPP,

and use it to study relevant problems in wireless networks such as energy consumption, design

of efficient forwarding and localization algorithms, interference characterization, and outage and

1A point process is said to be isotropic if its distribution isinvariant to rotations.
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connection probability evaluation.

B. Related Work

Even though the knowledge of the statistics of the node locations in wireless networks is

crucial, relatively few results are available in the literature in this area. Moreover, much of the

existing work deals only with moments of the distances (means and variances) or characterizes

the exact distribution only for very specific system models.

In [4], the probability density function (pdf) and cumulative distribution function (cdf) of

the distances between nodes are derived for networks with uniformly random and Gaussian

distributed nodes over a rectangular area. [5] studies meaninternodal distance properties for

several kinds of multihop systems such as ring networks, Manhattan street networks, hypercubes

and shufflenets. [6] provides closed-form expressions for the distributions ind-dimensional

homogeneous PPPs and describes several applications of theresults for large networks. [7]

considers one-dimensional Poisson networks and analyzes the distribution and moments of the

single-hop distance, which is defined as the maximum possible distance between two nodes that

can communicate with each other. [8] derives the joint distribution of distances of nodes from a

common reference point for networks with a finite number of nodes randomly distributed on a

square and [9] determines the pdf and cdf of the distance between two randomly selected nodes

in square random networks.

II. D ISTRIBUTION OF INTERNODE DISTANCES

In this section, we determine the distribution of the Euclidean distance to thenth nearest

point from an arbitrary reference point for a general BPP. Inthe special case of ad-dimensional

isotropic BPP, we establish that this random variable (r.v.) follows a generalized beta distribution.

We also derive the distances to the nearest and farthest nodes and the void probabilities.

Consider the BPPΦ with N points uniformly randomly distributed in a compact setW ⊂ R
d

(see Fig. 1). LetRn denote the r.v. representing the Euclidean distance from anarbitrary reference
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W

r
x

Fig. 1. A BPP withN = 16 points uniformly randomly distributed in an arbitrary compact setW . We wish to determine the
distribution of the distances to the other points from the reference pointx. The dashed circle represents the ballbd(x, r).

point x to the nth nearest node of the BPP2 and let bd(x, r) denote thed-dimensional ball of

radiusr centered atx.

The complementary cumulative distribution function (ccdf) of Rn is the probability that there

are less thann points inbd(x, r) :

F̄Rn(r) =
n−1
∑

k=0

(

N

k

)

pk(1 − p)N−k, 0 ≤ r ≤ R, (1)

wherep = |bd(x, r) ∩ W |/|W |. In the case of anon-homogeneous BPP with a general density

function λ(x), p =
∫

bd(x,r)∩W
λ(x)dx.

F̄Rn can be written in terms of the regularized incomplete beta function as

F̄Rn(r) = I1−p(N − n + 1, n), 0 ≤ r ≤ R, (2)

where

Ix(a, b) =

∫ x

0
ta−1(1 − t)b−1dt

B(a, b)
.

Here,B(a, b) denotes the beta function, which is expressible in terms of gamma functions as

2For the rest of the paper, we assume thatx is not a point of the BPP. However, ifx ∈ Φ, the remaining point process simply
becomes a BPP withN − 1 points.
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B(a, b) = Γ(a)Γ(b)/Γ(a + b).

The pdf of the distance function is given by

fRn = −dF̄Rn/dr

=
dp

dr

(1 − p)N−npn−1

B(N − n + 1, n)
. (3)

We now analytically derive the pdf of the Euclidean distancebetween points in ad-dimensional

isotropic BPP, and later, in Section III, compute its moments. In Section IV, we derive the pdf of

the distances whenW is a generall-sided regular polygon. In Section V, we apply our findings

to the study of wireless networks.

Theorem 2.1: In a point process consisting ofN points uniformly randomly distributed in a

d-dimensional ball of radiusR centered at the origin, the Euclidean distanceRn from the origin

to its nth nearest point follows a generalized beta distribution, i.e.,

fRn(r) =
d

R

B(n − 1/d + 1, N − n + 1)

B(N − n + 1, n)
β

(

( r

R

)d

; n −
1

d
+ 1, N − n + 1

)

, r ∈ [0, R],

whereβ(x; a, b) is the beta density function3 defined asβ(x; a, b) = 1
B(a,b)

xa−1(1 − x)b−1.

Proof: For the isotropicd-dimensional BPP, we haveW = bd(o, R). The volume of this

ball |W | is equal tocdR
d, where

cd = |bd(0, 1)| =
πd/2

Γ(1 + d/2)

is the volume of the unit ball inRd [3]. Important cases includec1 = 2, c2 = π andc3 = 4π/3.

The density of this process is equal toN/(cdR
d) inside the ball.

With the reference point being the origin, note thatp = cdr
d/cdR

d = (r/R)d and from (3),

3Mathematica: PDF[BetaDistribution[a, b],x].
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we have

fRn(r) =
d

R

( r

R

)d−1 (1 − p)N−npn−1

B(N − n + 1, n)

=
d

R

(1 − p)N−npn−1/d

B(N − n + 1, n)

=
d

R

B(n − 1/d + 1, N − n + 1)

B(N − n + 1, n)
β

(

( r

R

)d

; n −
1

d
+ 1, N − n + 1

)

(4)

for 0 ≤ r ≤ R. The final equality castsRn as a generalized beta-distributed variable.

Corollary 2.2: For the practical cases ofd = 1 andd = 2, we have

fRn(r) =
1

R
β

( r

R
; n, N − n + 1

)

and

fRn(r) =
2

R

Γ(n + 1
2
)Γ(N + 1)

Γ(n)Γ(N + 3
2
)

β

(

r2

R2
; n +

1

2
, N − n + 1

)

respectively.

Fig. 2 plots the distance pdfs for the cases ofd = 1 andd = 2.

Remarks:

1) The void probabilityp0
B of the point process is defined as the probability of there being

no point of the process in an arbitrary test setB [3]. For a BPP withN points distributed

over a setW , it is easy to see that

p0
B = (1 − |B ∩ W |/|W |)N . (5)

For the isotropic BPP considered above, when the test set isB = bd(o, r), we have

p0
B =

(

1 − (r/R)d
)N

.

2) Of interest in particular are the nearest- and farthest-node distances. The nearest-node
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distance pdf is given by

fR1
(r) =

dN

r

(

1 −
( r

R

)d
)N−1

( r

R

)d

, (6)

and the distance to the farthest point from the origin is distributed as

fRN
(r) =

dN

r

( r

R

)Nd

, 0 ≤ r ≤ R. (7)

Both are generalized Kumaraswamy distributions [10].

3) For a one-dimensional BPP,fRn(r) = fRN−n+1
(R − r), and therefore knowledge of the

distance pdfs for the nearest⌈N/2⌉ nodes gives complete information on the distance

distributions to the other points.

4) If a point of the BPP,x, is located at the origin, the remainingN −1 points are uniformly

distributed inbd(0, R). Thus, the pdf of the Euclidean distance fromx to its neighbors is

identical to (4), withN replaced byN −1. Also note that (4) also holds for any reference

point x for 0 ≤ r ≤ R − ‖x‖.

We wish to compare the distance distributions from the origin for an isotropic BPP and a PPP

with the same density. However, note that in general, the PPPmay have fewer points than the

number dropped. In order to make a fair comparison, we condition on the fact that there are at

leastN points present in the PPP model. The following corollary establishes the distance pdfs

for such a conditioned PPP. Also note that conditioned on there being exactlyN points present,

the PPP is equivalent to a BPP [3].

Corollary 2.3: Consider a PPP of densityλ over a finite volumebd(o, R). Conditioned on

there being at leastN points in the ball, the distance distribution from the origin to the nth

nearest node (n ≤ N) is given by

f ′
Rn

(r) =
λdcdr

d−1
(

An−1(r)
(
∑∞

k=N−n Bk(r)
))

∑∞
k=N Ak(R)

, r ∈ [0, R], (8)

February 9, 2009 DRAFT



9

whereAk(r) := e−λcdrd (

λcdr
d
)k

/k! andBk(r) := e−λcd(Rd−rd) (

λcd

(

Rd − rd
))k

/k!.

Proof: The complementary conditional cdf ofRn is given by

F̄ ′
Rn(r) = Pr (Φ (bd(o, r)) < n | Φ (bd(o, R)) ≥ N)

=
Pr (Φ (bd(o, r)) < n, Φ (bd(o, R)) ≥ N)

Pr (Φ (bd(o, R)) ≥ N)

(a)
=

∑n−1
k=0 Pr (Φ (bd(o, r)) = k) Pr (Φ (bd(o, R) \ bd(o, r)) ≥ N − k)

Pr (Φ (bd(o, R)) ≥ N)

=

∑n−1
k=0 Ak(r)

(

1 −
∑N−k−1

l=0 Bl(r)
)

∑∞
k=N Ak(R)

, (9)

where (a) is obtained from the property that the number of points of thePPP in disjoint sets

are independent of each other. It is easy to see that

d
dr

Ak(r) =











λdcdr
d−1 (Ak−1(r) − Ak(r)) k > 0

−λdcdr
d−1A0(r) k = 0

(i)

and

d
dr

Bl(r) =











λdcdr
d−1 (Bl(r) − Bl−1(r)) l > 0

λdcdr
d−1B0(r) l = 0.

(ii)

Therefore, we have

d
dr

N−k−1
∑

l=0

Bl(r) = λdcdr
d−1BN−k−1(r). (iii)

The details of the remainder of the proof are straightforward but tedious and are omitted here.

Since the pdf of the conditional distance distribution isf ′
Rn

= −dF̄ ′
Rn/dr, one basically has to

differentiate the numerator in (9), and after some simplifications using (i)-(iii), it will be seen

that the conditional distance pdf is identical to (8).

Fig. 2 depicts the pdfs of the distances for one- and two-dimensional BPPs (from (4)) and

compares it with the distance pdfs for a conditioned PPP withthe same density.

When a large number of points are distributed randomly over alarge area, their arrangement
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Fig. 2. Distance pdfs for each of the neighbors for one- and two- dimensional binomial and conditioned Poisson networks.

can be well approximated by an infinite homogeneous PPP. The PPP model for the nodal

distribution is ubiquitously used for wireless networks and may be justified by claiming that

nodes are dropped from an aircraft in large numbers; for mobile ad hoc networks, it may be

argued that terminals move independently of each other. We now present a corollary to the earlier

theorem, that reproduces a result from [6].

Corollary 2.4: In an infinite PPP with densityλ on R
d, the distanceRn, between a point and

its nth neighbor is distributed according to the generalized gammadistribution.

fRn(r) = e−λcdrd d(λcdr
d)n

rΓ(n)
, r ∈ R. (10)

Proof: If the total number of pointsN tends to infinity in such a way that the density

λ = N/(cdR
d) remains constant, then the BPP asymptotically (asR → ∞) behaves as a PPP

February 9, 2009 DRAFT



11

[3]. Taking R = d
√

N/cdλ and applying the limit asN → ∞, we obtain for a PPP,

fRn(r) = lim
N→∞

d

R

(1 − p)N−n pn−1/dΓ(N + 1)

Γ(N − n + 1)Γ(n)

=
d

rΓ(n)
(λcdr

d)n lim
N→∞

(

1 −
λcdr

d

N

)N
N(N − 1) . . . (N − n + 1)

Nn

= e−λcdrd d(λcdr
d)n

rΓ(n)
.

for r ∈ R. This is an alternate proof to the one provided in [6].

III. M OMENTS OF THEINTERNODE DISTANCES

We now consider the isotropicd-dimensional BPP and use the internode distance pdf (4) to

compute its moments. Theγth moment ofRn is calculated as follows4.

E[Rγ
n] =

d

R

1

B(N − n + 1, n)

∫ R

0

[

rγ
( r

R

)nd−1
(

1 −
( r

R

)d
)N−n

]

dr.

(a)
=

Rγ

B(N − n + 1, n)

∫ 1

0

tn+γ/d−1(1 − t)N−ndt

=
Rγ

B(N − n + 1, n)
Bx(n + γ/d, N − n + 1)|10

(b)
=











RγΓ(N+1)Γ(γ/d+n)
Γ(n)Γ(γ/d+N+1)

if n + γ/d > 0

∞ otherwise

=











Rγn[γ/d]/(N + 1)[γ/d] if n + γ/d > 0

∞ otherwise,
(11)

whereBx[a, b] is the incomplete beta function5 and x[n] = Γ(x + n)/Γ(x) denotes the rising

Pochhammer symbol notation. Here,(a) is obtained by making the substitutionr = Rt1/d and

4Note thatγ ∈ R in general, and is not restricted to being an integer.
5Mathematica: Beta[x, a, b].
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(b) using the following identities:

B0(a, b) =











0 Re(a) > 0

−∞ Re(a) ≤ 0,

andB1(a, b) = B(a, b) if Re(b) > 0.

The expected distance to thenth nearest node is thus

E(Rn) =
Rn[1/d]

(N + 1)[1/d]
, (12)

and the variance ofRn is easily calculated as

Var[Rn] =
R2n[2/d]

(N + 1)[2/d]
−

(

Rn[1/d]

(N + 1)[1/d]

)2

. (13)

Remarks:

1) For one-dimensional networks,E[Rn] = Rn/(N + 1). Thus, on an average, it is as if the

points are arranged on a regular lattice. In particular, when N is odd, the middle point is

located exactly at the center on average.

2) On the other hand, asd → ∞, E[Rn] → R and it is as if all the points are equidistant at

maximum distanceR from the origin.

3) In the general case, the mean distance to thenth nearest node varies asn1/d for largen.

This follows from the series expansion of the Pochhammer sequence [11]

n[q] = nq (1 −O (1/n)) .

Also, for d > 2, the variance goes to0 asn increases. This is also observed in the case

of a Poisson network [6].

4) By the triangle inequality, the mean internodal distancebetween theith and j th nearest
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nodes from the origin,Dij, is bounded as (assumingi < j)

R
(

j[1/d] − i[1/d]
)

(N + 1)[1/d]
< E[Dij ] <

R
(

i[1/d] + j[1/d]
)

(N + 1)[1/d]
.

5) For the special case ofγ/d ∈ Z, we obtain

E[Rγ
n] = Rγ

(

n + γ/d − 1

γ/d

)/(

N + γ/d

γ/d

)

.

IV. D ISTANCE DISTRIBUTIONS IN REGULAR POLYGONAL BPPS

In this section, we derive the pdf of the distance to thenth nearest node from the origin, in

BPPs distributed on al-sided regular polygonW . Assume that the polygon is centered at the

origin and|W | = A. Then, its inradius and circumradius are respectively given by

Ri =

√

A

l
cot

(π

l

)

andRc =

√

2A

l
csc

(

2π

l

)

.

Also, let the total number of nodes beN and assume that no point of the process is at the origin.

Clearly, whenr ≤ Ri, b2(o, r) lies completely within the polygon and the number of points

lying in it, Φ(b2(o, r)), is binomial distributed with parametersn = N andp = πr2/A.

B

CA

θ

O

r

Ri

Fig. 3. Section of al-sided regular polygon depicting one of its sides. O is the origin. For Ri < r ≤ Rc, the area of the
shaded segment ABC isr2θ − Ri

p

r2 − R2
i .

When Ri < r ≤ Rc, |W ∩ b2(o, r)| can be evaluated by considering the regions of the circle
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lying outside the polygon (see the shaded segment in Fig. 3).It is easy to see thatΦ(b2(o, r))

follows a binomial distribution with parametersn = N and

q =
πr2 − lr2θ + lRi

√

r2 − R2
i

A
,

whereθ = cos−1(Ri/r). Following (3), we can write

fRn(r) =























2rπ
A

(1−p)N−npn−1

B(N−n+1,n)
0 < r ≤ Ri

2r(π−lθ)
A

(1−q)N−nqn−1

B(N−n+1,n)
Ri < r ≤ Rc

0 Rc < r.

(14)

Fig. 4 plots the pdf of the farthest neighbors in a BPP with10 nodes, distributed on al-sided

regular polygon withA = 100, for l = 3, 4, 5 and l → ∞.
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l = 3

l = 4
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Fig. 4. The pdf of the distances to the farthest nodes from theorigin in a BPP with10 nodes and area100 units, distributed
on a l-sided polygon forl = 3, 4 and5. The dotted line depicts the farthest neighbor distance in acircle (l → ∞), for which
Ri = Rc = 10/

√
π.
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V. APPLICATIONS TO WIRELESS NETWORKS

We now apply the results obtained in the previous section to wireless networks. For the system

model, we assume ad-dimensional network over a ballbd(o, R), whereN nodes are uniformly

randomly distributed. Nodes are assumed to communicate with a base station (BS) positioned

at the origino. The attenuation in the channel is modeled by the large scalepath loss function

g with PLE α, i.e., g(x) = ‖x‖−α. The channel access scheme is taken to be slotted ALOHA

with contention parameterδ.

A. Energy Consumption

The energy that is required to successfully deliver a packetover a distancer in a medium

with PLE α is proportional torα. Therefore, the average energy required to deliver a packet

from thenth nearest neighbor to the BS is given by (11), withγ = α. This approximately scales

asnα/d when the routing is taken over single hops. Whenα < d, it is more energy-efficient to

use longer hops than when the PLE is greater than the number ofdimensions.

B. Design of Routing Algorithms

The knowledge of nodal distances is also useful for the analysis and design of routing schemes

for wireless networks. We illustrate this via an example wherein a greedy forwarding strategy

that maximizes the expected progress of a packet towards itsdestination needs to be designed.

Consider the scenario whereN nodes are uniformly distributed in a disk of radiusR. Assume

that several packets need to be forwarded from the BS to an arbitrarily chosen destination node

D, which lies far away from the BS. We also assume that each node has a peak (transmit)

power constraint ofP ≪ Rα. Let us suppose that the nodes adopt a greedy forwarding strategy

wherein each relay nodeXi that gets a packet relays it to its farthest neighbor in a sector of

angleφ (0 ≤ φ ≤ π), i.e., along±φ/2 around theXi-D axis (see Fig. 5). Evidently, for largeφ,

the direction of the farthest neighbor in the sector may be off the Xi-D axis, while for smallφ,
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there may not be enough nodes inside the sector. The natural question to ask is: what value of

φ maximizes the expected progress of packets6 towards the destination?

φ

D

Xi+2

Xi+1

Xi

r

Ψ

Fig. 5. The greedy forwarding strategy. Each relayXi forwards the packet to its farthest neighbor lying inside the sector of
radiusφ around theXi-D axis. The thick lines represent the path taken by the packet (through three arbitrary relays) for this
particular realization.

A problem of similar flavor is studied in [12] for an interference-limited PPP, wherein the

authors evaluate the optimal density of transmitters that maximizes the expected progress of a

packet. In [13], the author determines the energy required to deliver a packet over a certain

distance for various routing strategies in a PPP. In [14], the optimal transmission radius that

maximizes the expected progress of a packet is determined for different transmission protocols

in Poisson packet radio networks.

In order to evaluate the progress of a packet in the binomial network, we first note that if

there are exactlyk nodes in an arbitrary sector of angleφ and radiusr = P 1/α (which is the

range of transmission), the average distance to the farthest (kth) neighbor in that sector is the

same as (12)7, with n = k, R = r and d = 2. We also know that the number of nodes lying

in that sector is binomial with parametersN and (r2φ/2πR2). Thus, the mean distance to the

6We define the progress of a packet from a relay nodeXi as the effective distance travelled along theXi-D axis.
7This follows from the observation that in (1), the distance distributions depend only onp = |b2(x, r) ∩ W |/|W |, and the

values ofp for the sector and the circle are the same.
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farthest neighbor in the considered sector can be written as

N
∑

k=1

(

N

k

) (

r2φ

2πR2

)k (

1 −
r2φ

2πR2

)N−k
2rk

2k + 1
. (15)

Note that the sectors emanating from nodesXi and Xi+1 overlap partially, and also, the total

number of nodes is fixed; therefore the mean distance to the farthest neighbor,E[X ′], is actually

upper-bounded by (15). However, since we consider the farthest neighbors, the sectoral overlap

is small.

Next, let Ψ denote the angle between the line connectingXi to its farthest neighbor (Xi+1)

and theXi-D axis. Since the nodal distribution is uniformly random,Ψ is uniformly distributed

on [−φ/2, φ/2]. The expected progress of a packet isE[X] = E[X ′]E[cos(Ψ)] sinceΨ andX ′

are independent of each other, and is upper-bounded as

E[X] ≤
2

φ
sin

(

φ

2

) N
∑

k=1

2P 1/αk

2k + 1

(

N

k

) (

P 2/αφ

2πR2

)k (

1 −
P 2/αφ

2πR2

)N−k

. (16)

The optimum value ofφ that maximizes the progress of packets can be numerically determined

from (16).

Fig. 6 plots the expected progress of a packet (upper bound) versusφ for several values ofN

using (16), and compares it with the empirical value, obtained via simulation. We see that the

bound is reasonably tight, in particular at lowerN . The optimum values ofφ are also marked

in the figure.

C. Localization

In wireless networks, localization is an integral component of network self-configuration.

Nodes that are able to accurately estimate their positions can support a rich set of geographi-

cally aware protocols and report the regions of detected events. Localization is also useful for

performing energy-efficient routing in a decentralized fashion.

In this section, we investigate conditional distance distributions and study their usefulness to
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Fig. 6. The expected progress of a packet (empirical and upper bound) for various values ofN . The square markers correspond
to the optimum values ofφ that maximize the packet’s progress.

localization algorithms. We consider the scenario whereina few nodes can estimate or even

precisely measure their distances from the BS. What can be said about the distance statistics of

the other nodes given this information?

Suppose we know that thekth nearest neighbor is at distances from the center8. Then, clearly,

the firstk−1 nodes are uniformly randomly distributed inbd(o, s) while the more distant nodes

are uniformly randomly distributed inbd(o, R)\bd(o, s). Following (4), the distance distributions

of the firstk − 1 nearest neighbors from the origin can be written as

fRn(r | Rk = s) =
d

s

B(n − 1/d + 1, k − n)

B(k − n, n)
β

(

(r

s

)d

; n −
1

d
+ 1, k − n

)

, n < k

for 0 ≤ r ≤ s, which again follows a generalized beta distribution.

8Based on the RSS from the base station, perhaps averaged overa period of time to eliminate the variations due to fading,
nodes can determine how many other nodes are closer to the transmitter than they are. This way, a node would find out that it
is thekth nearest neighbor to the base station.
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For the remaining nodes i.e., forn > k, we have inr ∈ [s, R],

fRn(r | Rk = s) = −
d
dr

I1−q(N − n + 1, n − k)

=
drd−1

Rd − sd

(1 − q)N−n qn−k−1

B(N − n + 1, n − k)

whereq = (rd − sd)/(Rd − sd).

The moments ofRn are also straightforward to obtain. Following (11), we see that for n < k

andn + α/d > 0,

E[Rα
n | Rk = s] =

sαn[α/d]

(k + 1)[α/d]
. (17)

For n > k, we have

E[Rα
n | Rk = s] =

∫ R

s

drα+d−1

Rd − sd

(1 − q)N−n qn−k−1

B(N − n + 1, n − k)
dr

=
1

B(N − n + 1, n − k)

∫ 1

0

qn−k−1(1 − q)N−n
(

q
(

Rd − sd
)

+ sd
)α/d

dq

=
sα

(n − k)B(N − n + 1, n − k)
F1

(

n − k; n − N,−
α

d
; n − k + 1; 1, 1 −

Rd

sd

)

,

whereF1[a; b1, b2; c; x, y] is the Appell hypergeometric function of two variables9.

Often, it is easiest to measure the nearest-neighbor distance. Give this distance ass, we have

for n > 1,

fRn(r | R1 = s) =
drd−1

Rd − sd

(

1 −
(

rd−sd

Rd−sd

))N−n (

rd−sd

Rd−sd

)n−2

B(N − n + 1, n − 1)

for r ∈ [s, R]. Also, the mean conditional distances to the remaining neighbors are

E[Rn | R1 = s] =
s

(n − 1)B(N − n + 1, n − 1)
F1

(

n − 1; n − N,−
1

d
; n − 1; 1, 1 −

Rd

sd

)

.

Fig. 7 plots the mean conditional distances in a network with10 nodes when the nearest-neighbor

9Mathematica: AppellF1[a, b1, b2, c, x, y].
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distance is unity.
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Fig. 7. The mean conditional distances of the higher-order neighbors in a binomial network with10 nodes andd = 1, 2, 3,
when it is known that the nearest neighbor is at unit distanceaway from the base station.

D. Interference

In order to accurately determine network parameters such asoutage, throughput or transmission

capacity, the interference in the systemI needs to be known.

Let Tn ∈ {0, 1}, 1 ≤ n ≤ N denote the random variable representing whether thenth nearest

node to the BS transmits or not, in a particular time slot. With the channel access scheme being

ALOHA, these are i.i.d. Bernoulli variables (with parameter δ).

The mean interference as seen at the center of the network is given by

µI = E

[

N
∑

n=1

(TnR
−α
n )

]

=
N

∑

n=1

E[Tn]E
[

R−α
n

]

,

= δ

N
∑

n=1

E
[

R−α
n

]

.
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Settingγ = −α andn = 1 in (11), we can conclude that the mean interference is infinite for

d ≤ α. This is due to the nearest interferer. Even the mean interference from just thenth nearest

transmitter is infinite ifα ≥ nd. When the number of dimensions is greater than the PLE, we

have

µI =
δR−αΓ(N + 1)

Γ(N + 1 − α/d)

N
∑

n=1

Γ(n − α/d)

Γ(n)
.

One can inductively verify that

k
∑

n=1

Γ(n − α/d)

Γ(n)
=

Γ(k − α/d)

Γ(k)

k − α/d

1 − α/d
∀k ∈ Z, (18)

and we obtain after some simplifications,

µI =
NδdR−α

d − α
, d > α. (19)

The unboundedness of the mean interference at practical values ofd andα (i.e., d < α) actually

occurs due to the fact that the path loss model we employ breaks down for very small distances,

i.e., it exhibits a singularity atx = 0. One way to overcome this issue is to impose a guard zone

of radiusǫ around every receiver. In other words, every receiver has anexclusion zone of radius

ǫ around it and the nodes lying within it are not allowed to transmit.

Since the average number of nodes in the ballb(o, ǫ) is Nǫd/Rd, we obtain the mean inter-

ference in this case to be

µI =
NpdR−α

d − α
−

Nǫdδdǫ−α

Rd(d − α)

=
Nδd(Rd−α − ǫd−α)

Rd(d − α)
, ∀d 6= α. (20)

Taking limits, we obtainµI = Nδd ln(R/ǫ)/Rd whend = α.
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E. Outage Probability and Connectivity

Assuming that the system is interference-limited, an outageO is defined to occur if the SIR at

the BS is lower than a certain thresholdΘ. Let the desired transmitter be located at unit distance

from the origin, transmit at unit power and also not be a part of the original point process. Then,

the outage probability isPr(O) = Pr[1/I < Θ].

Considering only the interference contribution from the nearest neighbor to the origin, a simple

lower bound is established on the outage probability as

Pr(O) ≥ Pr
(

T1R
−α
1 > 1/Θ

)

= δ Pr
(

R1 < Θ1/α
)

=











δ

(

1 −
(

1 − Θd/α

Rd

)N
)

Θ ≤ Rα

δ Θ > Rα.

(21)

The empirical values of success probabilities and their upper bounds (21) are plotted for different

values ofN in Fig. 8. As the plot depicts, the bounds are tight for lower values ofN andΘ, and

therefore we conclude that the nearest neighbor contributes most of the network interference.

However, asα decreases, the bound gets looser since the contributions from the farther neighbors

are also increased.

Next we study the connectivity properties of the binomial network, assuming that interference

can be controlled such that the system is noise-limited. Define a node to be connected to the

origin if the SNR at the BS is greater than a thresholdΘ. Let the nodes transmit at unit power

and assume noise to be AWGN with varianceN0. In the absence of interference, the probability
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that the BS is connected to itsnth nearest neighbor is

= Pr(R−α
n > N0Θ)

= 1 − Pr(Rn > (N0Θ)−1/α)

=











1 − I1−p′(N − n + 1, n) Θ > R−α/N0

1 Θ ≤ R−α/N0,
(22)

where p′ =
(

(N0Θ)−1/α /R
)d

. Fig. 9 plots the connection probability in a two-dimensional

binomial network with25 nodes.

The mean number of nodes that are connected to the BS isN min{1,
(

(N0Θ)−1/α

R

)d

}.

F. Other Applications

We now list a few other areas where knowledge of the distance distributions is useful.
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• Routing: The question of whether to route over smaller or longer hopsis an important, yet

a nontrivial issue [15], [16], and it gets more complicated in the presence of interference in

the network. The knowledge of internodal distances is necessary for evaluating the optimum

hop distance and maximizing the progress of a packet towardsits destination.

• Path loss exponent estimation: The issue of PLE estimation is a very important and relevant

problem [17]. Several PLE estimation algorithms are based on received signal strength

techniques, which require the knowledge of distances between nodes.

VI. CONCLUDING REMARKS

We argue that the Poisson model for nodal distributions in wireless networks is not accurate in

many practical situations and instead consider the often more realistic binomial network model.

We derive exact analytical expressions for the pdfs of the internodal distances in a network where

a known number of nodes are independently distributed in a compact set. Specializing to the case
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of an isotropic random network, we show that the distances between nodes follow a generalized

beta distribution and express the moments of these random variables in closed-form. We also

derive the distribution of the internodal distances for theBPP distributed on a regular polygon.

Our findings have applications in several problems relatingto wireless networks such as energy

consumption, design of efficient routing and localization algorithms, connectivity, interference

characterization and outage evaluation.
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