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Abstract—A new random geometric graph model, the so-called ./.
secrecy graph, is introduced and studied. The graph represents
a wireless network and includes only edges over which secure X e X X
communication in the presence of eavesdroppers is possible °
The underlying point process models considered are Poisson
point processes. In the Poisson case, the node degrees are (a pirected SGG (b) Basic SGG (c) Enhanced SG7’

determined and percolation is studied using analytical bonds Fi

. . : ig. 1. Example for secrecy graphs. The dots are the good, gugscross
and simulations. It tu.m$ out that a small densn_y pf eavesdoppers the eavesdropper. The underlying graph is assumed to lyednfinected so
already has a drastic impact on the connectivity of the SeC®  hat the secrecy graphs include all edges along which semmenunication
graph. is possible.

I. INTRODUCTION

There has been growing interest in information-theoretic The basic secrecy graph: G = (¢, E), where the (undi-
secrecy. To study the impact of the secrecy constraint &#cted) edge sek is
the connectivity of ad hoc networks, we introduce a new N _ ., = _ ., =
type of randomygeometric graph, the so-caléecrecy graph, E = {ziz; « viwj € B and;zi € B}
that r(_epresents the_ network or commur_1ica_tion_graph @nnbudi The enhanced secrecy graph: G’ = (4, E'), where
only links over which secure communication is possible. We
assume that a transmitter can choose the rate very close to th E' 2 {x;z; : Tix; € E or z;z; € E}.
capacity of the channel to the intended receiver, so that any . ) .
eavesdropper further away than the receiver cannot inierce Clearly, EC E’. The difference is that edges i permit
the message. This translates into a simple geometric omstrSecure bidirectional communication while edgesfh only
for secrecy which is reflected in the secrecy graph. In thdlow secure communication in one direction. However, this

initial investigation, we study some of the properties of thOn€-way link may be used to transmit a one-time pad so that
secrecy graph. the other node can reply secretly. In doing so, the link cidypac

would drop from1/2 in each direction tol/3. Fig.1 shows
Il. THE SECRECY GRAPH an example irR? for the three types of secrecy graphs. based
on the same underlying fully connected gragh
One way to assess the impact of the secrecy requirement is
determine thesecrecy ratios

Let G = (¢,E) be a geometric graph iR?, where
¢ = {z;} < R? represents the locations of the nodes, also
referred to as the “good guys”. We can think of this grapﬁ)
as the unconstrained network graph that includes all plessib |E| N ' , |E'| N’

edges over the good guys could communicate if there were no n= |E| N nm= |E| TN )
secrecy constraints.

Take another set of points = {y;} C R representing where N, N’ > N, and N are the average node degrees of
the locations of the eavesdroppers or “bad guys”. These @@ respective graphs. Far~ 1, the impact of the secrecy

assumed to be known to the good guys. requirement is negligible while for smafl it severely prunes
Let D.(r) be the (closed)-dimensional ball of radius the graph.
r centered atr, and letd(z,y) = [z — y| be a distance  For the directed graph, the mean in- and out-degrees are

metric, typically Euclidean distance. Further, lgtA) and equal, so we defin&/ £ Nout = Nin — |E|/|¢|. Since the
(A) denote the number of points gfor ¢ fallingin A C R?.  edge sets ofi and G’ are a partition of the edge set of the

Based o/, we define the following secrecy graphs (SGslindirected multigraph containing all edgesinthe following
The directed secrecy graph: G = (¢, E). Replace all edges holds:

in £ by two directional edges. Then remove all edges;
for which ¢ (Dy, (0(z4,x;))) > 0, i.e, there is at least o€ r5¢t 1 The mean degrees are related by
eavesdropper in the ball.
From this directed graph, two undirected graphs are derived N 4+ N’ = 2N™ = 2N°ut (2)



Furthermore, the degrees of all nodes x € ¢ are bounded by I1l. PROPERTIES OF THEPOISSONSECRECY GRAPHS
A. Isolation probabilities for r» = co

Fact 2 The probability that the origin o cannot talk to anyone
in G, (out-isolation) is

N, < min{N", N°"*} < max{Nm Nou}
<N SN NP (3)

In the example in Fig. 1, (2) yields0/9 + 22/9 = 32/9. A

These graphs become interesting if the locations of the PN = 0] = P (8)
vertices are stochastic point processes. We will #sand _
¥ as the corresponding random variables. In Gx o0t A\

Our goal is to study the properties of the resulting random PN =0] = C}\: 1 (9)

geometric graphs, including degree distributions and gerc
lation thresholds. We will consider two cases, lattices anghere ¢ = % + 2_\/5 = 1.6009.

Poisson point processes. ) o -
For the directed graph, this is simply the probability tHas t

A. Lattice model nearest neighbor in the combined procéss ¥ (of density

Let the underlying graph be the standard square lattice lin- \) is an eavesdropper. In the basic graph;letenote the
72, i.e, G = L? where edge exists between all pairs of pointsrigin’s nearest neighbor it and letR = ||z||. For N > 0, we
with Euclidean distancé. Let ¥ be obtained from random needD,(R)U D, (R) to be free of eavesdroppers. The area of
independent thinning of a regular point set where each pothe two intersecting disks istR? for ¢ = 4/3++/3/(2r), and
exists with probabilityp, independently of all others. Let thethe probability density (pdf) of2 is pr(r) = 27r exp(—7r?)
corresponding secrecy graphs be denote@@st, andG),. (Rayleigh with mean 1/2). So

Let (p) be the probability that the component containing the 1

origin is infinite. Then the percolation threshold is defined as P[N > 0] = Eglexp(—AerR?)] = o (10)
pe = inf{p : 6(p) =0} (4)  The probability of in-isolationP[N'* = 0] is smaller than

B. Poisson model P[N°"t = 0], since for each node € ®\{o}, there must be

at least one bad guy i, (||z||). Clearly, this probability is

where ® is a Poisson point process (PPP) of intengitjn smaller compared to (8) where pnly the n_earest _eavesdropper
o : ; s . matters. On the other hand, the in-degree is less likely tiean
R and two vertices are connected if their distance is at mos : -
: . : : out-degree to be large since a significantly larger areaseed
r. ¥ is another, independent, PPP of intensityDenote the 1o be free of bad s. The isolation probabiltiy’ — 0] is
secrecy graphs byry ., Gy, andG) ,.. With 6(\,r) being guys. : ion p o Ji

the probability that the component containing the origin (c%he smallest of all isolation probabilities.
any arbitra;y fixed node) is infinite, the percolation thi@sh B. Degree distributions
radius forG, is

Let the underlying graph be Gilbert's disk gragh. [1],

Proposition 3 The out-degree of o in C?M,O is geometric with
rq = sup{r : 0(0,r) =0} ~ 1.198, (5) mean 1/A.
where the subscript G indicates that this is Gilbert's caiti Proof: Consider the sequence of nearest neighbors of

radius which is not known exactly but the bound3979 < in the combined procesbU ¥. N°4t = n if the closestn are
r. < 1.1988 were established with9.99% confidence in [2]. in & and the(n + 1)-st is in ¥. Since these are independent

For radii larger thamrg, we define events, .
Ae(r) 2inf{\ : O\, 7) =0}, r>rg. (6) P[N°" = pn] = H—L/\ (ﬁ) . (11)
For the analyses, we assume that there is a nodedhthe -
origin. This does not affect the distributional propertishe  Ajiernatively, the distribution can be obtained as follows
PPP. Let R be the distance to the closebad guy, i.e, R =

The parameter indicating the maximum range of trans-y; . ||y||. We have
mission can be related to standard communication parasmeter n
as follows: Assume a standard path loss law with attenuation P[N°" = n] = Eg [exp(_ng) (mR?) ] ’ (12)
exponentq, a transmit powerP, a noise flooriW, and a n!
minimum SNRO for reliable communication. Then

where the pdf ofR is pr(r) = 27rAexp(—7wAr?).
P\ - For general, we have:
r=|—= .
®W -y - . . = .
Proposition 4 The out-degree distribution of G . is
1in the directed case, to be precise, we consider orientezblpéion and
let 6(p) be the probability that the out-component is finite,, that there are

A(l—
directed paths from the origin to an infinite number of nod&ernatively ]P)[Nout _ n] _
(or in addition) we could consider the in-component of thigiar

Fr(?ﬁ()l)) + exp(—a) Ly

(A4 1)ntt ’

(13)



where a = 7r?(\ + 1), and T'(-,-) is the upperincomplete
gamma function. The probability of out-isolation is

exp(—mr?(A+ 1)) + A

P[N°" = 0] = T , (14)
and the mean out- and in-degrees are
ENC" = EN'™ = %(1 — exp(—Arr?)). (15)
The mean degree of the basic graph G, is
EN = %(1 — exp(—cAnr?)), (16)

_ 4, V3
where ¢ = 5 + =,

Proof: If there is no bad guy insid®,.(r) — which is the
case with probabilityPy = exp(—Anr?) — then the number
is simply Poisson with meanr2. If there is a bad guy at
distanceR, the number is Poisson with meam??. So we
have

2

)"

P[N°" = n] =P, exp(—wrz)(

n!

+ (1= Py)Er<r {exp(—ﬁRg)w

n! ’

which, after some manipulations, yields (13). The mean
obtained more directly using Campbell’s theorem [3] whic
says that for stationary point processes with intengiin R?
and non-negative measurabfe

me] [ty

red
Applied to the mean out-degreg & 1) we obtain
EN®" =Y Pt € E)=E Y exp(=An|z?)

zeP ze®\{o}
llzll<r

:271'/ zexp(—Arz?)dz .
0

E

(17)

By replacing the arear? by crr? (area of two overlapping
disks of radius- and distance’), the same calculation yields
(16). [ |
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Fig. 2. Distribution of the node degree with and without powenstraints.
The solid bold curve shows the distribution (13) foe= 1 and\ = 1/5. The

ashed curve is the Poisson distribution with meafwhich results when
r =1, A = 0), and the dash-dotted curve is the geometric distributiéth w
mean5 (which results whem\ = 1/5, r — o0).
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Fig. 3. Left: Mean out-degree dﬁuuu- The vertical line goes through
the inflection point and indicates the boundary between tveeplimited and
the secrecy-limited regime. At the inflection point= rp = (27A)~1/2 =
\/b/m = 1.26. Right: The curve\ = (277r2)~1
bordering the power-limited and the secrecy-limited reggmAsr — oo or

A — oo, the network becomes secrecy-limited and the degreeldistrn is
geometric. Asr — 0 or A — 0, the network is power-limited and the degree
distribution is Poisson.

As a function ofr, the mean degree increases approximately
as 7r? for small r (this is the region where the degree is
power-limited) and has a cap at/\ (due to the secrecy
condition). Hence there exists a power-limited and a sgerec
limited regime, and the inflection point &N (r), which is
rp = (20A\)~1/2 is a suitable boundary. This is illustrated
in Fig. 3. Generally, the curverr? = 1/) separates the two

The probability of isolation can directly be obtained fronfegimes. Note that in thgower-limited regime, the distribution

considering the two possibilities for isolation: Eitheeth is
no node at all within distance or there is one node (or more)
within » and the nearest one is bad. So, usin@s in the
proposition,P[N°"t = 0] = exp(—a) + (1 —exp(—a))\/(1+
A). Since® has intensityl, the isolation probability equals
the density of isolated nodes.

is close toPoisson, whereas in the secrecy-limited regime, it is
closer to geometric. Using the maximum slopef EN "¢ (r),
a simple piecewise linear upper bound on the mean degree is

e
T Vel

EN°"(r) < min{sr, %} , (18)

As A — 0, we obtain the Poisson isolation probability and NS bound is reasonably tight for not too small.

for r — oo we get the geometric isolation probability (11
Also in (13) we can observe the expected behavior in t
limits \,» — 0 and )\, r — oo. So the two-parameter distribu-

). As a function of A\, the mean degree is monotonically
flecreasing fromrr? to O, upper bounded by/ .

The transmission range (power) needed to get withof

tion (13) includes the Poisson distribution and the geoimetlthe maximum mean out-degree (for= oo) is

distribution as special cases. Fig.2 shows an example of the

resulting distributions forr =1 and A = 1/5.

—loge
AT

(19)

Te



For examplerg.o1 = 1.21/v/) achieves a mean out-degree oD. Edge lengths

0.99/\.

We consider the distribution of the length of the edges

Next we establish bounds on the node degree distributipm@'koo_ For each node, its nearest bad guy determines the
in the basic graplé-, . Let R be the distance of the nearesimaximum length of an out-edge. So we intuitively expect the
bad guy. If the second-nearest bad guy is at distance edfge length distribution to approximately inherit the wlist-
least2R, which happens with probabilityxp(—A73R?), then tion of the distance to the nearest bad guy. Simulation studi
bidirectional secure communication is possible to any goggveal that indeed the edge length distribution is veryeckos

guy in the areaanR? wherea = 2/3 + /3/(47w) ~ 0.80

Rayleigh with meani/(2v/)), with only very slightly higher

(circle minus a segment of heiglit/2). As a lower bound, probabilities for longer edges—which is expected sinceesod
we consider the circle of radiuk/2. For sure bidirectional whose nearest bad guy is far will have many long edges on
communication is possible to any node within that distancgverage and thus skew the distribution.

(This bound would be tight if there were many more bad guys, In the power-limited regime, withr finite and\ — 0, the

all at the same distanck.) So we have

Bk

zn:ER [exp(_A)i_ﬂ <P[N <n]< zn:]ER [exp(—B)g}
o k=0

edge length pdf converges to the uska)r?, 0 < x < 7.

E. Oriented percolation of G .

We are studying oriented out-percolationd?)}\,r, i.e, the
critical region in the(\, r)-plane for which there is a positive

where A = anR? and B = br R? with b = 1/4. The bounds probability that the out-component containing the origash

are geometric:

a n+1 b n+1
1-— PN < 1—(——
(a+)\> <PIN<n]< (b—i-/\)

SinceEN = ) P[N > n], the boundsa/\ > EN > b/\

for the mean degree follow. From (16) we already know thift

EN = 1/(Ac) ~ 0.62/\.

infinite size.

Fact 7 A.(r) is monotonically increasing for » > rq, and we
have
0< lim A (r) <1.

T—00

(23)

other words, there exists a Ao, < 1 such that for A > A\,
G, ,. does not percolate for any r.

Lastly, in this subsection, we consider the enhanced gragthis follows from the facts that for fixed the mean degree

Proposition 5 The mean degree EN’ in the enhanced graph
P
N 1S

EN' = ;(1 —exp(—Arr?)) — i}\(l —exp(—cAmr?)). (21)
C
Proof: This follows by combining (2), (15), and (16}

C. Secrecy ratios

Using the mean degree established in (16) we obtain

1 — exp(—cAmr?
n( ) = L ERCATT).

(22)

cAmr2

n(\,r) is decreasing in botl and A. n'(\,r) follows from

is continuously decreasing @ as a function of\, and for
A < 1, the mean degree is smaller than 1 evenrfef oo, so
percolation is impossible. We will usk,, to denote the limit
in (23). For intensities smaller than that, we define

re(N) 2 sup{r : O\, r) =0}, A< ). (24)

From the monotonic decrease of the mean degrea in
follows:

Fact 8 The percolation radiusr.(\) is monotonically increas-
ing with A and has a vertical asymptote at A\ .

Conjecture 9 r.(\) is convex (and, consequently, A.(r) is
concave):

(21). Of interest are also the relative edge densities of thefollows that

enhanced and basic graphs:

Fact 6 Atleast afraction 37/ (57+3+/3) ~ 0.45 of the edges
in the enhanced graph G/, ,. are present in the basic graph
Gir.

d2rc(/\)
<
e >0 VO A< ) (25)
dr.(N)
() > A,  wh 4 ¢ . 26
re(A) 2 re +c where ¢ o o (26)

Simulation results show that,, ~ 0.1499 with a standard
deviation of5.8 - 10~4 over 200 runs.

Since A\.(r) is concave and converges to a finitg,, we
may conjecture that it can be well approximated by a function

The ratioEN/EN’ is 1 for small\r? and reaches its minimum of the form:

as \r?2 — oo, where it is(2c — 1)~! with ¢ as in (16). The
consequence is that in some graphs, more than 50% of the

Ae(r) = Ao —expla —br), r>rg, 27)

links can only be used securely in one direction (unless ongherea andb are related through = log Ao, + brg. Indeed

time pads are used).

simulation results (see Fig.4) reveal that foe= 4, A\, =
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Fig. 4. The simulated critical density.(r) vs. log;,(r) together with a
simple exponential approximation. Each simulated poirthésaverage of 30

runs.
0.1499, anda = 2+/2, we obtain an excellent approximation.

Similarly,
re(N) ~ % - %log(x\oo —N), A<Aw. (28
It follows that the constant in Conj. 9 isc = (bAo) ! =

5/3, and the slope oA.(r) atr =r is 3/5.
For thecritical graphG ;. (»), it turns out that botfP[N =
0] andEN are increasing with\.
A good empirically derived approximation is
1 4
PN = 0] & — + — oo -
[NVS 0] 80+5)\’ A< A

For the mean out-degree we have from (15) and (28)
(30)

(29)

11
ENS™(N) > 7rd + Z/\.

EN?2'()) is convex and reachdg A\, at\A = A\, per Prop. 3.
So percolation on the secrecy graph requires a higher mean
degree than Gilbert’s disk graph, as expected since edges ar

not independent.
IV. CONCLUDING REMARKS
We have introduced a new class of random geometric
graphs that captures the condition for secure communitstio
in ad hoc networks. For lattice-based models, there exist
analogies to bond and site percolation problems. In Poisson
based networks, we have derived the mean node degrees
and, in some cases, the distribution. As a byproduct, a two-
parameter distribution was found that includes the Poissmh
the geometric distribution as special cases. Based on tha me
degree, we defined power- and secrecy-limited regions in the
(A, r)-plane. The percolation regidrir, \) : 8(r, \) > 0} was
bounded and numerically determined. In conclusion, the-pre
ence of eavesdroppers is rather harmful in the random case
A (relative) density 0f0.15 is sufficient to make percolation
impossible. Many interesting problems remain open; we hope

that this initial study sparks further investigations.



