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Abstract. Mahowald proved the height 1 telescope conjecture at the prime
2 as an application of his seminal work on bo-resolutions. In this paper we

study the height 2 telescope conjecture at the prime 2 through the lens of

tmf-resolutions. To this end we compute the structure of the tmf-resolution
for a specific type 2 complex Z. We find that, analogous to the height 1

case, the E1-page of the tmf-resolution possesses a decomposition into a v2-

periodic summand, and an Eilenberg-MacLane summand which consists of
bounded v2-torsion. However, unlike the height 1 case, the E2-page of the

tmf-resolution exhibits unbounded v2-torsion. We compare this to the work
of Mahowald-Ravenel-Shick, and discuss how the validity of the telescope con-

jecture is connected to the fate of this unbounded v2-torsion: either the un-

bounded v2-torsion kills itself off in the spectral sequence, and the telescope
conjecture is true, or it persists to form v2-parabolas and the telescope conjec-

ture is false. We also study how to use the tmf-resolution to effectively give low

dimensional computations of the homotopy groups of Z. These computations
allow us to prove a conjecture of the second author and Egger: the E(2)-local

Adams-Novikov spectral sequence for Z collapses.
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1. Introduction

The telescope conjecture. Fix a prime p and let X be a finite spectrum. The
perspective of chromatic homotopy theory is to understand X(p) through the study
of its chromatic tower [Rav92a, Sec. 7.5] [BB20]

· · · → XE(n) → XE(n−1) → · · · → XE(0) = XQ.

Here, XE(n) denotes the Bousfield localization of X with respect to the Johnson-
Wilson spectrum E(n) with

π∗E(n) = Z(p)[v1, . . . , vn, v
−1
n ]

where |vn| = 2(pn−1). The chromatic convergence theorem of Hopkins and Ravenel
[HR92] states that X(p) is recovered as the inverse limit of the tower. Thus the
E(n)-localizations interpolate between the rationalization and the p-localization of
X. The monochromatic layers of the chromatic tower are defined to be the fibers

MnX → XE(n) → XE(n−1).

Applying π∗ to the chromatic tower yields the chromatic spectral sequence
cssEn,∗1 (X) = π∗MnX ⇒ π∗X.

The efficacy of the chromatic approach is established by Morava’s change of rings
theorem [Mor85], which states that the Adams-Novikov spectral sequence for MnX
takes the form

anssEs,t2 (MnX) = Hs
c (Gn, (En)tMnX)⇒ πt−sMnX,

where En is the height n Morava E-theory spectrum and Gn is the height n Morava
stabilizer group. For a given height n, anssE∗,∗2 (MnX) (and in fact the entire
Adams-Novikov spectral sequence) is in principle completely computable.

In reality, the complexity of these computations increases significantly as a function
of n, and therefore these computations have only been carried out successfully for
small values of n. It is thus desirable to have a means of directly relating the
homotopy groups of each of the monochromatic layersMnX to the homotopy groups
of X itself, without having to resort to needing to compute the entire chromatic
spectral sequence.

There is a variant of the chromatic tower which does have this property. Let

Xf
E(n) denote the finite E(n)-localization, obtained by killing only finite E(n)-

acyclic spectra (instead of all E(n) acyclic spectra). The finite localizations also
form a tower, with finite monochromatic layers defined to be the fibers

Mf
nX → Xf

E(n) → Xf
E(n−1).

The advantage of this variant of the chromatic tower is that the elements of the
homotopy groups of these finite monochromatic layers have a concrete relationship
to the homotopy groups of X itself: elements of π∗MnX correspond to vn-periodic
families in π∗X [Rav92a, Sec. 2.5].
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In [Rav84], Ravenel proposed the following Panglossian conjecture.

Telescope Conjecture. For any spectrum X, prime p, and height n, the natural
map

Xf
E(n) → XE(n)

is an equivalence.

The Hopkins-Smith thick subcategory theorem [HS98] implies that the telescope
conjecture is true if and only if it is true for a single type n spectrum (a p-local
finite spectrum which is E(n−1)-acyclic, but not E(n)-acyclic). In this case where
X is type n ≥ 1, the Hopkins-Smith periodicity theorem [HS98] implies there is an
asymptotically unique vn-self map, that is, an E(n)-self equivalence

v : ΣNX → X

where N > 0. The telescope of X is defined as the homotopy colimit

X̂ := X
v−→ Σ−NX

v−→ Σ−2NX → . . .

and we have
Xf
E(n) ' X̂.

Thus, for any p-local spectrum X of type n, the natural map

(1.0.1) X̂ → XE(n)

is an equivalence if and only if the p-primary height n telescope conjecture is true.

The height 1 case. The telescope conjecture was in large part motivated by the
case of height n = 1, where the conjecture was already proven by Mahowald for
p = 2 [Mah81], [Mah82, Thm. 1.2], and Miller for p > 2 [Mil81]. In both of
these cases, the proof is computational, in the sense that the authors compute the
homotopy groups of the source and target of (1.0.1) and show that the map is an
isomorphism on these homotopy groups. The methods used in each of these cases,
though, are somewhat different.

In the p > 2 case of [Mil81], Miller considered the mod p Moore spectrum M(p),
which is type 1, with v1-self map

(1.0.2) v : Σ2(p−1)M(p)→M(p)

having the property that it is given by multiplication by v1 in E(1)-homology.
We will call such a self-map a v1

1-self map. Miller computes the localized Adams
spectral sequence

v−1
1

assEs,t2 = v−1
1 Exts,tA∗(Fp, H∗M(p))⇒ πt−sM̂(p)

where A∗ denotes the p-primary dual Steenrod algebra, and H∗ denotes mod p
homology. To do this, he completely computes the E2-page, and then gives a
delicate lifting argument which computes the d2 Adams differentials from the d1

Adams-Novikov differentials. He then shows the localized Adams spectral sequence
collapses at E3 to the known values of π∗M(p)E(1).

In the case of p = 2, the situation is more complicated as the mod 2 Moore spectrum
only has a v4

1-self map
v4

1 : Σ8M(2)→M(2),
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having the property that it is given by multiplication by v4
1 on E(1)-homology. For

this reason, in [Mah82], Mahowald considers the 2-local type 1-spectrum

Y := M(2) ∧ C(η)

where C(η) denotes the cofiber of the Hopf map η : S1 → S0. In contrast with the
case of the mod 2 Moore spectrum, the spectrum Y possesses a v1

1-self map:

v1
1 : Σ2Y → Y.

Mahowald analyzed the bo-based Adams spectral sequence (aka the “bo-resolution”)
for Y :

boEs,t1 (Y ) = πtbo∧s+1 ∧ Y ⇒ πt−sY.

Here bo denotes the connective real K-theory spectrum. This spectral sequence is
significantly simplified by the fact that we have an equivalence

bo ∧ Y ' k(1),

where k(1) denotes the height 1 connective Morava K-theory spectrum. Unfortu-
nately, the v1-localized bo-resolution converges to the E(1)-local homotopy groups

of Y (rather than those of Ŷ ):

v−1
1

boEs,t1 (Y )⇒ πt−sYE(1).

Nevertheless, Mahowald was able to deduce the height 1 telescope conjecture at the
prime 2 by establishing the following key results:

Collapse theorem: The v1-localized bo-resolution for Y collapses at its E2-
page.

Bounded torsion theorem: If x ∈ boE∗,∗2 is v1-torsion, then v2
1x = 0.

Vanishing line theorem: There is a c so that boEs,t2 (Y ) = 0 for s > t−s
5 +c.

The idea is to use these key results to prove the map

(1.0.3) π∗Ŷ → π∗YE(1)

is surjective and injective. The map (1.0.3) is surjective because if y ∈ π∗YE(1) is

detected by an element y′ ∈ v−1
1

boE∗,∗2 (Y ) in the v1-localized bo-resolution, then
the bounded torsion theorem implies that the targets of the differentials supported
by the family v2i

1 y
′ in the unlocalized bo-resolution lie above a line of slope 1/4,

and thus will eventually surpass the 1/5 vanishing line. Hence for i � 0, the
element v2i

1 y
′ detects a v1-periodic family mapping to that of y under (1.0.3). The

map (1.0.3) is injective because the collapse theorem implies that any element
x ∈ π∗Y which maps to zero in π∗YE(1) must be detected by a v1-torsion element

of boE∗,∗2 (Y ), and the bounded torsion theorem then implies that the family of
elements v2i

1 x are detected in the bo resolution above a line of slope 1/4, and thus
will eventually surpass the 1/5 vanishing line. Hence x must be v1-torsion.

Attempts to disprove the telescope conjecture. Less than a decade after his
1984 paper, Ravenel’s optimistic beliefs concerning the telescope conjecture took
a decidedly Orwellian turn. In [Rav92b], Ravenel studied the height 2 telescope
conjecture at primes p ≥ 5 by considering the analog of Miller’s argument for the
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Smith-Toda complex V (1) (the cofiber of (1.0.2)). The Adams-Novikov spectral
sequence

anssE∗,∗2 (V (1)E(2)) = H∗c (G2, (E2)∗V (1))⇒ π∗V (1)E(2)

collapses for dimensional reasons. Ravenel computed the E2-term of the localized
Adams spectral sequence

v−1
2

assE∗,∗2 (V (1)) = v−1
2 ExtA∗(Fp, H∗V (1))⇒ π∗V̂ (1),

and found that the Adams-Novikov differentials lifted to differentials of unbounded
length in the localized Adams spectral sequence. He then observed that a power
operation argument gave rise to Toda-type differentials which preceeded the lifted

Adams-Novikov differentials, potentially causing π∗V̂ (1) to differ from π∗V (1)E(2).
Although he initially thought he had a counterexample to the telescope conjecture,
it eventually became clear that it was impossible to rule out the possibility that a
bizarre pattern of other differentials might subsequently “fix” the havoc caused by
these Toda-type differentials, allowing the telescope conjecture to hold. Mahowald,
Ravenel, and Shick summarized the uncertain state of affairs in [MRS01].

Main results. The purpose of this paper is to carry out the height 2 analog of
Mahowald’s analysis of the height 1 telescope conjecture at the prime 2.

To this end we replace the bo-resolution of Mahowald with the tmf-based Adams
spectral sequence (aka the tmf-resolution),

tmfEs,t1 (X) = πt(tmf∧s+1 ∧X)⇒ πt−sX

where tmf denotes the spectrum of connective topological modular forms [DFHH14].
The role that was played by Mahowald’s spectrum Y will now be reprised by Z, a
2-local finite spectrum of type 2 constructed by the third author and Egger [BE20a],
with the distinguished property that it posesses a v1

2-self map

v1
2 : Σ6Z → Z,

and that there is an equivalence

(1.0.4) tmf ∧ Z ' k(2).

Here k(2) is the height 2 connective Morava K-theory spectrum.

We find that, similar to the height 1 case, the E1 term of the tmf-resolution for Z
fits into a short exact sequence

(1.0.5) 0→ V ∗,∗(Z)→ tmfE∗,∗1 (Z)→ C∗,∗(Z)→ 0

where the groups C∗,∗(Z) are v2-torsion free and completely computable and the
groups V ∗,∗(Z) are v1

2-torsion and essentially incomputable. We will refer to C∗,∗(Z)
as the good complex and V ∗,∗(Z) as the evil complex.

We will show that the good complex C∗,∗(Z) is an explicit connective subcomplex
of the cobar complex for computing the E2-term of the Adams-Novikov spectral
sequence

(1.0.6) anssE∗,∗2 (ZE(2)) = H∗c (G2; (E2)∗Z)⇒ π∗ZE(2)

and the localized tmf resolution

v−1
2

tmfE∗,∗2 = v−1
2 H∗,∗(C(Z))⇒ π∗ZE(2).
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is isomorphic to the spectral sequence (1.0.6).1 The groups
anssE∗,∗2 (ZE(2))

were computed by the third author and Egger [BE20b]. It turned out that, unlike
the situation for large primes, the spectral sequence (1.0.6) cannot be shown to
collapse at its E2-page simply for dimensional reasons, but the third author and
Egger conjectured that it does collapse. One major result of this paper is a proof
of this conjecture.

Collapse Theorem (Theorem 8.5.1). The v2-localized tmf-resolution for Z col-
lapses at its E2-page.

The height 2 story begins to diverge in the context of the bounded torsion theorem.
We construct an analog of the May filtration on the good complex C∗,∗(Z), and we
will refer to the associated spectral sequence

MRE∗,∗,∗1 = H∗,∗(E0
∗C(Z))⇒ H∗,∗(C(Z))

as the May-Ravenel spectral sequence. We will completely compute the E1-term of
the May-Ravenel spectral sequence, and will observe the following:

Unbounded torsion theorem (Theorem 6.4.3). The May-Ravenel E1-page
has unbounded v2-torsion: there are elements which are vi2-torsion for i arbitrarily
large.

Unfortunately, we are unable to deduce the same unbounded torsion statement for
H∗,∗(C(Z)) (which is equivalent to unbounded torsion in tmfE∗,∗2 (Z)) because we
do not know if the May-Ravenel spectral sequence collapses at E1, and we do not
know if there are hidden v2 extensions in this spectral sequence. Nevertheless, the
computation of the unbounded torsion allows us to understand exactly how the
telescope conjecture could fail at height 2.

We now turn our attention to the final component of Mahowald’s work on bo-
resolutions: the vanishing line. Clearly, a vanishing line for the cohomology of the
good complex H∗,∗(C(Z)) can be read off of our computation of the May-Ravenel

E1-term. In order to lift this vanishing line to one for tmfE∗,∗2 (Z), we need a
vanishing line for the cohomology of the evil complex H∗,∗(V (Z)).

In [BBB+20] we developed a technique (the agathakakological2 spectral sequence)
for computing the cohomology of the evil complex associated to the bo-resolution by
relating it to ExtA∗ and the good complex. We will construct an agathokakological
spectral sequence in our present setting of the tmf-resolution. This will allow us
to use a vanishing line in ExtA∗ to establish a vanishing line for the cohomology of

the evil complex H∗,∗(V (Z)), thus establishing a vanishing line for tmfE∗,∗2 (Z).

Vanishing line theorem (Theorem 9.4.1). In the tmf-resolution for Z, we

have tmfEs,t2 (Z) = 0 for

s >
t− s+ 12

11
.

1In general, for a bigraded cochain complex C∗,∗, we shall denote its cohomology by H∗,∗(C).
2agathokakological (ag-uh-thuh-kak-uh-LAHJ-uh-kuhl) adjective: Made up of both good

and evil.
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The slope of this line cannot be improved at E2; 1/11 is the slope of the non-
nilpotent element

g2 ∈ Ext4,48
A∗

(F2,F2),

and it turns out g2 lifts to tmfE4,48
2 (Z). We conjecture that for some r > 2, the

Er-page has a slope 1/13 vanishing line (Conj. 9.4.2).

The agathokakological spectral sequence allows us to combine our computations
of the cohomology of the good complex H∗,∗(C(Z)) with low dimensional com-
puter computations of ExtA∗ to obtain low dimensional computations of the tmf-

resolution E2-page tmfE∗,∗2 (Z). Using this technique, we compute the tmf-resolution
of Z through the 40-stem. This is not just an academic exercise — rather it is the
means by which we prove the collapse theorem. In this range we are able to locate
unlocalized elements which map to the generators of the E2-term of the Adams-
Novikov spectral sequence for ZE(2). By observing that the corresponding unlo-
calized elements are permanent cycles in the tmf-resolution, we deduce that their
images in the Adams-Novikov spectral sequence for ZE(2) are permanent cycles.

The unbounded torsion theorem allows us to identify the possible ways the map

π∗Ẑ → π∗ZE(2)

can fail to be an isomorphism. The last section of this paper is a detailed discussion

giving a precise conjecture for what π∗Ẑ is (the parabola conjecture), and how this
conjectural answer differs from π∗ZE(2). The parabola conjecture is essentially an
adaptation of the conjectures of Mahowald, Ravenel, and Shick [Rav95], [MRS01]
to our context.

Future directions. It is probably clear to the reader that the authors hoped that
adapting Mahowald’s approach to the 2-primary height 1 telescope conjecture to the
height 2 context would yield new information that would lead to a computational
proof or disproof of the telescope conjecture at chromatic height 2. The results of
this paper are as such inconclusive, and the telescope conjecture remains one of the
great unlocked mysteries of the subject.

The seasoned expert will recognize, however, that if this was the authors’ only goal,
then we would have been better off studying the BP 〈2〉-resolution of the Smith-
Toda complex V (1) for primes p ≥ 5. Indeed, that would have simplified many
parts of this paper.

However, the authors had other motivations for undertaking this particular en-
deavor at the prime 2. We wanted to complete the computation of π∗ZE(2) initi-
ated by the third author and Egger in [BE20b]. Not only does our analysis show
that the structure of the homotopy groups of ZE(2) mirrors the structure of the
homotopy groups of V (1)E(2) at primes p ≥ 5, despite the fact that the E(2)-local
Adams-Novikov spectral sequence is no longer sparse, it also represents the first
non-trivial complete computation of the homotopy groups of any E(2)-local finite
complex at the prime 2.

The prime 2 represents the last computational frontier for chromatic height 2,
where computations are elaborate but straightforward for primes p ≥ 5 (see, for
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example, [Beh12]), and downright difficult, but possible, the prime p = 3 (see, for
example, [GHMR05]). In fact, the duality resolution of [GHMR05] is a minimal
tmf-resolution of the sphere in the K(2)-local stable homotopy category.

Besides the fact that the 2-torsion in tmf is an order of magnitude more complicated
than the 3-torsion, there is a fundamental unsolved difficulty at p = 2: Bobkova
and Goerss have successfully constructed a duality resolution for the maximal cy-
clotomic extension of the K(2)-local sphere [BG18], but constructing resolutions
of the K(2)-local sphere itself is much more subtle. Our analysis links the tmf-
resolution explicitly to the Morava stabilizer group through the good complex. We
are hopeful that this will allow us to one day use the tmf-resolution to help us
understand finite resolutions for the K(2)-local sphere itself.

We also plan to develop the tmf-resolution as a valuable tool for low dimensional 2-
primary computations of stable homotopy groups. Our use of the tmf-resolution to
compute the first 40 stems of Z required very little effort — the computation could
probably be pushed to much higher degrees if we had a good reason to do so. In the
case of the sphere, there is such a motivation: the Kervaire invariant one problem in
dimension 126 [HHR16]. The work of Isaksen, Wang, and the fifth author [IWX20]
shows that complex motivic homotopy theory can be used to effectively compute
the 2-primary Adams spectral sequence for the sphere, and they have used their
machinery to carry out this computation up to the 90 stem. It is unclear whether
their techniques alone will suffice to get up to dimension 126. The tmf-resolution
could provide a valuable tool for analyzing Adams differentials between v2-periodic
elements in ExtA∗ . The computations of this paper provide the starting point for
the analysis of the tmf-resolution of the sphere.

Conventions. We will use the following notation throughout this paper.

• ASS = classical Adams spectral sequence.
• tmf-ASS = the tmf-based ASS (aka the tmf-resolution).
• ANSS = Adams-Novikov spectral sequence (aka the BP -based ASS).
• AKSS = agathokakological spectral sequence.
• H∗(−)/H∗(−) denotes homology/cohomology with F2-coefficients.
• H denotes the mod 2 Eilenberg-MacLane spectrum.
• A denotes the mod 2 Steenrod algebra, and A∗ is its dual.

For X any 2-complete spectrum, we shall let

assEs,t2 (X) = Exts,tA∗(F2, H∗X)⇒ πt−sX

denote its ASS. Assuming this spectral sequence converges, we shall say an element
of π∗X has Adams filtration s if it is detected in the ASS by a class in assEs,∗2 (X).

Finally, in [BE20a], the third author and Egger show that there is a class of spectra

Z̃, each of whose cohomology is isomorphic as A(2)-modules, and each of which
admits a v1

2-self map. For concreteness, the spectrum we call Z in this paper is
always taken to be a particular fixed member of this class for which the cofiber of
its v2-self map has cohomology as described in Appendix A.
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Organization of the paper. In Section 2, we recall some basic facts about the
spectrum tmf, its cohomology, and its relationship to Morava E-theory. We will
also review some facts about the spectrum Z.

In Section 3 we begin our analysis of the tmf-ASS {tmfEn,tr (Z)}. The E1-term is
given by

tmfEn,t1 (Z) = πt(tmf∧n+1 ∧ Z).

We will compute this E1-term using the Adams spectral sequences

assEs,t2 (tmf∧n+1 ∧ Z)⇒ πt−s(tmf∧n+1 ∧ Z).

We will explain how to use Margolis homology to compute the E2-terms of these
Adams spectral sequences, and we show these Adams spectral sequences collapse
to give a short exact sequence of chain complexes (1.0.5) (the good/evil decompo-

sition). The goal is to use the short exact sequence (1.0.5) to compute tmfE∗,∗2

from H∗,∗(C(Z)) and H∗,∗(V (Z)). It will turn out that H∗,∗(V (Z)) is computable
despite the incomputability of V ∗,∗(Z) itself.

In Section 4, we both recall the structure of the Morava stabilizer group and Morava
stabilizer algebra associated to the Honda height 2 formal group, and relate these
to the corresponding groups and algebras for the formal group coming from the
unique supersingular elliptic curve C in characteristic 2. We compute the action of
the group of automorphisms Aut(C) on the Morava E-homology of the complex Z.

In Section 5, we compute the differentials in the good complex C∗,∗(Z). This is
accomplished by showing that the good complex is actually isomorphic to the cobar
complex of an explicit sub-Hopf algebra σ̃(2) of a quotient of the Morava stabilizer
algebra.

At this point, the number of different Hopf algebras important for our purposes has
become significant, so we give a list in Table 1 to help the reader keep track.

In Section 6 we embark on the computation of

H∗,∗(C(Z)) ∼= Ext∗,∗σ̃(2)(k(2)∗, k(2)∗).

The cohomology of the Morava stabilizer algebra was computed by Ravenel [Rav77]
using a modification of the May spectral sequence which we will call the May-
Ravenel spectral sequence. We adapt the May-Ravenel spectral sequence to compute
the cohomology of σ̃(2). We completely compute the E1-term of this spectral
sequence (Theorem 6.4.3), thus proving the unbounded torsion theorem.

Having dealt with the good complex, in Section 7 we turn to the problem of com-
puting the cohomology of the evil complex. Following the techniques introduced in
[BBB+20], we introduce a refinement of the tmf-ASS called the topological agath-
okakological spectral sequence (topological AKSS)

H∗,∗(C(Z))⊕H∗,∗(V (Z))⇒ π∗Z.

We also introduce an algebraic version, the algebraic agathokakological spectral se-
quence (algebraic AKSS)

H∗,∗,∗(Calg(Z))⊕H∗,∗(V (Z))⇒ assE∗,∗2 (Z).
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We then prove the dichotomy principle (Theorem 7.3.8), which relates evil terms
in the algebraic AKSS to v2-torsion in assE∗,∗2 (Z). We therefore are able to recover
H∗,∗(V (Z)) from H∗,∗,∗(Calg(Z)) (which we completely compute) and assE∗,∗2 (Z)
(which we compute using Bruner’s Ext software [Bru93]).

In Section 8, we perform low dimensional computations of the tmf-ASS (or equiva-
lently, the topological AKSS) for Z in the range t− n < 40. This proceeds by first
analyzing v2-periodicity in assE∗,∗2 (Z) by analyzing assE∗,∗2 (A2), where A2 is the
cofiber

Σ6Z
v2−→ Z → A2

whose cohomology is isomorphic to the subalgebra A(2) ⊂ A as an A(2)-module.
Appendix A contains the Bruner module definition data used to compute the rel-
evant Ext charts. We then compute the algebraic AKSS in our range. From this
we extract H∗,∗(V (Z)), which we input into the topological AKSS, and compute
through this same range. We end this section with a comparison to the computa-
tions of Bhattacharya-Egger of the Adams-Novikov spectral sequence (ANSS) for
ZE(2), and prove the collapse theorem by mapping the tmf-ASS to the K(2)-local
ANSS (Theorem 8.5.1).

In Section 9 we discuss how the analog of Mahowald’s approach to the 2-primary
height 1 telescope conjecture using the bo-resolution for Y fails in the context of
the tmf-resolution for Z. Namely, assuming there are no additional differentials or
extensions in the May-Ravenel spectral sequence, and assuming a certain pattern of
d3-differentials, we show that tmfE4 decomposes into a direct sum of three pieces:

(1) a summand which is v2-torsion free, and is isomorphic to π∗ZE(2) after v2

inversion,
(2) a summand which consists entirely of bounded v2

2-torsion, and
(3) a summand which consists of unbounded v2-torsion, and assembles via a

conjectural sequence of hidden extensions, into an uncountable collection
of v2-parabolas.3

We explain how our work in previous sections proves the vanishing line theorem
(the slope 1/11 vanishing line for tmfE∗,∗2 (Z)). We explain why one might expect
to be able to improve this to a slope 1/13 vanishing line, which would preclude
infinite families of hidden extensions among the terms in summand (2) from as-

sembling to give v2-families in π∗Ẑ. We then describe the analogs of conjectures
of Mahowald-Ravenel-Shick [MRS01] which describe a hypothetical picture (the

parabola conjecture) of π∗Ẑ which is assembled from a portion of the classes in
summands (1) and (3) above, and in particular is unequal to π∗ZE(2). However,
just as in [MRS01], it is totally possible for a bizarre pattern of differentials between
v2-parabolas to occur to make the telescope conjecture true.

Acknowledgments. The authors benefited greatly from conversations with Phil
Egger, Paul Goerss, Mike Hopkins, Doug Ravenel, and Tomer Schlank. The authors
also owe much gratitude to the referee, for their incredibly thoughtful insights into

3We call them v2-parabolas because they lie on (sideways) parabolas in the (t− n, n)-plane.
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how to improve what is a very technical paper, and for providing the statement
and proof of Proposition 3.1.7.

2. Background

2.1. Morava K-theory and E-theory. Recall [Ada95, Part II] that a homotopy
commutative ring spectrum is said to be complex orientable if the map on reduced
E-cohomology

Ẽ∗(CP∞)→ Ẽ∗(CP 1)

is surjective. The cohomology Ẽ∗(CP 1) is free of rank 1 as an E∗-module, and a
lift

x ∈ Ẽ∗(CP∞)

of a generator of Ẽ∗(CP 1) is called a complex orientation. We then have

E∗(CP∞) = E∗[[x]].

The H-space structure on CP∞ gives rise to a formal group law over E∗. In the
case where the spectrum E is even periodic, (πoddE = 0 and π2E contains a unit)

we can take our complex orientation to lie in Ẽ0(CP∞), and the resulting formal
group law FE can actually be defined over the ring E0.

A complex orientation of a ring spectrum E is equivalent to the structure of a map
of ring spectra

MU → E,

where MU is the complex cobordism spectrum. For a prime p, the p-localization
of MU splits as a wedge of suspensions of the Brown-Peterson specrum BP , with

BP∗ ∼= Z(p)[v1, v2, v3, · · · ]
with |vi| = 2(pi−1). The Wilson spectrum BP 〈n〉 can be constructed as the regular
quotient of BP given by [Str99]

BP 〈n〉 = BP/(vn+1, vn+2, . . .).

However, these ring spectra depend on the choices of the generators vi, and as such
there are many different forms of BP 〈n〉. Associated to any such choice is the
associated Johnson-Wilson spectrum

E(n) := BP 〈n〉[v−1
n ]

and the associated Morava K-theory spectrum is the regular quotient

K(n) = E(n)/(p, v1, . . . vn−1)

with
π∗K(n) = Fp[v±1

n ].

The connective Morava K-theory k(n) is the connective cover of K(n).

The localization functors (−)E(n) and (−)K(n) are independent of the form of E(n)
and K(n), and we have [Rav84]

(−)E(n) = (−)K(0)∨···∨K(n).

In particular, if X is a type n spectrum, then we have

XE(n) ' XK(n).
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The height n Morava E-theory spectrum En [BB20] is a K(n)-local even periodic
variant of the Johnson-Wilson spectrum E(n). Like E(n), there are many forms of
En, one for each height n formal group law F over a perfect field F of characteristic
p. The formal group law associated to En is the Lubin-Tate universal deformation
of F , and we have

π∗En = W(F)[[u1, . . . , un−1]][u±1]

where W(F) denotes the Witt ring of F, |ui| = 0, and |u| = −2. Goerss, Hop-
kins, and Miller showed that En admits a homotopically unique E∞-structure, and
admits a natural action of the Morava stabilizer group Aut(F). If F is obtained
from a formal group law over Fp via base change, then there is a natural action
of Gal(F/Fp) on Aut(F), and the natural action of Aut(F) on En extends to an
action of the associated extended Morava stabilizer group

Gn := Aut(F) o Gal(F/Fp).
Note that Gn implicitly depends both on the formal group F , and the field F.

Morava E-theory gives rise to an associated variant of Morava K-theory, which is
defined to be the spectrum given by the regular quotient.

Kn := En/(p, u1, . . . , un−1)

so we have
π∗Kn = F[u±1].

Again, different formal group laws F and different fields of definition F can give
rise to different forms of Kn.

2.2. Topological modular forms. We give a brief overview of some facts about
the spectrum of connective topological modular forms tmf. A more complete in-
troduction may be found in [Beh20], [DFHH14].

An elliptic cohomology theory consists of a triple

(E,C, α)

where E is a complex orientable even periodic ring spectrum, C is an elliptic curve
over E0, and α is an isomorphism

α : Ĉ
∼=−→ FE

between the formal group law Ĉ associated of C and the formal group law of E.

Goerss, Hopkins, and Miller constructed a sheaf of E∞-ring spectra Otop on the
étale site of the moduli stack of elliptic curves Mell, with the property that the
spectrum of sections

EC := Otop(spec(R)
C−→Mell)

associated to an affine etale open classifying an elliptic curve C/R is an elliptic
cohomology theory for the elliptic curve C.

The Goerss-Hopkins-Miller sheaf is actually defined over the Deligne-Mumford com-
pactification Mell of the moduli stack Mell of elliptic curves. The spectrum of
non-connective topological modular forms is defined to be the spectrum of global
sections of this sheaf

Tmf := Otop(Mell).
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There is a natural map from the homotopy groups of Tmf to the ring of integral
modular forms for SL2(Z)

(2.2.1) π2∗Tmf → MF∗(SL2(Z)) = Z[c4, c6,∆]/(c34 − c26 = 1728∆).

Here c4 and c6 denote normalizations of the Eisenstein series of weight 4 and 6,
respectively, and ∆ denotes the discriminant of weight 12. The map (2.2.1) is
a rational isomorphism, but is not an isomorphism integrally. Nevertheless the
modular forms c4 and ∆24 are in the image, we shall let c4 ∈ π8Tmf and ∆24 ∈
π576Tmf denote lifts of these modular forms to π∗Tmf.

The spectrum of connective topological modular forms is defined to be the connec-
tive cover of this spectrum

tmf := τ≥0Tmf.

The spectrum of periodic topological modular forms is defined to be the global
sections of the sheaf Otop over the non-singular locus

TMF := Otop(Mell).

We have
TMF = tmf[∆−24]

where ∆24 ∈ π576tmf.

Inverting ∆24 has the effect of inverting some power of v2 for every prime p, and
as such, there is a close relationship between TMF and tmfK(2). There is an
equivalence [Beh20, Prop. 6.6.14]

tmfK(2) ' TMF∧(p,c4).

Up to isomorphism, there is a unique supersingular elliptic curve C over F4. The
elliptic curve C admits a Weierstrass presentation [Sil09, III.1]

(2.2.2) y2 + y = x3.

Let Ĉ denote the associated height 2-formal group over F4. The automorphisms of

C induce automorphisms of Ĉ, giving rise to an inclusion

Aut(C) ↪→ G2.

The 2-primary K(2)-localization of tmf is then given by [Beh07, Sec. 5]

(2.2.3) tmfK(2) ' EhAut(C)oGal
2

where Gal = Gal(F4/F2). The form of connective Morava K-theory in the equiva-
lence

tmf ∧ Z ' k(2)

of (1.0.4) is the form associated to the formal group Ĉ, regarded as a formal group
over F2.

Associated to the congruence subgroups Γ1(n) ≤ SL2(Z), Hill and Lawson con-
structed variants Tmf1(n) of Tmf associated to the compactified moduli stacks
M1(n) of elliptic curves with Γ1(n) structure [HL16]. Lawson and Naumann [LN12]
proved that the connective cover tmf1(3) of Tmf1(3) gives a form of BP 〈2〉 at the
prime 2:

(2.2.4) tmf1(3)(2) ' BP〈2〉
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We have

tmf1(3)K(2) ' EhC3oGal
2 .

Associated to the log-étale map

M1(3)→Mell

given by forgetting Γ1(3)-structures, there is a map

tmf → tmf1(3)

and hence a map

(2.2.5) tmf → BP 〈2〉.
The K(2)-localization of this map is given by the canonical inclusion

E
hAut(C)oGal
2 → EhC3oGal

2 .

2.3. Subalgebras and subquotients of the Steenrod algebra. Let A denote
the mod 2 Steenrod algebra and let A∗ be its dual. The algebra A∗ is a polynomial
algebra on the Milnor generators ξi of degree 2i − 1. Letting ζi = ξi denote the
conjugates, A∗ can also be expressed as

A∗ = F2[ζ1, ζ2, ζ3, . . .].

The coproduct on A∗ is given by

ψ(ζk) =
∑

i+j=k

ζi ⊗ ζ2i

j .

The elements ζi are dual to the elements Qi−1 ∈ A. The elements Qn are primitive,
satisfy Q2

n = 0, and generate an exterior subalgebra

E[Q0, Q1, Q2, · · · ] ⊆ A.

Let A(n) be the subalgebra generated by Sq1, . . . ,Sq2n .

For a B subalgebra of A, we will be interested in A-modules of the form

A�B := A⊗B F2,

since we have [Rav86, 2.1, 4.1, 4.2], [Mat16]

H∗bo ∼= A�A(1),

H∗tmf ∼= A�A(2),

H∗BP 〈n〉 ∼= A�E[Q0, . . . , Qn],

H∗k(n) ∼= A�E[Qn].

(2.3.1)

We also have

H∗Y ∼=A(1) A(1)�E[Q1],

H∗Z ∼=A(2) A(2)�E[Q2],

where ∼=A(n) denotes an isomorphism of A(n)-modules (the case of Y is elementary,
for the case of Z see [BE20a]).



THE TELESCOPE CONJECTURE AT HEIGHT 2 AND THE TMF RESOLUTION 15

We note that the dual of A(n) and E[Q0, . . . , Qn] are given by

A(n)∗ ∼= A∗/(ζ
2n+1

1 , ζ2n

2 , . . . , ζ2
n+1, ζn+2, . . .),

E[Q0, . . . , Qn]∗ ∼= E[ζ1, . . . , ζn+1].

We will denote the dual of A�B as A�B∗. The duals of A�A(n) and A�E[Q0, . . . , Qn]
are given by

A�A(n)∗ ∼= F2[ζ2n+1

1 , ζ2n

2 , . . . , ζ2
n+1, ζn+2, . . .],

A�E[Q0, . . . , Qn]∗ ∼= F2[ζ2
1 , . . . , ζ

2
n+1, ζn+2, ζn+3, . . .].

In general, for A∗-comodules M and N , the change of rings isomorphism gives

(2.3.2) Ext∗,∗A∗ (M,A�B∗ ⊗N) ∼= Ext∗,∗B∗ (M,N).

3. The good/evil decomposition of the E1-term

The goal of this section is to analyze the E1-term of the tmf-resolution for Z. Using
(1.0.4) we have

(3.0.1) tmfEn,t1 (Z) = πt(tmfn+1 ∧ Z) ∼= k(2)t(tmf∧n).

For this reason, we will need a tool to compute connective Morava K-theory.

3.1. Margolis homology. For a spectrum X, consider the Adams spectral se-
quence for k(n)∗X

assEs,t2 = Exts,tA∗(F2, H∗k(n) ∧X)⇒ k(n)t−s(X).

Using (2.3.1) and the change of rings isomorphism (2.3.2), the E2-term of this
Adams spectral sequence takes the form

ExtA∗(F2, H∗k(n) ∧X) ∼= Ext∗,∗E[Qn]∗
(F2, H∗X).

Note that Ext of comodules over E[Qn]∗ is isomorphic to Ext of modules over
E[Qn], using the dual action of Qn on homology.

Ext∗,∗E[Qn]∗
(F2, H∗X) ∼= Ext∗,∗E[Qn](F2, H∗X).

Because the dual action of Qn on homology lowers degree, we will regard Qn as
having degree −2n+1 + 1.

Margolis (see [Mar83, Part III]) introduced some general tools for computing such
Ext groups over exterior algebras.

Definition 3.1.1. Let M be a module over E[x]. Let kerx(M) be the kernel of
multiplication by x and imx(M) be its image. Define

H(M ;x) := kerx(M)/ imx(M).

Lemma 3.1.2. Let M be an E[x]-module, where x has degree k. Then there is a
short exact sequence

0→ imx(M)→ Ext∗,∗E[x](F2,M)→ F2[y]⊗H(M ;x)→ 0

for y in Ext1,k and imx(M) is regarded as a graded F2-vector space in cohomological
degree zero.
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Proof. Consider the standard free resolution of F2 as a E[x]-module, given by the
differential graded F2 algebra

E[x]⊗ Γ[z]

where Γ denotes the divided power algebra, d(z) = x, and |z| = (−1, k) (here the
first index is the cohomological degree, which is negative because it is in positive
homological degree). Applying HomE[x](−,M), gives a cochain complex

C∗,∗(M) := F2[y]⊗M
whose cohomology is ExtE[x](F2,M) where M has cohomological degree 0, y = z∗,
|y| = (1,−k), and

d(yn ⊗m) = yn+1 ⊗ x ·m.
We calculate

Hn,∗(C∗,∗(M)) =

{
H(M ;x){yn}, n > 0,

kerx(M), n = 0.

The result then follows from the short exact sequence:

0→ imx(M)→ kerx(M)→ H(M ;x)→ 0. �

We will apply these results to the exterior algebra E[Qn].

Definition 3.1.3. Let M be an A(n)-module. The nth Margolis homology of M
is H(M ;Qn). If M = H∗(X), then we abbreviate H(H∗(X);Qn) as H(X;Qn).

Since Qn is primitive, the action of Qn on the tensor product M ⊗ N of A(n)-
modules is given by

Qn(a⊗ b) = Qn(a)⊗ b+ a⊗Qn(b).

From this, one can deduce the following lemma.

Lemma 3.1.4. Let M and N be A(n)-modules of finite type. Then

H(M ⊗N ;Qn) ∼= H(M ;Qn)⊗H(N ;Qn).

Corollary 3.1.5. If M is an A(n)-module of finite type, then there is a short exact
sequence

0→ V k,∗(M)→ Ext∗,∗E[Qn](F2,M
⊗k)→ F2[vn]⊗H(M ;Qn)⊗k → 0

where
V k,∗(M) := imQn(M⊗k).

The following result is a straightforward consequence the fact that the action of Qn
is a derivation and

Qn(ζk) =

{
ζ2n+1

k−n−1 k ≥ n+ 1,

0 k < n+ 1.

Lemma 3.1.6. There are isomorphisms

H(A�A(n)∗;Qn) ∼= F2[ζ2n

2 , ζ2n−1

3 , . . . , ζ2
n+1, ζ

2
n+2, ζ

2
n+3, . . .]/(ζ

2n+1

2 , ζ2n+1

3 , . . .)

and
H(A�E[Q0, . . . , Qn]∗;Qn) ∼= F2[ζ2

1 , ζ
2
2 , . . .]/(ζ

2n+1

1 , ζ2n+1

2 , . . .).
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We end this section with a topological realization result (compare with [Lel82,
Thm. 2]). The authors are very grateful to the referee for suggesting this stream-
lined formulation of the result, and the proof is due to the referee.

Proposition 3.1.7. Let X be a connective spectrum with the property that the
Margolis homology H(X;Qn) is concentrated in even degrees. Then the Adams
spectral sequence

assEs,t2 (k(n) ∧X) = Exts,tE[Qn](F2, H∗X)⇒ k(n)t−s(X)

collapses, and there are no exotic vn-extensions. There is a fiber sequence of k(n)
modules

HVX → k(n) ∧X → KX

where
VX := imQn(H∗X),

HVX is the generalized Eilenberg-MacLane spectrum associated to the graded F2-
vector space VX , and KX is a free k(n)-module with

π∗KX
∼= F2[vn]⊗H(X;Qn).

This fiber sequence is natural in X with H∗(X;Qn) in even degrees. The fiber
sequence is split, but not naturally.

Proof. By hypothesis, for s > 0, assEs,t2 = 0 unless t − s is even. Thus non-

zero differentials must originate from assE0,t
2 with t odd. Since vn annihilates that

vector space and assE∗,∗2 is vn-torsion free in positive cohomological degree, the
ASS collapses.

There is an isomorphism

F2 ⊗k(n)∗ k(n)∗X ∼= assE0,∗
2

and a surjection
·vn : k(n)∗X/vn-torsion � assE1,∗

2 .

There is then a commutative diagram

0 // V0
//

��

k(n)∗X //

��

k(n)∗X/vn-torsion //

��

0

0 // VX // assE0,∗
2 ·vn

// assE1,∗
2

// 0

The map V0 → VX is an isomorphism by a diagram chase.

This defines a natural inclusion of k(n)∗-modules

VX ∼= V0 ⊆ k(n)∗X.

A choice of basis for VX defines a map

HVX → k(n) ∧X
which, in the homotopy category of k(n)-modules, is independent of the choice.
Any choice of splitting of

VX → k(n)∗X → k(n)∗X/vn-torsion

can be realized in the category of k(n)-modules. �
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3.2. The computation of the E1-term of the tmf-ASS for Z. Returning now
to the computation of the E1-term tmfEn,∗1 (Z) (3.0.1), we will compute the classical
ASS

(3.2.1) Exts,tA∗(F2, H∗(k(2) ∧ tmf∧n)) =⇒ k(2)t−s(tmf∧n) = tmfEn,t−s1 (Z).

Defining

Cn,∗,∗alg (Z) := F2[v2]⊗H(A�A(2)∗, Q2)⊗n,

Lemma 3.1.2, Corollary 3.1.5, and Lemma 3.1.6 imply the following.

Proposition 3.2.2. There is a short exact sequence of F2[v2]-modules

(3.2.3) 0→ V n,∗,∗alg (Z)→ Ext∗,∗A∗ (F2, H∗k(2) ∧ tmf∧n)→ Cn,∗,∗alg (Z)→ 0

where

Cn,∗,∗alg
∼= F2[v2]⊗

[
F2[ζ4

2 , ζ
2
3 , ζ

2
4 , · · · ]/(ζ8

2 , ζ
8
3 , · · · )

]⊗n

and V n,∗,∗alg (Z) is a direct sum of shifted copies of F2’s which are simple v2-torsion

(i.e., v2 · x = 0 for all elements x) which are concentrated in Adams filtration zero:

V n,∗(Z) := V n,0,∗alg (Z) = V n,∗,∗alg (Z).

There is one subtle issue which we now must discuss: both sides of the equivalence

(3.2.4) α : tmf ∧ Z '−→ k(2)

have potentially different notions of v2-multiplication. The spectrum Z has a v2-self
map

v2 : Σ6Z → Z

and k(2) has the multiplication-by-v2 map

·v2 : Σ6k(2)→ k(2).

Since the self-map of Z is a K(2)-equivalence, and since π6(k(2)) only consists of 2
elements, it is easy to see that the following diagram commutes.

S6 //

$$

Σ6tmf ∧ Z 1∧v2 // tmf ∧ Z
'α

��
Σ6k(2) ·v2

// k(2)

I.e., the two notions of “v2” are the same when regarded as elements of π6. However,
this does not imply that the self map

1 ∧ v2 : Σ6tmf ∧ Z → tmf ∧ Z
is homotopic to the multiplication-by-v2 map on k(2), because the map 1∧ v2 does
not necessarily give a map of k(2)-modules under the equivalence (3.2.4).

However, all of our computations of tmfE∗,∗1 (Z) will arise from the Adams spectral
sequence, and the following lemma makes it clear that on the level of the Adams
spectral sequence the two notions of v2-multiplication are the same. In particular,
the “v2” in Proposition 3.2.2 may be taken to be the one coming from the v2-self
map on Z.
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Lemma 3.2.5. The diagram

Σ6tmf ∧ Z 1∧v2 //

' α

��

tmf ∧ Z
' α

��
Σ6k(2) ·v2

// k(2)

commutes up to elements of higher Adams filtration.

Proof. The cofiber of the v2-self map on Z

Σ6Z
v2−→ Z → A2

is a spectrum whose cohomology is free of rank 1 over A(2). We therefore deduce
that there is a cofiber sequence

Σ6tmf ∧ Z 1∧v2−−−→ tmf ∧ Z → H.

Consider the following diagram of cofiber sequences.

Σ6tmf ∧ Z 1∧v2 //

β

��

tmf ∧ Z //

' α

��

H

Σ6k(2) ·v2
// k(2) // H

The right square in this diagram commutes, since H0(tmf ∧ Z) = F2 has no non-
trivial automorphisms. Therefore the dotted map β exists, making the diagram
commute. Since the top and bottom rows are cofiber sequences, β must be an
equivalence. Since H∗k(2) is generated by the non-trivial element of H0k(2) as
an A-module, α and β must induce the same map on cohomology. Therefore the
difference α− β is in positive Adams filtration, and the result follows. �

Henceforth, by “v2” we shall always be referring to the v2-multiplication arising
from the self-map on Z.

The following is an immediate corollary of Proposition 3.2.2 and Proposition 3.1.7.

Corollary 3.2.6. There is a short exact sequence of F2[v2]-modules

(3.2.7) 0→ V n,∗(Z)→ tmfEn,∗1 (Z)→ Cn,∗(Z)→ 0,

where V ∗,∗(Z) is the module defined in Proposition 3.2.2, and,

Cn,∗(Z) ∼= F2[v2]⊗
[
F2[ζ4

2 , ζ
2
3 , ζ

2
4 , · · · ]/(ζ8

2 , ζ
8
3 , · · · )

]⊗n
.

3.3. The good and evil complexes. We now upgrade the decomposition of
Corollary 3.2.6 to a short exact sequence of chain complexes. The first observation
is the following.

Proposition 3.3.1. The subspace V ∗,∗(Z) forms a subcomplex of tmfE∗,∗1 (Z).

Proof. This follows from the fact that the subspace V ∗,∗(Z) is the subspace of of
v2-torsion, and the differentials commute with v2-multiplication. �
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We will call (V ∗,∗(Z), d1) the evil complex. Since (V ∗,∗(Z), d1) forms a sub-complex

of tmfE∗,∗1 (Z), we can define C∗,∗(Z) to be the quotient complex

0→ V ∗,∗(Z)→ tmfE∗,∗1 (Z)→ C∗,∗(Z)→ 0.

We will call (C∗,∗(Z), d1) the good complex.

Abbreviate H∗,∗(V ) = H(V ∗,∗(Z), d1) and H∗,∗(C) = H(C∗,∗(Z), d1). There is a
long exact sequence

(3.3.2) · · · → H∗,∗(V )→ tmfE∗,∗2 (Z)→ H∗,∗(C) ∂−→ H∗+1,∗(V )→ · · · .
We will see that H∗,∗(C) can be almost completely computed, while H∗,∗(V ) is
mysterious. We call the elements of H∗,∗(V ) evil and those of H∗,∗(C) good.

In [BBB+20], we establish a method for computing H∗,∗(V ) in a range. The idea
is to use the tmf-Mahowald spectral sequence (MSS),

(3.3.3) tmf
algE

n,s,t
1 = Exts,tA (H∗(tmf∧n+1 ∧ Z),F2)⇒ Exts+n,tA (H∗(Z),F2).

with

dr : tmf
algE

n,s,t
r → tmf

algE
n+r,s−r+1,t
r .

The construction of this spectral sequence is identical to that of [BBB+20]. The
E1-term fits into an exact sequence of chain complexes

0→ V ∗,∗,∗alg (Z)→ tmf
algE

∗,∗,∗
1 → C∗,∗,∗alg (Z)→ 0

(see (3.2.3)) from which we obtain a long exact sequence
(3.3.4)

· · · → H∗,∗,∗(Valg)→ tmf
algE

∗,∗,∗
2 (Z)→ H∗,∗,∗(Calg)

∂alg−−→ H∗+1,∗,∗(Valg)→ · · · .

We will compute the cohomology H∗,∗,∗(Calg) explicitly, and the abutment of the
tmf-MSS (3.3.3) can be computed through a range, for example using Bruner’s
program. From this, we can inductively deduce information about H∗,∗,∗(Valg), at
least through a range. Further, Hn,s,t(Valg) is concentrated in degree s = 0 and
the identification of cochain complexes

V n,t(Z) ∼= V n,0,talg (Z)

implies that

H∗,∗(V ) ∼= H∗,0,∗(Valg).

This isomorphism allows us to transfer information from the tmf-MSS to the tmf-
ASS.

In order to understand tmfE∗,∗2 (Z) and tmf
algE

∗,∗,∗
2 (Z), the first step is to compute

H∗,∗(C) and H∗,∗,∗(Calg) (see Theorems 6.4.3 and 6.4.1 and Remark 6.4.4).

4. Morava stabilizer groups and algebras

Our goal will be to relate the good complex to the cobar complex for a certain
subquotient σ̃(2) of a form of the Morava stabilizer algebra — this will be done
in Section 5. The purpose of this section is to prepare some computations which
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we will use in the next section. Of particular importance will be Proposition 4.3.1,
which gives a computation of the action of the group

G48 := Aut(C) o Gal < G2

on the E2-homology of the finite complex Z.

4.1. The Morava stabilizer algebra. Historically, the forms of Morava K-theory
K(n) and Morava E-theory En were typically taken to be those associated to the
Honda height n formal group Hn. In the case of K(n), it is regarded as a formal
group over Fp, and in the case of En is is regarded as a formal group over Fpn . The
Honda height n formal group law is characterized as the unique p-typical formal
group law with p-series given by [Rav86, A2.1]

[p]Hn(x) = xp
n

.

Its endomorphism ring is given by

End(Hn) ∼= W(Fpn)〈S〉/(Sa = aσS, Sn = p)

where W(Fpn) is the Witt ring of Fpn , and σ is the lift of Frobenius. Every endo-
morphism φ ∈ End(Hn) can be written uniquely as

a0 + a1S + a2S
2 + · · ·

with ai ∈ W(Fpn) satisfying ap
n

i = ai. The associated Morava stabilizer group is
given by

Sn := Aut(Hn) = {
∑

i

aiS
i ∈ End(Hn) : a0 6= 0}.

Because we are using K(2), K2, and E2 to denote the forms of Morava K- and

E-theory associated to the formal group Ĉ, we will let K(2)′, K ′2, E′2 denote the
forms of Morava K- and E-theory associated to the Honda height 2 formal group
H2. The associated Morava stabilizer algebra Σ(2) is the Hopf algebra over K(2)′∗
given by [Rav86, Sec. 6.1]

Σ(2) := K(2)′∗ ⊗BP∗ BP∗BP ⊗BP∗ K(2)′∗

∼= F2[v±1
2 ][t1, t2, . . .]/(t

4
k − v2k−1

2 tk).(4.1.1)

The 2-periodic extension K ′2 of K(2)′ has homotopy groups

(K ′2)∗ ∼= F4[u±1]

with |u| = −2 and

v2 = u−3.

We let

Σ2 := (K ′2)∗ ⊗K(2)′∗
Σ(2)

denote the associated Hopf algebra over (K ′2)∗.

Let

S2 =




∑

i≥0

aiS
i ∈ S2 : a0 = 1
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denote the 2-Sylow subgroup of S2. The Morava stabilizer algebra (F4[u±1],Σ2)
can be regarded as an algebra of functions on S2:

Σ2
∼= Mapc(S2, (K2)∗)

∼= F4[u±1][t1, t2, . . .]/(t
4
k − v2k−1

2 tk).(4.1.2)

Here, Mapc denotes the continuous functions where S2 is given its profinite topology
and (K2)∗ is given the discrete topology, and the functions tk are defined as

(4.1.3) tk(1 + a1S + a2S
2 + . . .) = aku

1−2k .

The coproduct ψ is determined by ψ(tk) =
∑
t′k ⊗ t′′k where

tk(g′g′′) =
∑

t′k(g′)t′′k(g′′), g′, g′′ ∈ S2.

The cohomology of Σ2 was essentially studied by Ravenel in [Rav86, Thm. 6.3.27],
and Ravenel’s approach to this computation will be used in Section 6 to give an
essential foothold in the computation of the cohomology of the good complex.

4.2. The elliptic Morava stabilizer group. We will begin this subsection with a
discussion of the extended Morava stabilizer group associated to the unique isomor-
phism class of supersingular elliptic curve C defined over F2, and its relationship
with both TMF and the more traditionally studied Morava stabilizer group asso-
ciated to the Honda height 2 formal group H2. We will then introduce a certain
quotient Σ2 of Σ2 associated to an open subgroup of this extended Morava stabilizer
group.

We first recall some facts about the automorphism group of the supersingular elliptic
curve C, and its associated formal group. We refer to [Bea17] and [Hen18] for more
details in this context.

Over F4, the endomorphism ring of the elliptic curve C : y2 +y = x3 is the maximal
order (the Hurwitz integers)

End(C) = Z
{

1, i, j,
1 + i+ j + k

2

}

in the quaternion algebra

D = Q〈i, j〉/(i2 = −1, j2 = −1, ij = −ji).
with k := ij [Deu41, pp. 237-9]. Define

ω = −1

2
(1 + i+ j + k).

Then we have
ω3 = 1, ω2 + ω + 1 = 0,

and
ωiω2 = j, ωjω2 = k, ωkω2 = i.

The automorphism group of C is the subgroup of D× generated by

Q8 = {±1,±i,±j,±k}
and ω, so we have

G24 := Aut(C) = Q8 o C3.
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We define

T := j − k ∈ End(C)

so we have

T 2 = −2.

Then D has the alternative presentation as

(4.2.1) Q(ω)〈T 〉/(Ta = aσT, T 2 = −2)

where ωσ = ω2 is the action of the Galois group

Gal := Gal(Q(ω)/Q) ∼= Gal(F4/F2) = 〈σ〉.
For example, i ∈ D can be expressed as 1

1+2ω (1− T ) in (4.2.1).

Since the curve C is defined over F2, the Galois group Gal also acts on End(C),
and hence on Aut(C) and D. This action is encoded in the following lemma.

Lemma 4.2.2. The Galois action on an element x ∈ D is given by

xσ = −1

2
TxT.

Proof. As discussed in Section 2, the elliptic curve C admits a Weierstrass presen-
tation

(4.2.3) y2 + y = x3.

This means that for an F2-algebra R, the R-points of the elliptic curve C is given
by

C(R) = {(x, y) ∈ R2 : y2 + y = x3} ∪ {∞}.
The F4 points of C form a group isomorphic to F3 × F3. A basis for this F3-vector
space is given in (x, y) coordinates by

P1 := (0, 0),

P2 := (1, ω).

The generators i and ω of the group G24 = Aut(C) correspond to the automor-
phisms

i : (x, y) 7→ (x+ 1, y + x+ ω2),

ω : (x, y) 7→ (ω2x, y).

The induced action of these automorphisms on the F4-points of the curve C, with
respect to the basis (P1, P2), induces a representation

ρ : G24 ↪→ GL2(F3)

with

ρ(i) =

[
0 1
−1 0

]
,

ρ(ω) =

[
1 −1
0 1

]
.

The Galois action on C(F4) extends the representation ρ to an isomorphism

(4.2.4) ρ̃ : G48 := G24 o Gal
∼=−→ GL2(F3)
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given by

ρ̃(σ) =

[
1 0
0 −1

]
.

One can therefore use this isomorphism to deduce that

iσ = −i,
ωσ = ω2.

One easily checks from this:

Tσ = (j − k)σ

= (ωiω2 − ω2iω)σ

= ω2(−i)ω − ω(−i)ω2

= T.

From the presentation (4.2.1), every element x ∈ D takes the form

x0 + x1T

with xi ∈ Q(ω). We then compute

−1

2
TxT = −1

2
T (x0 + x1T )T

= −1

2
Tx0T −

1

2
Tx1T

2

= −1

2
T 2xσ0 + Tx1

= xσ0 + xσ1T

= (x0 + x1T )σ

= xσ. �

The formal group of Ĉ has −2-series

[−2]Ĉ(x) = x4.

The endomorphism ring of the formal group Ĉ is the maximal order

End(Ĉ) = W(F4)〈T 〉/(Ta = aσT, T 2 = −2)

in the 2-adic division algebra
D2 := D ⊗Q2,

where W(F4) = Z2[ω]/(ω2+ω+1) is the Witt ring. The associated Morava stabilizer
group

S2 := Aut(Ĉ)

is the group of units in the order End(Ĉ). Since Ĉ is defined over F2, its automor-
phism group S2 also gets an action of Gal, with Galois action given by

gσ = −1

2
TgT,

and we let
G2 := S2 o Gal

denote the resulting extended Morava stabilizer group. The subgroup G48 is a
maximal finite subgroup of G2.
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It is observed in [Bea17, Sec. 3.1] and [Hen18] that the formal group Ĉ and the
Honda formal group H2 have isomorphic endomorphism rings. Explicitly, one gets
an isomorphism

End(Ĉ) ∼= End(H2)

by mapping

(4.2.5) T 7→ αS,

where

α =
1− 2ω√
−7

∈W(F4)

(for the choice of
√
−7 ∈ Z2 with

√
−7 ≡ 1 (mod 4)). The essential property of α

is that

αασ = −1.

This induces an isomorphism

(4.2.6) Aut(H2) ∼= Aut(Ĉ) = S2.

However, this isomorphism is not Gal-equivariant!

Thus the group S2 admits two different Galois actions, one coming from the natural

Galois action on Aut(Ĉ) and one coming from the natural Galois action on Aut(H2)
using the isomorphism (4.2.6). We shall let

Gal < Aut(S2)

denote the subgroup generated by the Galois automorphism σ coming from C, and
let

Gal′ < Aut(S2)

be the subgroup generated by the Galois automorphism σ′ coming from H2. The
action of σ′ is given by

gσ
′

=
1

2
SgS.

We will denote the corresponding extended Morava stabilizer group by

G′2 := S2 o Gal′ .

Lemma 4.2.7. For g ∈ S2 we have

gσ = −αgσ′ασ.

Proof. We compute

gσ = −1

2
TgT

= −1

2
αSgαS

= −α1

2
SgSασ

= −αgσ′ασ. �
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The inclusion of G24 in S2 gives a splitting of the short exact sequence

1→ K → S2 → G24 → 1

where K is the open normal subgroup of S2

(4.2.8) K = {1 + a2S
2 + a3S

3 + · · · ∈ S2 : a2 ∈ {0, ω}}
discussed at length in Section 2.5 of [Bea15].

The inclusion of groups

K ↪→ S2

corresponds to a quotient of Hopf algebras

Σ2 → Σ2

where

Σ2 = Mapc(K,F4[u±])

∼= Σ2/(t1, ωv2t2 + t22)
(4.2.9)

(compare with [Rav86, Proposition 6.3.30], but Ravenel’s choice of K is Galois
conjugate to ours).

4.3. The Morava E-homology of Z. In this subsection we will use the compu-
tations of [BE20b] to derive the following result (where G48 is the group (4.2.4)).

Proposition 4.3.1. There is an isomorphism of G48-modules

(E2)∗Z ∼= CoIndG48

C3oGalF4[u±1]

where C3 o Gal acts on F4[u±1] via

ω∗(λu
k) = λωkuk, σ∗(λu

k) = λσuk.

Corollary 4.3.2. There is an isomorphism of Q8-modules

(E2)∗Z ∼= CoIndQ8

1 F4[u±1].

The proof of Proposition 4.3.1 will require some preliminary recollections from
[BE20b]. Recall we are using E′2 to denote the Morava E-theory spectrum associ-
ated to the Honda height 2 formal group over F4. The spectrum E′2 has an action
of the extended Morava stabilizer group G′2 = S2 oGal′ of the previous subsection.

The third author and Egger computed (E′2)∗Z as

(4.3.3) (E′2)∗Z ∼= F4[u±]{x̄0, x̄2, x̄4, x̄6, ȳ6, ȳ8, ȳ10, ȳ12}, |x̄i| = |ȳi| = 0,

with an explicit action of S2 [BE20b, Table 1]. Since the generators ui/2x̄i and
ui/2yi are in the image of the map

BP∗Z → (E′2)∗Z,

they have trivial action of the Galois group Gal′, and therefore Gal′ acts on (4.3.3)
by acting on F4. Following the proof of [BE20b, Thm. 4.12], we see that for any
x ∈ (E′2)0Z with

(4.3.4) x = ȳ12 + α0x̄0 + α2x̄2 + α4x̄4 + α6x̄6, αi ∈ F4
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we have4

(4.3.5) (E′2)0Z = F4[Q8]{x}.

Proof of Proposition 4.3.1. Let Ē2 denote the Morava E-theory associated to the
height 2 Honda formal group over the algebraic closure F̄2, with action of

Ḡ′2 = S2 o Gal(F̄2/F2).

Let σ′ denote the Frobenius, regarded as a generator of Gal(F̄2/F2), acting on S2

as in the previous subsection. Then we have

E′2 ' Ēh〈(σ
′)2〉

2 .

Since the formal group of the elliptic curve C is isomorphic to the Honda formal
group over F̄2, we deduce that the associated Morava E-theory is the same, but the
action of the Galois group is different. The calculations of the previous subsection
imply that if we define

σ := ασ′ ∈ Ḡ′2
then the Morava E-theory associated to the formal group of C over F4 is given by

E2 ' Ēh〈(σ)2〉
2 .

Since σ4 = (σ′)4, we deduce that E2 and E′2 have the common extension

E′′2 := Ē
h〈σ4〉
2 .

We therefore have

(E′′2 )0Z = F16 ⊗F4 (E′2)0Z ∼= F16[Q8]{x}
for any x of the form (4.3.4) (with αi ∈ F16). Let ω̃ ∈ F×16 be a generator, so that

ω̃σ
4

= ω̃16 = ω̃.

Since ω̃ + ω̃4 ∈ F4 we can take ω̃ so that

ω̃ + ω̃4 = ω ∈ F4.

Define

x := ȳ12 + (1 + ω̃4 + ω̃8)x̄6 + (a+ b)(ω̃ + ω̃8)x̄0

(where a, b ∈ F2 are those associated to the choice of Z ∈ Z̃ as in [BE20b, Lem. 3.5]).
Then it follows from [BE20b, Table 1] and

α = 1 + 2ω mod 4

that

(1) σ = ασ′ acts trivially on x,
(2) 〈ω〉 = C3 < S2 acts trivially on x,
(3) x generates (E′′2 )0Z as a free F16[Q8]-module.

4In the notation of [BE20b], we have x = k · c′3 + terms involving ci, where k ∈ Q8 is the unit

quaternion.
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It follows that x generates

(E2)0Z ∼= [(E′′2 )0Z]〈σ
2〉

as an F4[Q8]-module. This, together with (1) and (2) above, implies

(E2)∗Z ∼= CoIndG48

C3oGalF4[u±1] ∼= MapC3oGal(G48,F4[u±1]).

�

While Proposition 4.3.1 describes (E2)∗Z as a G48-module, it is natural to ask for
a similar description of (E2)∗Z as a G2-module. The following proposition does
almost that: it computes (E2)∗Z as an S2-module using the subgroup K (4.2.8).

Proposition 4.3.6. There is an isomorphism of S2-modules

(E2)∗Z ∼= CoIndS2
C3nKF4[u±1].

Corollary 4.3.7. There is an isomorphism of S2-modules

(E2)∗Z ∼= CoIndS2

K F4[u±1].

Remark 4.3.8. It is tempting to look for an analog of Proposition 4.3.6 which
also incorporates the Galois action, but this is complicated by the fact that the
subgroup K is not Galois invariant.

Proof. Using the notation of Proposition 4.3.1, consider the diagram

(E′2)∗Z

''
BP∗Z

77

''

(E′′2 )∗Z

(E2)∗Z

77

Since the generators

ui/2x̄i, u
i/2ȳi ∈ (E′2)∗Z

of (4.3.3) come from BP∗Z, it follows that

(4.3.9) (E2)∗Z ∼= F4[u±1]{x̄0, x̄2, x̄4, x̄6, ȳ6, ȳ8, ȳ10, ȳ12}.
The action of S2 on (4.3.9) is computed in Table 1 of [BE20b]. In particular, it is
easy to check that the map

π : (E2)∗Z → F4[u±1]

given by

π(α0x̄0 · · ·α6x̄6 + β0ȳ6 + · · ·+ β12ȳ12) = β12

is C3 nK-equivariant. Thus it induces a S2-equivariant map

π̃ : (E2)∗Z → CoIndS2
C3nKF4[u±1].

This can be checked to be an isomorphism using (4.3.5) and the fact that the
composite

Q8 → S2 → S2/(C3 nK)

is an isomorphism. �
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5. Computation of the differentials in the good complex

The main result of this section (Definition 5.2.6, Theorem 5.2.8) is that there is a
sub-Hopf algebra

(k(2)∗, σ̃(2)) ⊂ ((K2)∗,Σ2)

such that the good complex is isomorphic to the associated cobar complex [Rav86,
Definition A1.2.11]:

C∗,∗(Z) ∼= C∗σ̃(2)(k(2)∗).

5.1. The good complex as a subcomplex of the cobar complex of Σ2. The
map tmf → TMF induces a map of spectral sequences

(5.1.1) tmfE∗,∗r (Z)→ TMFE∗,∗r (Z).

The kernel of tmfE∗,∗1 (Z)→ TMFE∗,∗1 (Z) is V ∗,∗(Z) and the image is

C∗,∗(Z) ⊆ TMFE∗,∗1 (Z).

We will now show the complex TMFE1(Z) can be regarded as a subcomplex of
the cobar complex for the Hopf algebra Σ2. The first step will be to express the
E1-term in terms of the Morava stabilizer group (Corollary 5.1.4).

For a profinite set T = lim←−i Ti and an abelian group M , let

Mapc(T,M) = lim←−Map(Ti,M)

denote the abelian group of continuous maps, where T is given the profinite topol-
ogy, and M is given the discrete topology. If G is a group which acts on T and on
M , then there is an induced conjugation action on Mapc(T,M), given by

(g · f)(t) = gf(g−1t)

for g ∈ G, f ∈ Mapc(T,M), and t ∈ T .

Lemma 5.1.2. There is a G2-equivariant isomorphism

(E2)∗(TMF ∧ Z) ∼= Mapc(G2/G48, (E2)∗Z)

(where G2 acts on Mapc by the conjugation action on functions), and this leads to
an isomorphism

π∗TMF ∧ TMF ∧ Z ∼= MapcC3oGal(G2/G48,F4[u±1])

where MapcC3oGal(G2/G48,F4[u±1]) denotes the C3 o Gal equivariant continuous
maps.

Proof. Since Z is a type 2 complex, X∧Z is K(2)-local for any E(2)-local spectrum
X (see proof of [HS99, Lem. 7.2]). In particular, (2.2.3) implies

(5.1.3) TMF ∧ Z ' EhG48
2 ∧ Z.

Using the fact that for finite groups, homotopy fixed points and homotopy orbits
of K(2)-local spectra are K(2)-locally equivalent [Kuh04], we get

TMF ∧ TMF ∧ Z ' EhG48
2 ∧ EhG48

2 ∧ Z ' (E2 ∧ (EhG48
2 ∧ Z))hG48 .

We use the homotopy fixed point spectral sequence

Hs(G48, (E2)t(E
hG48
2 ∧ Z)) =⇒ πt−sTMF ∧ TMF ∧ Z.
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By [BBGS18, Corollary 2.1],

(E2)∗(E
hG48
2 ∧ Z) ∼= (E2)∗(E2 ∧ Z)hG48 ∼= Mapc(G2/G48, (E2)∗Z)

with action of G48 given by the conjugation action on functions. Since we have an
isomorphism of G48-modules

(E2)∗Z ∼= CoIndG48

C3oGalF4[u±1] ∼= MapC3oGal(G48,F4[u±1])

it follows that

(E2)∗(E2 ∧ Z)hG48 ∼= MapC3oGal(G48,Mapc(G2/G48,F4[u±1])).

In particular, the E2-term of the homotopy fixed point spectral sequence is

H∗(G48, (E2)∗(E2 ∧ Z)hG48) ∼= H∗(C3 o Gal,Mapc(G2/G48,F4[u±1])).

Since C3 has order coprime to 2 and Gal acts freely on F4, the E2-term is concen-
trated in degree s = 0, and is given by

Mapc(G2/G48,F4[u±1])C3oGal.

The spectral sequence collapses, giving the result. �

Corollary 5.1.4. For s ≥ 1, there is a G2-equivariant isomorphism

(E2)∗(TMF∧s ∧ Z) ∼= Mapc((G2/G48)×s, (E2)∗Z)

with the diagonal action on (G2/G48)×s and action on Mapc the conjugation action
on functions. This leads to an isomorphism
TMFEs,∗1 (Z) ∼= π∗TMF∧s+1 ∧ Z ∼= MapcC3oGal(G2 ×G48 · · · ×G48 G2︸ ︷︷ ︸

s

/G48,F4[u±1]).

The left action of C3 o Gal on

G2 ×G48
· · · ×G48

G2/G48

is via by left multiplication on the first factor of G2.

Proof. We proceed by induction on s. The case of s = 1 is Lemma 5.1.2. Suppose
that the claim holds for s− 1. Then

E2 ∧ TMF∧s ∧ Z ' E2 ∧ EhG48
2 ∧ TMF∧(s−1) ∧ Z

' (E2 ∧ E2 ∧ TMF∧(s−1) ∧ Z)hG48

where G48 acts on the second copy of E2. The E2-page of the homotopy fixed point
spectral sequence is given by

H∗(G48, (E2)∗(E2 ∧ TMF∧(s−1) ∧ Z)).

Furthermore,

(E2)∗(E2 ∧ TMF∧(s−1) ∧ Z) ∼= Mapc(G2, (E2)∗TMF∧(s−1) ∧ Z)

∼= Mapc(G2,Mapc((G2/G48)×(s−1), (E2)∗Z)).

It follows that

H∗(G48, (E2)∗(E2 ∧ TMF∧(s−1) ∧ Z)) ∼= H0(G48, (E2)∗(E2 ∧ TMF∧(s−1) ∧ Z))

∼= Mapc((G2/G48)×s, (E2)∗Z).

which proves the first claim.
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Next,

TMF∧(s+1) ∧ Z ' (E2 ∧ TMF∧s ∧ Z)hG48 .

We use the homotopy fixed point spectral sequence again, together with the fact
that

(E2)∗(TMF∧s ∧ Z) ∼= Mapc((G2/G48)×s, (E2)∗Z)

∼= Mapc((G2/G48)×s,MapC3oGal(G48,F4[u±1]))

∼= MapC3oGal(G48,Mapc((G2/G48)×s,F4[u±1])).

The proof of the first isomorphism is finished in a way analogous to that of Lemma 5.1.2.

For a group G, a subgroup H ≤ G, an a G-set X, the shearing isomorphism is the
isomorphism

G×H X
∼=−→ G/H ×X,

(g, x) 7→ (g, gx).

Note that the shearing isomorphism is G-equivariant, where G acts on the source
through its action on the left factor, and G acts on the target through the diagonal
action.

Iterating the shearing isomorphism yields a G2-equivariant isomorphism

G2 ×G48
· · · ×G48

G2︸ ︷︷ ︸
s

/G48
∼= (G2/G48)×s,

and we therefore have an isomorphism

MapcC3oGal((G2/G48)×s,F4[u±1]) ∼= MapcC3oGal(G2 ×G48
· · · ×G48

G2︸ ︷︷ ︸
s

/G48,F4[u±1]).

�

It is not immediately clear how the groups

MapcC3oGal(G
×G48

s
2 /G48,F4[u±1])

in Corollary 5.1.4 form a cochain complex. We will now address this by showing
that they are a subcomplex of the E2-based Adams spectral sequence for Z.

The map of spectra TMF→ E2 induces a map of Adams spectral sequences. The
induced map on E1-terms

TMFE1(Z)→ E2E1(Z)

is given by the canonical inclusion

MapcC3oGal(G
×G48

s
2 /G48,F4[u±1]) ∼= MapcG48

(G×G48
s

2 /G48,CoIndG48

C3oGalF4[u±1])

⊆ Mapc(Gs2,CoIndG48

C3oGalF4[u±1])

where, by Proposition 4.3.1, the latter is the cobar complex for G2 acting on (E2)∗Z:

CsG2
((E2)∗Z) ∼= E2Es,∗1 (Z).



32 A. BEAUDRY, M. BEHRENS, P. BHATTACHARYA, D. CULVER, AND Z. XU

In particular, the differential in the cobar complex for G2 restricts to give the
differential on the subcomplex

MapcC3oGal(G
×G48

s
2 /G48,F4[u±1]) ⊆ Mapc(Gs2, (E2)∗Z).

We now have the following lemma.

Lemma 5.1.5. There is an embedding of cochain complexes

TMFE1(Z) ⊂ C∗
Σ2

((K2)∗).

where C∗
Σ2

((K2)∗) is the cobar complex of the Hopf algebra ((K2)∗,Σ2) of (4.2.9).

Proof. The injection comes from the map (∗) in the following diagram

TMFEs,∗1 (Z) Cs
Σ2

((K2)∗)

MapcC3oGal(G
×G48

s
2 /G48,F4[u±1])
� _

α

��

(∗) // Mapc(Ks,F4[u±1])

Mapc(G×G48
s

2 /G48,F4[u±1]) �
�

β
// Mapc(Gs2, (E2)∗Z)

γ

OO

where α is the natural inclusion, β is the composite coming from the isomorphism
of Corollary 4.3.2:

β : Mapc(G×G48
s

2 /G48,F4[u±1]) ∼= MapcQ8
(G×G48

s
2 /G48,CoIndQ8

1 F4[u±1])

∼= MapcQ8
(G×G48

s
2 /G48, (E2)∗Z)

↪→ Mapc(G×G48
s

2 /G48, (E2)∗Z),

and γ is the composite coming from the isomorphism of Corollary 4.3.7:

γ : Mapc(Gs2, (E2)∗Z)→ Mapc(Ss2 , (E2)∗Z)

∼= Mapc(Ss2 ,CoIndS2

K F4[u±1])

→ Mapc(Ks,CoIndS2

K F4[u±1])

(ev1)∗−−−−→ Mapc(Ks,F4[u±1]).

Here, (ev1)∗ is the map induced by the evaluation at 1 ∈ S2 map:

ev1 : CoIndS2

K F4[u±1] = MapK(S2,F4[u±1])→ F4[u±].

The map γ is easily seen to be a map of cochain complexes. The discussion prior to
the statement of this lemma implies that the composite β ◦ α is a map of cochain
complexes. This implies that (∗) is a map of cochain complexes. It follows from
the fact that the composite

(5.1.6) K → G2 → G2/G48

is a homeomorphism that the composite γ◦β is an isomorphism. Since α is injective,
we deduce that (∗) is injective. �
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5.2. The sub-Hopf algebra Σ̃(2) ⊂ Σ2Σ̃(2) ⊂ Σ2Σ̃(2) ⊂ Σ2. We shall now study a sub-Hopf algebra

(K(2)∗, Σ̃(2)) of the Hopf algebra ((K2)∗,Σ2) of (4.2.9) such that the image of
TMFE1(Z) in the cobar complex for Σ2 is the cobar complex for Σ̃(2).

Define Hopf algebras

Σ̃(2) ⊂ Σ(2) ⊂ Σ2

by letting Σ̃(2) be the image of the map

MapcC3oGal(G2/G48,F4[u±1]) ↪→ Mapc(K,F4[u±1]) = Σ2

and letting Σ(2) be the image of the map

MapcC3
(G2/G48,F4[u±1]) ↪→ Mapc(K,F4[u±1]) = Σ2.

Under the isomorphism

Mapc(G2/G48,F4[u±]) ∼= Mapc(K,F4[u±]) = Σ2

coming from the homeomorphism (5.1.6), the conjugation action of C3 o Gal on
Mapc(G2/G48,F4[u±]) induces an action of C3 o Gal on Σ2 such that

Σ(2) = Σ
C3

2 ,

Σ̃(2) = Σ(2)Gal = Σ
C3oGal

2 .

We now compute this action of C3 o Gal on

Σ2 = F4[u±1][t̄2, t̄3, · · · ]/(t̄22 + ωv2t̄2, t̄
4
k + v2k−1

2 t̄k).(5.2.1)

Here we use t̄k to denote the image of tk ∈ Σ2 (see 4.1.3) in Σ2. Let σ be the
generator of Gal, and we will denote the generator of C3 ⊂ G2 by ω, our fixed
choice of 3rd root of unity.

Recall [Bea15] that elements x ∈ K can be written as

x = 1 + a2S
2 + a3S

3 + · · ·
with a2 ∈ {0, ω} and ai ∈ {0, 1, ω, ω2} for i > 2. The function

t̄i ∈ Σ2 = Mapc(K,F4[u±1])

is given on elements x as above by the formula

t̄i(x) = aiu
1−2i .

Under the isomorphism

Mapc(K,F4[u±1]) ∼= Mapc(G2/G48,F4[u±1])

the function t̄i is given on a coset gG48 by

(5.2.2) t̄i(gG48) = ti(x)

where x is the unique element of K so that xG48 = gG48.

Note that C3 acts on F4[u±1] through F4-algebra maps by the formula

ω · u = ωu

and Gal acts through the Galois action on F4, so

F4[u±1]C3oGal = F2[v±1
2 ].
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Lemma 5.2.3. The functions t̄k ∈ Σ2 are C3 equivariant, so the conjugation action
of C3 on t̄k is trivial.

Proof. We have (for a2 ∈ {0, ω}):

t̄k(ω(1 + a2S
2 + a3S

3 + · · · )G48) = t̄k((ω + ωa2S
2 + ωa3S

3 + · · · )G48)

= t̄k((ω + ωa2S
2 + ωa3S

3 + · · · )ω2G48)

= t̄k((1 + a2S
2 + ω2a3S

3 + · · · )G48)

=

{
aku

1−2k , k even,

ω2aku
1−2k , k odd

= ω · aku1−2k

= ω · t̄k((1 + a2S
2 + a3S

3 + · · · )G48). �

Corollary 5.2.4. The sub-Hopf algebra Σ(2) ⊂ Σ2 is given by

Σ(2) = F4[v±1
2 ][t̄2, t̄3, · · · ]/(t̄22 + ωv2t̄2, t̄

4
k + v2k−1

2 t̄k).

Lemma 5.2.5. We have

σ · t̄2 = ωt̄2

and the element t̃2 := ω2t̄2 ∈ Σ(2) is Galois invariant.

Proof. For a2 ∈ {0, ω}, we compute the conjugation action on t̄2 (5.2.2) using the
fact that σ−1 = σ, Lemma 4.2.7, and the fact that α ≡ 1 (mod 2):

(σ · t̄2)((1 + a2S
2 + · · · )G48) = σ[t̄2(σ(1 + a2S

2 + · · · )G48)]

= σ[t̄2(−α(1 + aσ2S
2 + · · · )ασG48)]

= σ[t̄2((1 + aσ2S
2 + · · · )G48)]

=

{
σ[t̄2((1 + 0S2 + · · · )G48)], a2 = 0,

σ[t̄2((1 + ω2S2 + · · · )G48)], a2 = ω.

Now if a2 = 0, it follows we have

σ[t̄2(σ(1 + 0S2 + · · · )G48)] = 0

= ωt̄2((1 + 0S2 + · · · )G48).

However, if a2 = ω, the element

(1 + ω2S2 + · · · )

is not in K, and we have to rectify this by adjusting it by right multiplication with

−1 = 1 + S2 + S4 + · · · ∈ G2
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to get it into K. We have

σ[t̄2((1 + ω2S2 + · · · )G48)] = σ[t̄2((1 + ω2S2 + · · · )(−1)G48)]

= σ[t2((1 + ω2S2 + · · · )(−1))]

= σ[ωu−3]

= ω2u−3

= ωt̄2((1 + ωS2 + · · · )G48). �

Definition 5.2.6. Define σ̃(2) to be the image of the composite

π∗tmf ∧ tmf ∧ Z → π∗TMF ∧ TMF ∧ Z ↪→ Σ(2).

Lemma 5.2.7. The Hopf algebra structure on (F4[v±1
2 ],Σ(2)) restricts to a Hopf

algebra structure on (k(2)∗, σ̃(2)).

Proof. The only thing which is not obvious is that the coproduct of Σ(2) restricts
to a coproduct on σ̃(2). Using the fact that tmf ∧ Z ' k(2), it suffices to consider
the diagram, where ` is the unit:

k(2)∗(S ∧ tmf) //

(`∧1)∗

��

K(2)∗(S ∧ TMF) //

(`∧1)∗

��

Σ(2)

ψ

��

k(2)∗(tmf ∧ tmf)
(1) // K(2)∗(TMF ∧ TMF)

k(2)∗(tmf)⊗k(2)∗ k(2)∗tmf
(2)
//

(∗)

OO

K(2)∗(TMF)⊗K(2)∗ K(2)∗TMF //

∼=

OO

Σ(2)⊗F4[v±1
2 ] Σ(2)

Since (∗) is an isomorphism after inverting v2, it follows that maps (1) and (2) have
isomorphic images. The result follows. �

We will now explain how σ̃(2) has a decreasing “Adams filtration”. Recall that we
have

assEs,t2 (tmf ∧ tmf ∧ Z) ∼= assEs,t2 (k(2) ∧ tmf)

∼= F2[v2][ζ4
2 , ζ

2
3 , ζ

2
4 , . . .]/(ζ

8
i )

⊕ simple v2-torsion in the s = 0 line.

Here the generators lie in (t− s, s) bidegrees:

|ζ4
2 | = (12, 0),

|ζ2
i | = (2(2i − 1), 0),

|v2| = (6, 1).

The Adams spectral sequence collapses, and endows k(2)∗tmf with its Adams fil-
tration.

The v2-Bockstein filtration on k(2)∗tmf is the decreasing filtration given by

{(vi2)k(2)∗tmf}.
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The Adams filtrations and v2-Bockstein filtrations on k(2)∗tmf agree. This implies
that if we endow Σ(2) with a decreasing multiplicative Adams filtration where we
declare that v2 has Adams filtration 1 and that ti has Adams filtration 0, then the
map

k(2)∗tmf → Σ(2)

preserves Adams filtration, and therefore the image of this map σ̃(2) inherits an
Adams filtration which is compatible with that of k(2)∗tmf and Σ(2).

Theorem 5.2.8. The Hopf algebra σ̃(2) ⊂ Σ(2) has the form

σ̃(2) = F2[v±1
2 ][t̃22, t̃3, . . .]/((t̃

2
2)2 = v2

2 t̃
2
2, t̃

4
k = terms with Adams filtration > 0)

where t̃22 = (ω2t̄2)2 and for k ≥ 3

t̃k = t̄k + terms of higher Adams filtration.

There is an isomorphism of cochain complexes

C∗,∗(Z) ∼= C∗σ̃(2)(k(2)∗).

Proof. By Lemma 5.1.5, it suffices to establish that the image of the map

π∗tmf∧n+1 ∧ Z → TMFE1(Z) ↪→ C∗
Σ(2)

(K(2)∗)

is what we claim it is. We focus on the case of n = 2; it will be apparent that the
general case is essentially the same. By Lemma 3.1.6 and Proposition 3.1.7, the
ASS

assEs,t2 (k(2) ∧BP 〈2〉)⇒ k(2)t−sBP 〈2〉
has E2 term

assEs,t2 (k(2) ∧ tmf) ∼= F2[v2][ζ2
1 , ζ

2
2 , ζ

2
3 , . . .]/(ζ

8
i )

⊕ simple v2-torsion in the s = 0 line.

The images of the elements ti ∈ BP∗BP under the map

(5.2.9) BP∗BP → k(2)∗BP 〈2〉
(where BP 〈2〉 is the Wilson spectrum of (2.2.4)) are detected by ζ2

i in the ASS for
k(2)∗BP 〈2〉. In particular, the elements ti ∈ k(2)∗BP 〈2〉 have Adams filtration 0.

Since the Adams filtration and v2-Bockstein filtration on k(2)∗tmf agree, an element
in K(2)∗tmf ∼= K(2)∗TMF is in the image of the map

tmfE1,∗
1 (Z) ∼= k(2)∗tmf → v−1

2 k(2)∗tmf ∼= K(2)∗TMF ∼= TMFE1,∗
1 (Z)

if and only if it is detected (in the localized Adams spectral sequence) by an element
in the image of the map

assE2(k(2)∗tmf)→ v−1
2

assE2(k(2)∗tmf).

Consider the commutative diagram coming from the map (2.2.5)

(5.2.10) k(2)∗tmf //

(1)

��

K(2)∗TMF

��

� � // Mapc(G2/G48,F4[u±1])� _

(3)

��
k(2)∗BP 〈2〉

(2)
// K(2)∗E2

� � // Mapc(G2,F4[u±1])
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We wish to determine which v2 multiple of t̃2 is in positive Adams filtration. To
that end, we must compute the image of t̃2 under map (3) in (5.2.10). This is

tantamount to computing, for g ∈ G2, the value t̃2(gG48). Since we have already

established t̃2 is C3 o Gal-equivariant, we may assume

g = 1 + a1S + a2S
2 + · · · .

Write a1 = αω + βω2 with α, β ∈ F2. Using the fact that the elements j and k in
G48 are given by

j = 1 + ω2S + ωS2 + · · ·
k = 1 + ωS + ωS2 + · · ·

(see [Bea15]) we compute:

t̃2(gG48) = t̃2((1 + (αω + βω2)S + a2S
2 + · · · )G48)

= t̃2((1 + (αω + βω2)S + a2S
2 + · · · )kαjβG48)

= t̃2((1 + (a2 + (α+ β) + αβω2)S2 + · · · )G48).

Let

Tr,N : F4 → F2

be the trace and norm, respectively, so that Tr(a) = a+ aσ and N(a) = aaσ. From

the definition of t̃2 we find

t̃2((1 + a2S
2 + · · · )G48) = Tr(a2)u−3.

It follows from the above calculation that

t̃2((1 + a1S + a2S
2 + · · · )G48) = (Tr(a2) + N(a1))u−3.

Thus the image of t̃2 under map (3) in (5.2.10) is the image of

t2 + t22v
−1
2 + t31

under map (2). Since the elements ti ∈ k(2)∗BP 〈2〉 all have Adams filtration 0, it

follows that v2t̃2 = t̃22 ∈ K(2)∗TMF lifts to an element

(5.2.11) t̃22 = v2t2 + t22 + v2t
3
1

of k(2)∗tmf.

For k ≥ 3, we define t̃k ∈ σ̃(2) to be the image of an element of k(2)∗tmf detected
by ζ2

k . Since in the Adams spectral sequence for k(2)∗BP 〈2〉 the element ζ2
k detects

tk, we deduce that the image of t̃k under (1) satisfies

t̃k = tk + terms of positive Adams filtration.

The result for n = 2 follows.

Similar reasoning shows that the image of

tmfEn,∗1 (Z) ∼= k(2)∗tmf∧n → K(2)∗TMF∧n = Σ̃(2)⊗K(2)∗n ∼= TMFEn,∗1 (Z)

is σ̃(2)⊗k(2)∗n. �
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Name Location

Σ(2) (4.1.1)
Σ2 (4.1.2)
Σ2 (4.2.9) & (5.2.1)

Σ(2) Cor. 5.2.4

Σ̃(2) Sec. 5.2
σ(2) (6.2.1)
σ(2) (5.2.13)
σ̃(2) Def. 5.2.6 & Th. 5.2.8

Table 1. List of Hopf algebras and where to find them. Our
convention is to use the bar to remind the reader that we have
taken a quotient. A symbol with a tilde denotes a sub-algebra of
the same symbol with a bar. The lowercase denotes the respective
connective versions.

Remark 5.2.12. Note that while we do not know the full structure of σ̃(2) because
of the complicated action of Gal on Σ(2), we do completely know the structure of
σ(2) := σ̃(2)⊗ F4 ⊂ Σ(2):

σ(2) = F4[v2][t̃22, t̄3, · · · ]/((t̃22)2 + v2
2 t̃

2
2, t̄

4
k + v2k−1

2 t̄k).(5.2.13)

6. The cohomology of the good complex

In the previous section we established that

C∗,∗(Z) ∼= C∗σ̃(2)(k(2)∗).

In this section we will compute the E1-term of a spectral sequence which computes
the cohomology

H∗(σ̃(2)) := H∗(C∗σ̃(2)(k(2)∗)) ∼= H(C∗,∗(Z)) =: H∗,∗(C).
In our low dimensional range, it will turn out that there are no possible differentials
in this spectral sequence.

6.1. Overview of the strategy. Recall from the previous section that we really
only have a complete understanding of the base change

(6.1.1) σ(2) := σ̃(2)⊗ F4

and we only know the generators of σ̃(2) in σ(2) modulo terms of higher Adams
filtration. Our approach to understanding H∗(σ̃(2)) will be to understand aspects
of the cohomology of σ(2), and then to infer results about the cohomology of σ̃(2).

Our method of computing the cohomology of σ(2), and comparing it with the
cohomology of σ̃(2), will be to adapt a filtration employed by Ravenel to compute
the cohomology of the Morava stabilizer algebras. This filtration will result in a
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pair of May-type spectral sequences, which we refer to as May-Ravenel spectral
sequences:

MRE1(σ̃(2)) = H∗(EMR
0 σ̃(2)) +3

��

H∗(σ̃(2))

��
MRE1(σ(2)) = H∗(EMR

0 σ(2)) +3 H∗(σ(2))

The E1-terms MRE1 will be computed by endowing EMR
0 σ̃(2) and EMR

0 σ(2) with
Adams filtrations, resulting in a pair of Adams filtration spectral sequences (AFSS)

AFE1(σ̃(2)) +3

��

H∗(EMR
0 σ̃(2))

��
AFE1(σ(2)) +3 H∗(EMR

0 σ(2))

The May-Ravenel E1-term MRE1(σ(2)) is the cohomology of a certain restricted Lie
algebra l(2). This cohomology may be computed by a Chevallay-Eilenberg complex,
whose differentials were explicitly computed by Ravenel. The key observations
which we employ are:

(1) The Chevallay-Eilenberg complex for l(2) is isomorphic to AFE1(σ(2)).

(2) The differentials in the Adams filtration spectral sequence {AFEr(σ(2))}
are determined by the differentials in the Chevallay-Eilenberg complex.

(3) The image of AFE1(σ̃(2)) in AFE1(σ(2)) can be computed precisely, since
we know the generators of σ̃(2) modulo terms of higher Adams filtration.
This allows us to completely compute the differentials in the Adams filtra-
tion spectral sequence {AFEr(σ̃(2))}.

Even with knowing the differentials, the combinatorics for computing the spectral
sequence {AFEr(σ(2))} is complicated. The computation of the spectral sequence

{AFEr(σ(2))} will be facilitated by refining the Adams filtration with a lexico-
graphical filtration. This results in a lexicographical filtration spectral sequence
(LFSS)

AFE1(σ(2)) = LFE0(σ(2))⇒ MRE1(σ(2)).

We will completely compute the LFSS spectral sequence, deduce from this the
AFSS for σ(2), deduce from that the AFSS for σ̃(2), and thus completely compute
MRE1(σ̃(2)). In the low dimensional range we consider for our application, there
will be no possible differentials in the May-Ravenel spectral sequence

MRE1(σ̃(2))⇒ H∗(σ̃(2)).

6.2. The May-Ravenel spectral sequence. Let (F2, S(2)) be the Hopf algebra
obtained from (K(2)∗,Σ(2)) by setting v2 = 1. In [Rav86, Chapter 3], Ravenel
computed

H∗(S(2)) = Ext∗S(2)(F2,F2).

The computation for (K(2)∗,Σ(2)) and ((K2)∗,Σ2) can be done using similar meth-
ods and all differentials follow from Ravenel’s work by reintroducing the grading.
We begin by summarizing Ravenel’s method, which we then apply to our cases.
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In [Rav86, Section 4.3], Ravenel defines a filtration of Hopf algebroids onBP∗BP/IN .
Specializing to the case of N = p = 2, this induces a filtration on (k(2)∗, σ(2)),
where

σ(2) = F2[v2][t1, t2, . . .]/(t
4
k − v2k−1

2 tk).(6.2.1)

There is a unique increasing multiplicative filtration (which we call the May-Ravenel
filtration) on σ(2) such that

degMR(v2) = 0,

degMR(t2
j

1 ) = 1,

degMR(t2
j

2k+1) = 3 · 2k−1, k > 0,

degMR(t2
j

2k) = 2k.

Further, Ravenel [Rav86, 4.3.24] proves that this is a filtration of Hopf algebroids,
so that the associated graded E0(σ(2)) is a Hopf algebra. It is given by the exterior
algebra

E0(σ(2)) ∼= F2[v2]⊗ E[ti,j : 0 < i, j ∈ {0, 1}]

where ti,j is the image of t2
j

i .

From this filtration, we get a May type spectral sequence, which we call the May-
Ravenel spectral sequence:

MREs,t,f1 (σ(2)) =⇒ Hs(σ(2))t.

Here s is the cohomological degree, t is the internal degree, and f is the May-Ravenel
filtration. The first step is to compute MRE1(σ(2)).

Let E0(σ(2)) be the F2-linear dual of E0(σ(2)) and xi,j be the dual of ti,j . Since
the ti,j ’s form a basis of the indecomposables of E0(σ(2)), it follows that xi,j forms
a basis for the restricted Lie algebra of primitives

l(2) := PE0(σ(2))

and MRE1 = H∗(l(2)). Applying the methods of [May66, Remark 10], we obtain a
Chevallay-Eilenberg cochain complex

C∗,∗,∗CE (l(2)) := F2[v2]⊗ F2[hi,j : 0 < i, 0 ≤ j ≤ 1]

for elements hi,j of cohomological degree s = 1, internal degree t = 2j+1(2i−1) and

with May-Ravenel filtration given by that of t2
j

i . Here, hi,j represents the dual of
the element May calls γ1(xi,j). The E1-term of the May-Ravenel spectral sequence
is the cohomology of the Chevallay-Eilenberg complex:

Hs,t,f (C∗,∗,∗CE (l(2))) = MREs,t,f1 (σ(2)).

The differentials are determined by the Lie bracket and restriction of PE0(σ(2)).
For σ(2), these are obtained by “remembering the grading” in [Rav86, 6.3.3]. We
obtain the following differentials.
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Theorem 6.2.2. Let χ2 = v2h2,0 + h2,1. The differentials in C∗,∗,∗CE (l(2)) are
determined by d(h1,0) = d(h1,1) = 0 and

d(h2,0) = h1,0h1,1 d(h2,1) = v2h1,0h1,1

d(h3,0) = h1,0χ2 d(h3,1) = v2
2h1,1χ2

d(h4,0) = h1,0h3,1 + v2
2h1,1h3,0 + v2χ

2
2 d(h4,1) = v5

2h1,0h3,1 + v7
2h1,1h3,0 + v6

2χ
2
2

d(hi,0) = v2h
2
i−2,1 d(hi,1) = v2i−1

2 h2
i−2,0

where the last two identities hold for i ≥ 5.

Now, we can put the same filtration on Σ2, and this induces a filtration on Σ2 which
restricts to a filtration on σ(2) (6.1.1) and σ̃(2). The corresponding associated
graded Hopf algebra in the case of σ(2) is given by

EMR
0 (σ(2)) ∼= F4[v2]⊗ E[t̃2,1, t̄3,0, t̄3,1, t̄4,0, t̄4,1, · · · ].

As before, we have a May-Ravenel spectral sequence

MREs,t,f1 (σ(2)) =⇒ Hs,t(σ(2)),

and MREs,t,f1 (σ(2)) = Hs,t,f (l(2)) is the cohomology of the Chevallay-Eilenberg
complex

C∗,∗,∗CE (l(2)) ∼= F4[v2, h̃2,1, h3,0, h3,1, h4,0, h4,1, . . .].

Theorem 6.2.3. The differentials in the Chevallay-Eilenberg complex C∗,∗,∗CE (l(2))
are determined by

d(h̃2,1) = d(h3,0) = d(h3,1) = 0

and

d(h4,0) = v2h̃
2
2,1 d(h4,1) = v6

2h̃
2
2,1

d(hi,0) = v2h
2
i−2,1 d(hi,1) = v2i−1

2 h2
i−2,0

where the last two identities hold for i ≥ 5.

Proof. The element t̃22 of (5.2.11) is given by

t̃22 = v2t2 + t22 + v2t
3
1.

Therefore, since we have t1 ≡ 0 in σ(2) ⊂ Σ2 (4.2.9), we deduce that under the
map

σ(2)→ σ(2)

we have

v2t2 + t22 7→ t̃22.

It follows that under the map of Chevallay-Eilenberg complexes

C∗,∗,∗CE (l(2))→ C∗,∗,∗CE (l(2))

we have

χ2 7→ h̃2,1.
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The result therefore follows from Theorem 6.2.2 (and the fact that t1 ≡ 0 in σ(2)).
�

6.3. The lexicographical filtration spectral sequence. In order to compute
the cohomology of the Chevallay-Eilenberg complex C∗,∗,∗CE (l(2)), we place an in-
creasing filtration on the Chevallay-Eilenberg complex by declaring that a mono-
mial

vm2 h
k3
3,0h

k4
4,0 · · · h̃l22,1hl33,1h̃l44,1 · · ·

has lexicographical filtration tridegree

degLF = (−m, l, k)

where

l = l̄5 + 2l̄6 + 22 l̄7 + 23 l̄8 + · · · ,
k = k̄4 + 2k̄5 + 22k̄6 + 23k̄7 + · · · ,

n̄ ∈ {0, 1} is n mod 2, and

h̃4,1 := h4,1 + v5
2h4,0.

We order these tridegrees via left lexicographical order. That is to say,

(m, l, k) < (m′, l′, k′)

if m < m′, or m = m′ and l < l′, or m = m′ and l = l′ and k < k′.

Note that the value m above is the negative of the Adams filtration (defined by
declaring the Adams filtration of v2 is 1, and all other generators have Adams fil-
tration 0), so lexicographical filtration is a refinement of Adams filtration. The
differentials of Theorem 6.2.3 decrease lexicographical ordering, resulting in an in-
creasing filtration on C∗,∗,∗CE (l(2)) and a transfinite lexicographical filtration spectral
sequence (LFSS)

Cs,t,fCE (l(2))m,k,l = LFE
s,t,f,(m,l,k)
1,0,0 ⇒ MREs,t,f1 (σ(2)).

Transfinite spectral sequences were introduced by Hu in [Hu99]. Hu’s indexing
uses ordinals, but to simplify matters we are repackaging the relevant ordinals as
lexicographical tridegrees. In this way, we can explain the transfinite nature of the
spectral sequence in our particular case.

Namely, the lexicographical filtration spectral sequence has terms

LFE
s,t,f,(m,l,k)
r,r′,r′′

with differentials

dr,r′,r′′ : LFE
s,t,f,(m,l,k)
r,r′,r′′ → LFE

s+1,t,f,(m−r,l−r′,k−r′′)
r,r′,r′′

and
LFE

s,t,f,(m,l,k)
r,r′,r′′+1

∼= Hs,t,f,(m,l,k)(LFEr,r′,r′′ , dr,r′,r′′).

Because this spectral sequence is finitely generated in each multi-degree, conver-
gence can be explained as follows. For r′′ � 0, we have

LFE
s,t,f,(m,l,k)
r,r′,r′′ = LFE

s,t,f,(m,l,k)
r,r′+1,0 .
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and for r′ � 0 we have
LFE

s,t,f,(m,l,k)
r,r′,0 = LFE

s,t,f,(m,l,k)
r+1,0,0 .

There is a lexicographically indexed increasing filtration {F s,t,fm,l,k} on MREs,t,f1 such
that for r � 0,

LFE
s,t,f,(m,l,k)
r,0,0

∼= F s,t,fm,l,k/F
s,t,f
m,l,k−1.

Because the lexicographical filtration is a multiplicative filtration on a differential
graded algebra, the lexicographical filtration spectral sequence is a spectral sequence
of algebras. By Theorem 6.2.3, the elements

h̃2,1, h3,0, h3,1, and h̃4,1

are permanent cycles in the lexicographical filtration spectral sequence, and we
have

d1,0,1(h4,0) = v2h̃
2
2,1,

d1,0,2i−4(hi,0) = v2h
2
i−2,1,

d2i−1,2i−5,0(hi,1) = v2i−1

2 h2
i−2,0.

(6.3.1)

We note that the elements h2
i,0 and h2

i,1 are permanent cycles, because they corre-
spond to cocyles in the Chevallay-Eilenberg complex.

We now run the lexicographical filtration spectral sequence. We will run the dif-
ferentials in two rounds. The first round (Lemma 6.3.2)) will consist of those
differentials of the form d1,r′,r′′ which change Adams filtration by 1. The second
round (Theorem 6.3.6) will consist of those differentials of the form dr,r′,r′′ with
r > 1 which change Adams filtration by a quantity greater than 1.

Lemma 6.3.2. The E2,0,0 page of the lexicographical filtration spectral sequence
obtained by running all differentials of the form d1,r′,r′′ has a basis given by:

(I) vm2 h
k3
3,0h

2k4
4,0 h

2k5
5,0 · · · h̃ε22,1hε33,1 · · · , m, kj ≥ 0; εj ∈ {0, 1},

(II) hk33,0h
2k4
4,0 · · ·h

2ki+2

i+2,0h
ki+3

i+3,0 · · · h̃ε22,1 · · ·h
εi−1

i−1,1h
li+2
i,1 h

li+1

i+1,1 · · · ,

i ≥ 2; kj , lj ≥ 0; εj ∈ {0, 1}.

Proof. The strategy will be to first observe that the monomials of type (I) and (II)
are d1,r′,r′′ cycles for all r′ and r′′. We will then show that all of the other monomials
are either the source or target of a non-trivial differential in the lexicographical
filtration spectral sequence.

To show that a monomial x of the form (I) or (II) of Adams filtration m is a
d1,r′,r′′ -cycles, it suffices to show that the element

x ∈ C∗,∗,∗CE (l(2))

in the Chevallay-Eilenberg complex can be completed to an element

x+ y ∈ C∗,∗,∗CE (l(2))

where
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(1) y has lower lexicographical filtration than x, and
(2) the Chevallay-Eilenberg differential

dCE(x+ y)

has Adams filtration greater than m+ 1.

In the case of the monomials of type (I), this is trivially true - the elements x of
Adams filtration m already satisfy the property that dCE(x) has Adams filtration
greater than m + 1. In the case of terms of type (II), one can check that the sum
(with ε̄j ∈ {0, 1})

x(k3, 2k4, . . . 2ki+2, 2ki+3 + ε̄i+3, . . . ; ε2, . . . εi−1, li + 2, li+1, . . .) :=

hk33,0h
2k4
4,0 · · ·h

2ki+2

i+2,0h
2ki+3+ε̄i+3

i+3,0 h
2ki+4+ε̄i+4

i+4,0 h
2ki+5+ε̄i+5

i+5,0 · · · h̃ε22,1 · · ·h
εi−1

i−1,1h
li+2
i,1 h

li+1

i+1,1 · · ·
+ε̄i+3h

k3
3,0h

2k4
4,0 · · ·h

2ki+2+1
i+2,0 h

2ki+3

i+3,0h
2ki+4+ε̄i+4

i+4,0 h
2ki+5+ε̄i+5

i+5,0 · · · h̃ε22,1 · · ·h
εi−1

i−1,1h
li
i,1h

li+1+2
i+1,1 h

li+2

i+2,1 · · ·
+ε̄i+4h

k3
3,0h

2k4
4,0 · · ·h

2ki+2+1
i+2,0 h

2ki+3+ε̄i+3

i+3,0 h
2ki+4

i+4,0h
2ki+5+ε̄i+5

i+5,0 · · · h̃ε22,1 · · ·h
εi−1

i−1,1h
li
i,1h

li+1

i+1,1h
li+2+2
i+2,1 · · ·

+ε̄i+5h
k3
3,0h

2k4
4,0 · · ·h

2ki+2+1
i+2,0 h

2ki+3+ε̄i+3

i+3,0 h
2ki+4+ε̄i+4

i+4,0 h
2ki+5

i+5,0 · · · h̃ε22,1 · · ·h
εi−1

i−1,1h
li
i,1 · · ·h

li+2

i+2,1h
li+3+2
i+3,1 · · ·

+ · · ·
satisfies (1) and (2) above.

We now compute the differentials of the form d1,r′,r′′ in the lexicographical filtration
spectral sequence, using (6.3.1). The d1,0,1 differentials are

d1,0,1(vm2 h
k3
3,0h

2k4+1
4,0 hk55,0 · · · h̃l22,1hl33,1h̃l44,1 · · · ) = vm+1

2 hk33,0h
2k4
4,0 h

k5
5,0 · · · h̃l2+2

2,1 hl33,1h̃
l4
4,1 · · · .

The remaining monomials

hk33,0h
2k4
4,0 h

k5
5,0 · · · h̃l2+2

2,1 hl33,1h̃
l4
4,1 · · · ,

vm2 h
k3
3,0h

2k4
4,0 h

k5
5,0 · · · h̃ε22,1hl33,1h̃l44,1 · · · ,

where ε2 ∈ {0, 1}, are d1,0,1-cycles, and therefore constitute a basis for the E1,0,2

page.

The d1,0,2 differentials are of the form

d1,0,2(vm2 h
k3
3,0h

2k4
4,0 h

2k5+1
5,0 hk66,0 · · · h̃ε22,1hl33,1h̃l44,1 · · · ) = vm+1

2 hk33,0h
2k4
4,0 h

2k5
5,0 h

k6
6,0 · · · h̃ε22,1hl3+2

3,1 h̃l44,1 · · · .
The remaining monomials

hk33,0h
2k4
4,0 h

k5
5,0 · · · h̃l2+2

2,1 hl33,1h̃
l4
4,1 · · · ,(6.3.3)

hk33,0h
2k4
4,0 h

2k5
5,0 h

k6
6,0 · · · h̃ε22,1hl3+2

3,1 h̃l44,1 · · · ,(6.3.4)

vm2 h
k3
3,0h

2k4
4,0 h

2k5
5,0 h

k6
6,0 · · · h̃ε22,1hε33,1h̃l44,1 · · · ,(6.3.5)

with ε3 ∈ {0, 1}, are d1,0,2 and d1,0,3 cycles (in the case of (6.3.3), this is because
it is a cocycle of type (II), and in the cases of (6.3.4) and (6.3.5), this follows from
(6.3.1)). Thus these form a basis of the E1,0,4-page.

Repeating this process, the result follows. �

We now run the differentials which change Adams filtration by more than 1. The
idea is that these differentials are non-trivial only on terms of type (I), and these
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differentials hit terms of type (I). Terms of type (II) are going to be permanent
cycles in the lexicographical filtration spectral sequence.

Theorem 6.3.6. The May-Ravenel E1-term MRE1(σ(2)) has a basis over F4 whose
representatives in the lexicographical filtration spectral sequence are given by:

(I′) vm2 h
ε̄3
3,0h̃

ε2
2,1h

ε3
3,1h̃

ε4
4,1,

m ≥ 0; εj , ε̄j ∈ {0, 1},

(I′′) v<2i+1

2 hε̄33,0h
2(ki+1)
i,0 h

2ki+1

i+1,0h
2ki+2

i+2,0 · · · h̃ε22,1hε33,1h̃ε44,1h
εi+3

i+3,1 · · · .

i ≥ 3; kj ≥ 0; εj , ε̄j ∈ {0, 1},

(II) hk33,0h
2k4
4,0 · · ·h

2ki+2

i+2,0h
ki+3

i+3,0 · · · h̃ε22,1 · · ·h
εi−1

i−1,1h
li+2
i,1 h

li+1

i+1,1 · · · .

i ≥ 2; kj , lj ≥ 0; εj ∈ {0, 1}.

For the monomials of type (I”), the notation v<n2 x means monomials of the form
vi2x for i < n.

Proof. We proceed using the strategy of the proof of Lemma 6.3.2. We start by
showing that the monomials of types (I’), (I”), and (II) are permanent cycles by
showing they complete to cocycles in the Chevallay-Eilenberg complex.

The terms (I′) are simply cocycles. The terms (I′′) complete to cocycles given by

hε̄33,0h
2(ki+1)
i,0 h

2ki+1

i+1,0 · · · h̃ε22,1hε33,1h̃ε44,1h
εi+3

i+3,1 · · ·
+ εi+3v

2i+2−2i+1

2 hε̄33,0h
2ki
i,0 h

2(ki+1+1)
i+1,0 h

2ki+2

i+2,0 · · · h̃ε22,1hε33,1h̃ε44,1hi+2,1h
εi+4

i+4,1 · · ·
+ εi+4v

2i+3−2i+1

2 hε̄33,0h
2ki
i,0 h

2ki+1

i+1,0h
2(ki+2+1)
i+2,0 · · · h̃ε22,1hε33,1h̃ε44,1hi+2,1h

εi+3

i+3,1h
εi+5

i+5,1 · · ·
+ · · ·

For the terms of type (II), we observe that the Cartan-Eilenberg differential dCE

is given on the terms x(−) appearing in the proof of Lemma 6.3.2 by

dCEx(k3, 2k4, . . . 2ki+2, 2ki+3 + ε̄i+3, . . . ; ε2, . . . εi−1, li + 2, li+1, . . .) =

ε5v
24

2 x(k3+2, 2k4, . . . 2ki+2, 2ki+3+ε̄i+3, . . . ; ε2, . . . , ε4, 0, ε6, . . . , εi−1, li+2, li+1, . . .)

+ε6v
25

2 x(k3, 2(k4+1), . . . 2ki+2, 2ki+3+ε̄i+3, . . . ; ε2, . . . , ε4, ε5, 0, ε7, . . . , εi−1, li+2, li+1, . . .)

+ · · ·
+l̄iv

2i−1

2 x(k3, 2k4, . . . , 2(ki−2+1), . . . , 2ki+2, 2ki+3+ε̄i+3, . . . ; ε2, . . . εi−1, li−1+2, li+1, . . .)

+l̄i+1v
2i

2 x(k3, 2k4, . . . , 2(ki−1+1), . . . , 2ki+2, 2ki+3+ε̄i+3, . . . ; ε2, . . . εi−1, li+2, li+1−1, . . .)

+ · · · .
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However, also note that

dCE(hk33,0h
2k4
4,0 · · ·h

2ki+2+1
i+2,0 h

2ki+3+ε̄i+3

i+3,0 h
2ki+4+ε̄i+4

i+4,0 · · · h̃ε22,1 · · ·h
εi−1

i−1,1h
li
i,1h

li+1

i+1,1 · · ·
= v2x(k3, 2k4, . . . , 2ki+2, 2ki+3 + ε̄i+3, . . . ; ε2, . . . εi−1, li + 2, li+1, . . .).

We therefore find that the terms of type (II) complete to the following cocycles:

x(k3, 2k4, . . . 2ki+2, 2ki+3 + ε̄i+3, . . . ; ε2, . . . εi−1, li + 2, li+1, . . .)

+ ε5v
24−1
2 hk3+2

3,0 h2k4
4,0 · · ·h

2ki+2+1
i+2,0 h

2ki+3+ε̄i+3

i+3,0 · · · h̃ε22,1 · · · h̃ε44,1hε66,1 · · ·h
εi−1

i−1,1h
li
i,1 · · ·

+ ε6v
25−1
2 hk33,0h

2(k4+1)
4,0 · · ·h2ki+2+1

i+2,0 h
2ki+3+ε̄i+3

i+3,0 · · · h̃ε22,1 · · · h̃ε44,1hε55,1hε77,1 · · ·h
εi−1

i−1,1h
li
i,1 · · ·

+ · · ·
+l̄iv

2i−1−1
2 hk33,0h

2k4
4,0 · · ·h

2(ki−2+1)
i−2,0 · · ·h2ki+2+1

i+2,0 h
2ki+3+ε̄i+3

i+3,0 · · · h̃ε22,1 · · · h̃ε44,1hε55,1 · · ·h
εi−1

i−1,1h
li−1
i,1 · · ·

+l̄i+1v
2i−1
2 hk33,0h

2k4
4,0 · · ·h

2(ki−1+1)
i−2,0 · · ·h2ki+2+1

i+2,0 h
2ki+3+ε̄i+3

i+3,0 · · · h̃ε22,1 · · · h̃ε44,1hε55,1 · · ·h
εi−1

i−1,1h
li
i,1h

li+1−1
i+1,1 · · ·

+ · · ·
+l̄i+4v

2i+3−1
2 hk33,0h

2k4
4,0 · · ·h

2(ki+2+1)+1
i+2,0 h

2ki+3+ε̄i+3

i+3,0 · · · h̃ε22,1 · · · h̃ε44,1hε55,1 · · ·h
εi−1

i−1,1h
li
i,1 · · ·h

li+4−1
i+4,1 · · ·

+l̄i+5v
2i+4−1
2 hk33,0h

2k4
4,0 · · ·h

2ki+2+1
i+2,0 h

2(ki+3+1)+ε̄i+3

i+3,0 · · · h̃ε22,1 · · · h̃ε44,1hε66,1 · · ·h
εi−1

i−1,1h
li
i,1 · · ·h

li+5−1
i+5,1 · · ·

+ · · · .

We now will proceed by showing that the rest of the monomials of type (I) are
either sources or targets of non-trivial dr,r′,r′′ differentials with r ≥ 2.

The first round of differentials in the LFSS will be of the form

d16,1,0(vm2 h
ε̄3
3,0h

2k3
3,0 h

2k4
4,0 h

2k5
5,0 · · · h̃ε22,1hε33,1h̃ε44,1h5,1h

ε6
6,1 · · · )

= vm+16
2 hε̄33,0h

2(k3+1)
3,0 h2k4

4,0 h
2k5
5,0 · · · h̃ε22,1hε33,1h̃ε44,1hε66,1 · · ·

with m, kj ∈ N and εj , ε̄j ∈ {0, 1}. Of the terms of type (I), what remains are terms
of the forms

vm2 h
ε̄3
3,0h

2k4
4,0 h

2k5
5,0 · · · h̃ε22,1hε33,1h̃ε44,1hε66,1 · · · ,

v<16
2 hε̄33,0h

2(k3+1)
3,0 h2k4

4,0 · · · h̃ε22,1hε33,1h̃ε44,1hε66,1 · · · .
These are seen to persist to the E32,2,0-page by (6.3.1). The next round of differ-
entials will be of the form

d32,2,0(vm2 h
ε̄3
3,0h

2k4
4,0 h

2k5
5,0 · · · h̃ε22,1hε33,1h̃ε44,1h6,1h

ε7
7,1 · · · )

= vm+32
2 hε̄33,0h

2(k4+1)
4,0 h2k5

5,0 · · · h̃ε22,1hε33,1h̃ε44,1hε77,1 · · · .
Of the terms of type (I), what remain are terms of the forms

vm2 h
ε̄3
3,0h

2k5
5,0 · · · h̃ε22,1hε33,1h̃ε44,1hε77,1 · · · ,(6.3.7)

v<16
2 hε̄33,0h

2(k3+1)
3,0 h2k4

4,0 · · · h̃ε22,1hε33,1h̃ε44,1hε66,1 · · · ,(6.3.8)

v<32
2 hε̄33,0h

2(k4+1)
4,0 h2k5

5,0 · · · h̃ε22,1hε33,1h̃ε44,1hε77,1 · · · .(6.3.9)

The terms (6.3.8) are cocycles of type (I”), and the terms (6.3.7), (6.3.9) persist to
E64,4,0 by (6.3.1).
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Continuing in this manner, we get all of the differentials in the LFSS. �

6.4. The Adams filtration spectral sequence. Ideally we would like to re-
produce the analysis of the previous section by replacing the Hopf algebra σ(2)
with σ̃(2). However, we do not have an analog of Theorem 6.2.3 for σ̃(2). This
would be a prerequisite to forming a LFSS, as we need to know the May-Ravenel
d0-differentials decrease lexicographical filtration. We instead will work with the
coarser filtration given by Adams filtration. The advantage of Adams filtration is
that we know differentials preserve Adams filtration for topological reasons.

Endow σ(2) and its subalgebra σ̃(2) with an increasing “Adams filtration,” by
declaring AF (v2) = 1, and giving all other generators “Adams filtration” 0. Note
that in the case of σ̃(2) = k(2)∗tmf/(v2-torsion), this agrees with the filtration
coming from the ASS for k(2) ∧ tmf. Therefore, the differentials in the cobar
complex for σ̃(2) respect Adams filtration because, by Theorem 5.2.8, they come
from maps of spectra (the connecting maps in the tmf-Adams resolution for Z).
Since σ(2) ∼= σ̃(2)⊗ F4, the same is true for the cobar complex of σ(2).

The algebra generators of

EAF0 σ(2) = F4[v2, t̃22, t̄3, t̄4, . . .]/(t̃
2
2 = 0, t̄4k = 0)

are seen to be primitive (see, for example, [Rav92a, Prop. B.5.15]). Furthermore,
Theorem 5.2.8 implies that EAF0 σ̃(2) is the primitively generated k(2)∗-subalgebra

F2[v2, t̃22, t̄3, t̄4, . . .]/(t̃
2
2 = 0, t̄4k = 0) ⊂ EAF0 σ(2).

Since there is an isomorphism of cochain complexes

C∗,∗,∗alg (Z) ∼= C∗EAF0 σ̃(2)(k(2)∗),

we immediately deduce the following important algebraic consequence.

Theorem 6.4.1. The cohomology of the algebraic good complex for Z is given by

H∗,∗,∗(Calg) ∼= F2[v2, h̃2,1, hi,j ] i≥3
j=0,1

.

We may likewise endow EMR
0 σ(2) and EMR

0 σ̃(2) with Adams filtration. Then
EAF0 EMR

0 σ(2) is given by

F4[v2]⊗ E[t̃2,1, ti,j ] i≥3
j=0,1

with t̃2,1, ti,j primitive, and EAF0 EMR
0 σ̃(2) is given by the subalgebra

F2[v2]⊗ E[t̃2,1, ti,j ] i≥3
j=0,1

.

This results in a pair of Adams filtration spectral sequences

AFE1(σ̃(2)) +3

��

H∗(EMR
0 σ̃(2))

��
AFE1(σ(2)) +3 H∗(EMR

0 σ(2))
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with
AFE1(σ̃(2)) ∼= F2[v2, h̃2,1, hi,j ] i≥3

j=0,1
,

AFE1(σ(2)) ∼= F4[v2, h̃2,1, hi,j ] i≥3
j=0,1

.

We will now compute the Adams filtration spectral sequence AFEr(σ(2)) by relating
it to the LFSS.

The Chevallay-Eilenberg complex C∗CE(l(2)) is a quotient of the cobar complex for
EMR

0 σ(2)

C∗EMR0 σ(2) � C∗CE(l(2)).

By endowing C∗CE(l(2)) with an Adams filtration, we get an associated spectral

sequence AFEr(l(2)) and a map of spectral sequences

AFE1(σ(2)) +3

��

H∗(EMR
0 σ(2))

AFE1(l(2)) +3 H∗(EMR
0 σ(2))

From Theorem 6.2.3 we see that all differentials in C∗CE(l(2)) increase Adams fil-
tration, and thus

AFE1(l(2)) = H∗(EAF0 C∗CE(l(2)))

= EAF0 C∗CE(l(2))

= F4[v2, h̃2,1, hi,j ] i≥3
j=0,1

.

We deduce the following.

Proposition 6.4.2. The map
AFE1(σ(2))→ AFE1(l(2))

is an isomorphism, and thus there is an isomorphism of spectral sequences

{AFEr(σ(2))} ∼= {AFEr(l(2))}.

Since lexicographic filtration is a refinement of Adams filtration, the differentials
in the AFSS AFEr(l(2)) are those differentials in the LFSS which change Adams
filtration by r. We therefore have

AFEr(σ(2)) = LFEr,0,0,

and for every differential
dLFr,r′,r′′(x) = y

in the LFSS we have a corresponding differential

dAFr (x) = y

in the AFSS. Therefore, as we have determined the LFSS, we have implicitly de-
termined the AFSS for l(2), and therefore the AFSS for σ(2). We deduce that the
AFSS for σ̃(2) is obtained by restricting the differentials from the AFSS for σ(2).
Therefore, from Theorem 6.3.6 we deduce:
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Theorem 6.4.3. The May-Ravenel E1-term MRE1(σ̃(2)) has a basis over F2 whose
representatives in the Adams filtration spectral sequence have leading terms (with
respect to lexicographical filtration) given by:

(I′) vm2 h
ε̄3
3,0h̃

ε2
2,1h

ε3
3,1h̃

ε4
4,1,

m ≥ 0; εj , ε̄j ∈ {0, 1},

(I′′) v<2i+1

2 hε̄33,0h
2(ki+1)
i,0 h

2ki+1

i+1,0h
2ki+2

i+2,0 · · · h̃ε22,1hε33,1h̃ε44,1h
εi+3

i+3,1 · · · .

i ≥ 3; kj ≥ 0; εj , ε̄j ∈ {0, 1},

(II) hk33,0h
2k4
4,0 · · ·h

2ki+2

i+2,0h
ki+3

i+3,0 · · · h̃ε22,1 · · ·h
εi−1

i−1,1h
li+2
i,1 h

li+1

i+1,1 · · · .

i ≥ 2; kj , lj ≥ 0; εj ∈ {0, 1}.

For the monomials of type (I”), the notation v<n2 x means monomials of the form
vi2x for i < n.

Remark 6.4.4. We do not know if there are differentials in the May-Ravenel
spectral sequence

MRE1(σ̃(2))⇒ H∗(σ̃(2)) ∼= H∗,∗(C).
Even in relatively low degrees, possibilities are plentiful. For example, there could
be a differential

dMR
4 (h2

5,0)
?
= v14

2 h̃2,1h
2
3,0.

We also do not know if there are possible hidden v2-extensions in the May-Ravenel
spectral sequence. Again, there are endless possibilities - as an example, there could
be a hidden extension

v16
2 h4

3,0
?
= v14

2 h2,1h
2
3,0h3,1.

However, in the very low degrees which are relevant to the computations later in
this paper, there are no possibilities of differentials or hidden v2-extensions.

7. The agathokakological method

In this section we will adapt the agathokakological method introduced in [BBB+20]
to our present setting, to compute the E2-term of the tmf-ASS for Z.

7.1. Overview of the method. The goal is to compute tmfE∗,∗2 (Z). The short
exact sequences

0→ V ∗,∗(Z)→ tmfE∗,∗1 (Z)→ C∗,∗(Z)→ 0,

0→ V ∗,∗,∗alg (Z)→ tmf
algE

∗,∗,∗
1 (Z)→ C∗,∗,∗alg (Z)→ 0
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give rise to long exact sequences

· · · → H∗,∗(V )→ tmfE∗,∗2 (Z)→ H∗,∗(C) ∂−→ H∗+1,∗(V )→ · · · ,(7.1.1)

· · · → H∗,∗,∗(Valg)→ tmf
algE

∗,∗,∗
2 (Z)→ H∗,∗,∗(Calg)

∂alg−−→ H∗+1,∗,∗(Valg)→ · · ·
(7.1.2)

In particular, (7.1.1) reduces the computation of tmfE2(Z) to the computation
of H∗,∗(C) and H∗,∗(V ). We have established a means to understand H∗,∗(C)
(Theorem 6.4.3). We are therefore left to compute H∗,∗(V ).

By using Bruner’s Ext program to compute

Ext∗,∗A∗ (F2, H∗Z)

through a range, we can then use the Mahowald spectral sequence

tmf
algE

∗,∗,∗
2 (Z)⇒ Ext∗,∗A∗ (F2, H∗Z)

to deduce tmf
algE

∗,∗,∗
2 (Z) by reverse engineering (note that this is backwards from

the usual direction of deduction with a spectral sequence). We have computed
H∗,∗,∗(Calg) (Theorem 6.4.1). We can then use (7.1.2) to deduce H∗,∗(V ) =
H∗,0,∗(Valg).

Remark 7.1.3. Note that our only interest in Ext∗,∗A∗ (F2, H∗Z) is to determine
H∗,∗(V ). We are not investigating the classical Adams spectral sequence of Z.

7.2. The agathokakological spectral sequences. The strategy outlined in the
previous subsection will be aided by the construction of a pair of spectral sequences:
the topological agathokakological spectral sequence (topological AKSS), and the al-
gebraic agathokakological spectral sequence (algebraic AKSS).

We begin with the topological AKSS. Consider the short exact sequence

(7.2.1) 0→ V n,∗(Z)→ tmfEn,∗1 (Z)
g−→ Cn,∗(Z)→ 0.

We will now introduce a refinement of the tmf-ASS which separates the good and
evil complexes into different degrees. The good complex Cn,∗(Z) will be regarded as
being in filtration n, and the evil complex V n,∗(Z) will be regarded as in filtration
n+ ε, where ε is regarded as a fixed quantity with

n < n+ ε < n+ 1− ε < n+ 1.

Let tmf denote the fiber of the unit

tmf → S → tmf.

The tmf-ASS for Z arises from the decreasing filtration of Z given by

Z F0

��

F1
oo

��

F2
oo

��

· · ·oo

k(2) k(2) ∧ tmf k(2) ∧ tmf
2

with

Fs := tmf
s ∧ Z.
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By Proposition 3.1.7, there are fiber sequences

Hs → k(2) ∧ tmf
s → Ks

where Hs is a wedge of mod 2 Eilenberg-MacLane spectra and Ks is a wedge of
k(2)’s. By Verdier’s axiom we get a braid of fiber sequences

Fs+1

%%

""

Fs

$$

''
Ks

Fs+ε

==

!!

k(2) ∧ tmf
s

::

Hs

::

where Fs+ε is defined to be the fiber of the map Fs → Ks. This results in a
refinement of the tmf-Adams filtration of Z
(7.2.2)

Z F0

��

Fεoo

��

F1
oo

��

F1+ε
oo

��

F2
oo

��

F2+ε
oo

��

· · ·oo

K0 H0 K1 H1 K2 H2

The spectral sequence associated to this filtration is the topological agathokakological
spectral sequence (AKSS):

{akssEn+αε,t
r+βε } ⇒ πt−n(Z)

n, t ∈ N,
α ∈ {0, 1},

β ∈ {−1, 0, 1}
The pages of this spectral sequence are ordered by

n− ε < n < n+ ε < n+ 1

with differentials

dakssr−ε : akssEn+ε,t
r−ε → akssEn+r,t

r−ε ,

dakssr : akssEn+αε,t
r → akssEn+r+αε,t

r ,

dakssr+ε : akssEn,tr+ε → akssEn+r+ε,t
r+ε .

Remark 7.2.3. The reader will notice that the AKSS could be reindexed to a
more standard format by reindexing the filtration by:

n 7→ 2n,

n+ ε 7→ 2n+ 1.

Our reason for choosing this non-standard indexing is that it displays the AKSS as
a refinement of the tmf-ASS, so that there are short exact sequences

0→ akssEn+ε,t
r−ε → tmfEn,tr → akssEn,tr−ε → 0.
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The E1-term takes the form

akssEn+αε,t
1 =

{
Cn,t(Z), α = 0,

V n,t(Z), α = 1.

The d1-differential

dakss1 : akssEn+αε,t
1 → akssEn+1+αε,t

1

is given by the differentials in the good and evil complexes:

dakss1 =

{
dgood1 , α = 0,

devil1 , α = 1.

We therefore have

akssEn+αε,t
1+ε =

{
Hn,t(C), α = 0,

Hn,t(V ), α = 1.

The only nonzero d1+ε-differentials are of the form

Hn,t(C) = akssEn,t1+ε

d1+ε−−−→ akssEn+1+ε,t
1+ε = Hn+1,t(V ),

for which we have

d1+ε = ∂

where ∂ is the connecting homomorphism of (7.1.1).

The algebraic AKSS is constructed by applying Ext∗,∗A∗ (F2, H∗(−)) to the diagram

(7.2.2) (compare with [BBB+20, Sec. 7]). The resulting spectral sequence takes the
form

{akssalgEn+αε,s,t
r+βε (Z)} ⇒ assEn+s,t

2 (Z)

with differentials

dakssr−ε : akssalgE
n+ε,s,t
r−ε → akss

algE
n+r,s−r+1,t
r−ε ,

dakssr : akssalgE
n+αε,s,t
r → akss

algE
n+r+αε,s−r+1,t
r ,

dakssr+ε : akssalgE
n,s,t
r+ε → akss

algE
n+r+ε,s−r+1,t
r+ε .

We have

akss
algE

n+αε,s,t
1+ε (Z) =





Hn,s,t(Calg), α = 0,

Hn,t(V ), α = 1, s = 0,

0, otherwise

and

dakss1+ε = ∂alg

where ∂ is the connecting homomorphism of (7.1.2).

Because for s > 0 we have
akss
algE

n+ε,s,t
1 = 0,

there are no non-trivial differentials

dr+βε(x) = y

with x in filtration n+ ε and r > 1.

The following very useful lemma shows that the d1+ε differentials in the topological

AKSS can be deduced from the dalg1+ε differentials in the algebraic AKSS.
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Lemma 7.2.4. For n = 0, the differentials

d1+ε : akssEn,t1+ε

d1+ε−−−→ akssEn+1+ε,t
1+ε

are trivial. For n ≥ 1, they are determined by the following commutative diagram:

akssEn,t1+ε

��

d1+ε // akssEn+1+ε,t
1+ε

akss
algE

n,0,t
1+ε

dalg1+ε

// akss
algE

n+1+ε,0,t
1+ε

Proof. Topologically, d1+ε derives from applying π∗ to the composite

(7.2.5) Kn → tmf∧n+1 ∧ Z → tmf∧n+2 ∧ Z → Hn+1.

The first statement follows from the fact that the only elements in Hn,∗(C) for

n = 0 are powers of v2. The second statement follows from the fact that dalg1+ε is

the induced map of Adams E0,∗
2 -terms coming from the composite (7.2.5):

Cn,0,∗alg = assE0,∗ (Kn)→ assE0,∗ (Hn+1) = V n+1,∗. �

The E2-term of the tmf-ASS is deduced from the short exact sequence

0→ akssEn+ε,t
2 → tmfEn,t2 → akssEn,t2 → 0.

7.3. The dichotomy principle. Elements in akss
algE

n,s,t
r+βε(Z) are called good, and

elements in akss
algE

n+ε,s,t
r+βε (Z) are called evil. Non-trivial elements of assE2(Z) are

called good (respectively evil) if they are detected in the AKSS by good (respectively
evil) classes.

The key to computing the algebraic AKSS is to determine which elements of
assE2(Z) are good and which are evil. This is done by linking v2-periodicity with
goodness. An element of assE2(Z) is v2-periodic if its image under the homomor-
phism

assE2(Z)→ v−1
2

assE2(Z)

is non-trivial. Otherwise it is said to be v2-torsion.

The following two propositions give a practical means of determining whether an
element of assE2(Z) is v2-periodic.

Proposition 7.3.1. We have

v−1
2

assE2(Z) ∼= F2[v±2 , h̃2,1, h3,0, h3,1, h4,0, h4,1, · · · ].

Proof. The computation is almost identical to that of [MRS01, (2.20)]. �

Corollary 7.3.2. For r > 1, there are no dr differentials between good classes in
the algebraic AKSS.
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Proof. Proposition 7.3.1 implies that the v2-localized algebraic AKSS collapses at
E1+ε. The result follows from the fact that the map

akss
algE

n+αε,s,t
1+ε (Z) ↪→ v−1

2
akss
algE

n+αε,s,t
1+ε (Z)

is an injection for α = 0 (the good part). �

In order to state and prove the dichotomy principle, we will need to establish bounds
on v2-periodicity in Ext, and on the evil complex. Let A2 denote the cofiber of the
v2-self map

Σ6Z → Z.

We have
H∗(A2) ∼= A(2)

as an A(2)-module (see [BE20a, Sec. 2]).

Lemma 7.3.3. We have
assEs,t2 (A2) = 0

for

s >
(t− s) + 12

11
.

Proof. The May spectral sequence for assE2(A2 ∧ Cσ) has E1-term of the form
(7.3.4)
MayE∗,∗,∗1 (A2∧Cσ) ∼= F2[h1,j1 , h2,j2 , h3,j3 , · · · : j1 ≥ 4; j2 ≥ 2; j3 ≥ 1; jk ≥ 0, k ≥ 4].

One checks that the smallest slope s
t−s of these generators is 1

11 , given by h2,2.
Therefore we have

assEs,t2 (A2 ∧ Cσ) = 0

for

s >
t− s
11

.

It follows from the fact that h4
1,3 = 0 in assE∗,∗2 (S) that the h1,3-Bockstein spectral

sequence
assE∗,∗2 (A2 ∧ Cσ)[h1,3]⇒ assE∗,∗2 (A2)

has a horizontal vanishing line at E∞, and one deduces that the translation of this
1
11 -vanishing line passing through (t− s, s) = (21, 3) (the bidegree of h3

1,3) serves as

a vanishing line for assE∗,∗2 (A2). �

Remark 7.3.5. The reader will notice that the notation hi,j is used both for
the May spectral sequence generators of (7.3.4) and for the May-Ravenel spectral
sequence generators in H∗,∗,∗(Calg(Z)). We warn the reader that these naming con-
ventions are not consistent. The May spectral sequence generator hi,j corresponds

to the element ζ2j

i ∈ A∗, whereas the May-Ravenel generator hi,j corresponds to

the element t2
j

i ∈ BP∗BP . Since under the map

BP∗BP → A∗

we have
t2
j

i 7→ ζ2j+1

i ,

and the May-Ravenel generator hi,j actually corresponds to the May generator
hi,j+1.
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Proposition 7.3.6. The evil complex V n,t(Z) satisfies

Hn,t(V ∗,∗) = 0

for

n >
(t− n) + 12

11
.

Proof. We explain the relationship between H∗,∗(V ) and assE∗,∗2 (A2) by construct-
ing a spectral sequence which relates them. We first note that because H∗(A2) ∼=
A(2), we have

tmf
algE

n,s,t
1 (A2) = 0

for s > 0. Therefore, the only possible non-trivial differentials in the tmf-MSS are
d1 differentials, and

tmf
algE

n,0,t
2 (A2) ∼= assEn,t2 (A2).

The short exact sequence of A∗-comodules

0→ H∗Z → H∗A2 → H∗Σ
7Z → 0

induces a long exact sequence

0→ tmf
algE

n,0,t
1 (Z)→ tmf

algE
n,0,t
1 (A2)→ tmf

algE
n,0,t−7
1 (Z)

v2−→ tmf
algE

n,1,t
1 (Z)→ · · ·

We therefore deduce that there is a short exact sequence

0→ tmf
algE

n,0,t
1 (Z)→ tmfEn,0,t1 (A2)→ V n,t−7(Z)→ 0.

This allows us to consider the decreasing filtration of cochain complexes, with
associated filtration quotients:

tmf
algE

n,0,t
1 (A2)

����

tmf
algE

n,0,t
1 (Z)? _oo

����

V n,t(Z)? _oo 0oo

V n,t−7(Z) Cn,0,talg (Z) V n,t(Z)

Taking cohomology, we get a strange little spectral sequence which we will dub the
algebraic AKSS for A2 as it more or less arises as a kind of mod v2 version of the
algebraic AKSS for Z. If we index it as follows:5

akss
algE

n−ε,t
1+ε (A2) = Hn,t−7(V ),

akss
algE

n,t
1+ε(A2) = Hn,0,t(Calg),

akss
algE

n+ε,t
1+ε (A2) = Hn,t(V ),

then the resulting spectral sequence takes the form

akss
algE

n+αε,t
1+ε (A2)⇒ assEn,t2 (A2)

5With this indexing convention the map Z → A2 results in a map of spectral sequences
akss
algE

n+αε,s,t
∗ (Z)→ akss

algE
n+αε,t
∗ (A2) (which one takes to be the zero map on terms with s > 0).
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with differentials

d1+ε : akssalgE
n−ε,t
1+ε (A2)→ akss

algE
n+1,t
1+ε (A2)

d1+ε : akssalgE
n,t
1+ε(A2)→ akss

algE
n+1+ε,t
1+ε (A2)

d1+2ε : akssalgE
n−ε,t
1+2ε (A2)→ akss

algE
n+1+ε,t
1+2ε (A2)

and
akss
algE

n+αε,t
2 (A2) = akss

algE
n+αε,t
∞ (A2).

The result follows for dimensional reasons (by induction on t−n) using Lemma 7.3.3
and the fact that

Hn,0,t(Calg) = 0

for

n >
t− n

11

(since the generator of H∗,∗,∗(Calg) with lowest slope is h̃2,1, with slope n
t−n =

1
11 ). �

Proposition 7.3.7. The map
assEs,t2 (Z)→ v−1

2
assEs,t2 (Z)

is an isomorphism for

s >
(t− s) + 12

11
.

Proof. The result follows from considering the map of algebraic AKSS’s
akss
algE

∗,∗,∗
∗ (Z)→ v−1

2
akss
algE

∗,∗,∗
∗ (Z)

and using Proposition 7.3.1, Corollary 7.3.2, Proposition 7.3.6, and the observation
that the map

Hn,s,t(Calg)→ v−1
2 Hn,s,t(Calg)

is an isomorphism for

n+ s >
t− n− s

11
.

�

Given a class x ∈ assE2(Z), Proposition 7.3.7 gives a straightforward technique to
determine from low dimensional computations if x is v2-periodic. Let k be chosen
such that vk2x lies in the range of Proposition 7.3.7. Then x is v2-periodic if an only
if vk2x 6= 0.

The following theorem, analogous to the dichotomy principle in [BBB+20], com-
pletely determines whether classes in assE2 are good or evil. Note that because of
Corollary 7.3.2 (which does not have an analog in the context studied in [BBB+20]),
the proof of the dichotomy principle for the algebraic AKSS is much more straight-
forward in the present context.

Theorem 7.3.8 (Dichotomy Principle). Suppose that x is a non-trivial class in
assEs,t2 (Z).

(1) If x is v2-torsion, it is evil.
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(2) Every class in the range

(7.3.9) s >
(t− s) + 12

11

is good.
(3) Suppose x is v2-periodic, and suppose that k is taken large enough so that

vk2x lies in the range (7.3.9). Suppose that vk2x is detected in the algebraic

AKSS by a class in akss
algE

n,∗,∗
1+ε . Then x is good if and only if

s ≥ n.

Proof. We deduce (1) from Corollary 7.3.2. We deduce (2) from Proposition 7.3.6.

For (3) suppose that x is v2-periodic with vk2x detected in akss
algE

n,∗,∗
1+ε . We will first

consider the case where x is evil, and then we will consider the case where x is
good. For the first case, suppose that x is detected by an evil class

x̃ ∈ akss
algE

n′+ε,s−n′,t
1+ε

in the algebraic AKSS. Then we must have

s = n′.

Since x̃ is v2-torsion, we deduce that the vk2 -multiplication must arise from a hidden
extension in the AKSS, and therefore

s = n′ < n.

For the second case, suppose that x is detected by a good class

x̃ ∈ akss
algE

n′,s−n′,t
1+ε .

Then we must have

s− n′ ≥ 0.

We deduce from the proof of Corollary 7.3.2 that n′ = n, and therefore s − n ≥ 0
and

s ≥ n.
�

Warning 7.3.10. There is no dichotomy principle in the topological AKSS.

8. Stem by stem computations

In this section, we apply the agathokakological techniques of the previous section
to do low dimensional computations of π∗Z. Furthermore, we settle the ambiguity
left in [BE20b] regarding the differentials in the Adams Novikov spectral sequence
for ZE(2) (Theorem 8.5.1).
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8.1. The algebraic AKSS. In this section, we use the algebraic AKSS

{akssalgEn+αε,s,t
r+βε (Z)} ⇒ assEn+s,t

2 (Z)

to identify H∗(V (Z)) in the range relevant for computing π∗Z in degrees ∗ ≤ 39.

More specifically, we do these computations for a specific choice of Z and v2-self

map. It is shown in [BE20a, §2] that for any Z ∈ Z̃ and v1
2-self map f : Σ6Z → Z,

there is a cofiber sequence

(8.1.1) Σ6Z
f // Z // C(f) // Σ7Z

where C(f) is a spectrum with the property that H∗C(f) is isomorphic to A(2) as

an A(2)-module. Different choices of Z ∈ Z̃ and v1
2-self maps give rise to different

A-module structures on A(2).

We will be working with a specific choice of Z. To this end, endow the subalgebra
A(2) ⊂ A with the A-module structure given by Roth in [Rot77, p.30]. Appendix A
gives the Bruner module definition data that encodes this A-module strucure. Fol-
lowing [BE20a],6 define B(2) as

B(2) := A(2)⊗E(Q2) F2.

The Bruner module definition data for this A-module is given in [BE20a, Appendix
1].

For the rest of this section we restrict our attention to those Z ∈ Z̃ with

H∗Z ∼= B(2)

as A-modules. By [BE20a, Remark 5.4], there are four different homotopy types
of finite spectra realizing B(2). As explained in [BE20a, Sec. 2], the cofiber of any
v1

2-self map of our chosen Z is a realization of the module A(2).

Since Exts,s+1
A (A(2), A(2)) = 0 for s ≥ 2, it follows from [BE20a, Prop. 5.1] that

there is a unique homotopy type of spectra realizing our chosen A-module structure
on A(2). Therefore, different choices of a v1

2-self map on our chosen Z will not affect
the calculations that follow. For this choice, we let

A2 := C(f).

In this section, we also define

Exts,tA (Z) := Exts,tA (H∗(Z),F2), Exts,tA (A2) := Exts,tA (H∗(A2),F2).

Both Ext∗,∗A (Z) and Ext∗,∗A (A2) can be computed using Bruner’s program [Bru93].
The results are depicted in Figure 8.1 and Figure 8.2 in Adams grading (x, y) =
(t− s, s).

6In [BE20a], A(2) is denoted by A2 and B(2) by B2.
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8.2. v2-multiplication in ExtA(Z). To proceed with our computations, we will
need to determine which classes in Ext∗,∗A (Z) are detected by evil classes, and which
are detected by good classes. This will be done using the dichotomy principle
(Theorem 7.3.8), and so we need to identify the v2-periodic classes in Ext∗,∗A (Z).
To do this, we proceed as follows.

Note that there is a long exact sequence
(8.2.1)

. . . // Exts,tA (Z) // Exts,tA (A2) // Exts,tA (Σ7Z)
δ // Exts+1,t

A (Z) // . . .

where the connecting homomorphism δ corresponds to multiplication by v2,

δ = v2 : Exts,tA (Σ7Z) ∼= Exts,t−7
A (Z)→ Exts+1,t

A (Z).

The v2-multiplications in Ext∗,∗A (Z) are indicated by dotted lines of slope (6, 1) in
Figures 8.1 and 8.2. The indicated multiplications are completely determined by
the long exact sequence (8.2.1). In Example 8.2.2, we give a sample proof deducing
the existence of a v2-multiplication from the long exact sequence. The proofs for the
other v2-multiplications indicated in Figures 8.1 and 8.2 are also straightforward,
though the arguments involving classes in stems ∗ ≥ 40 become more tedious due to
the growing dimensions of Ext∗,∗A (A2) and of Ext∗,∗A (Z). The v2-multiplication data
in Figures 8.1 and 8.2 is complete in stems x ≤ 39. In stems 40 ≤ x ≤ 60, we only
draw those multiplications which are necessary to apply part (3) of Theorem 7.3.8
to do computations up to ∗ = 39.

Example 8.2.2. If x is the non-zero class in (t− s, s) = (15, 1) of Ext∗,∗A (Z), then
v2x 6= 0. Indeed, in degree (t − s, s) = (21, 2) (the target of v2-multiplication
on x), Ext∗,∗A (A2) is one dimensional over F2. However, there are two possible
contributions to Ext∗,∗A (A2) in this degree from the long exact sequence (8.2.1).
(See Figure 8.3 and its caption.) There is a class Σ7y of Ext∗,∗A (Σ7Z), labeled •1
of Figure 8.3, where y is the class labeled 1• in degree (14, 2) of Figure 8.3. There
is also a class z of Ext∗,∗A (Z), labeled •6 in Figure 8.3. Since v2y = 0 for degree
reasons, Σ7y is in the kernel of the connecting homomorphism δ. Therefore, the
non-zero element of Ext∗,∗A (A2) corresponds to the class Σ7y. For degree reasons,
δ(z) = 0, and so there must be a class w of degree (22, 1) in Ext∗,∗A (Σ7Z) such that
δ(w) = z. The only possibility is the class labeled by •4 of Figure 8.3. The class x
corresponds to 4• in Figure 8.3, and so w = Σ7x. It follows that v2x = z.

8.3. The differentials in the algebraic AKSS. We turn to the computation of
the algebraic AKSS. From Theorem 6.4.1, we have that

(8.3.1) H∗,∗,∗(Calg) ∼= F2[v2, h̃2,1, h3,0, h3,1, h4,0, h4,1, . . .].

We use the dichotomy principle to determine which classes of ExtA(Z) are good
and which are evil. With (8.3.1) and the results of the previous section on v2-
multiplications, this is straightforward and result of this analysis is depicted in
Figure 8.4.

Having determined which classes in Ext∗,∗A (Z) are detected by good and evil, we
can now deduce H∗,∗(V ) from the algebraic AKSS. We name the evil classes in the
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Figure 8.1. Exts,tA (Z) (left) and Exts,tA (A2) (right) drawn in
Adams coordinates (x, y) = (t− s, s) in degrees x ≤ 32. The dot-
ted lines of slope (6, 1) denote v2-multiplication. The solid lines
of slope (1, 1) denote h1 (i.e. η) multiplications and those of slope
(3, 1) denote h2 (i.e. ν) multiplications. The gray line of slope
1/11 is the line of Proposition 7.3.7.
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Figure 8.3. The connecting homomorphism Exts,tA (Σ7Z) →
Exts+1,t

A (Z). The gray classes are elements of Exts,tA (Σ7Z), the

black classes are elements of Exts+1,t(Z). The gray lines of slope
(−1, 1) give the connecting homomorphism, which in turn corre-
sponds to v2-multiplication. The gray line of slope 1/11 is the line
of Proposition 7.3.7.
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Figure 8.4. The left chart is the E2-term of the ASS for Z in
stems 0 ≤ t − s ≤ 21. Classes detected by good are denoted by •
and classes detected by evil by ◦. The right chart is the algebraic
AKSS for Z, starting at the E1+ε-page.
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Figure 8.5. The left chart is the E2-term of the ASS for Z in
stems 19 ≤ t− s ≤ 40. Classes detected by good are denoted by •
and classes detected by evil by ◦. The right chart is the algebraic
AKSS for Z, starting at the E1+ε-page.
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n color

0 black
1 blue
2 red
3 orange
4 green

Table 2. The tmf-filtration.

algebraic AKSS (Figure 8.4) by

(x, y : n)ev,

where (x, y) = (t − (s + n), s + n) is the Adams coordinate and n is the tmf-
filtration. These classes are denoted by open circles in Figure 8.4. The good classes
are denoted by solid circles. For example, the class in degree (x, y) = (7, 1) in
ExtA(Z) is detected by evil and denoted by (7, 1 : 1)ev in the algebraic AKSS.

In stems 0 ≤ x ≤ 39, the following evil classes exist for degree reasons. More
precisely, these evil classes detect a class in ExtA(Z) in a degree which contains no
non-zero element of H∗(Calg):

(7, 1 : 1)ev (14, 2 : 2)ev (27, 3 : 3)ev

(15, 1 : 1)ev (18, 2 : 2)ev (31, 3 : 3)ev

(31, 1 : 1)ev (20, 2 : 2)ev

(21, 2 : 2)ev

(30, 2 : 2)ev

(34, 2 : 2)ev

(36, 2 : 2)ev

(37, 2 : 2)ev

(38, 2 : 2)ev

The following evil classes exist because of the following differentials

d1+ε(h̃
2
2,1) = (21, 3 : 3)ev

d1+ε(h
2
3,0) = (25, 3 : 3)ev

d1+ε(h3,1) = (26, 2 : 2)ev

d1+ε(h4,0) = (28, 2 : 2)ev

d2+ε(v2h3,1) = (32, 3 : 3)ev

d2+ε(v2h4,0) = (34, 3 : 3)ev

d1+ε(h̃2,1h3,1) = (37, 3 : 3)ev

d3+ε(v
2
2h4,0) = (40, 4 : 4)ev.

Examples of how we deduce these differentials is given in Example 8.3.2.

Example 8.3.2. In degree (t − s, s) = (26, 2), ExtA(Z) is trivial. Therefore, h2
3,0

cannot survive the spectral sequence so must support a differential. Since the class
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in (25, 3) of ExtA(Z) is detected by a good class, the only good class in that bidegree
(v2

2h3,0) cannot be hit by a differential. So the target of the differential on h2
3,0 must

be evil, and we obtain the differential

d1+ε(h
2
3,0) = (25, 3 : 3)ev.

The only non-trivial class in degree (38, 2) of ExtA(Z) is detected by evil. Therefore

h̃2,1h3,1 must support a non-trivial differential. A similar analysis as before gives
the differential

d1+ε(h̃2,1h3,1) = (37, 3 : 3)ev.

Furthermore,

d1+ε(h3,0h3,1) = α1(39, 3 : 3)ev and d1+ε(h̃2,1h4,0) = α2(39, 3 : 3)ev(8.3.3)

where at least one of the coefficients αi is non-zero. Similarly, at least one of the
following d2+ε-differentials must occur

d3+ε(v
2
2h3,1) = (38, 4 : 4)ev or d1+ε(h

3
3,0) = (38, 4 : 4)ev

These ambiguities will be mostly settled in the next section.

8.4. The topological AKSS and the computation of the tmf-based ASS
for Z. Now, we turn to our analysis of the spectral sequence

tmfEn,t1 = πt(tmf∧n+1 ∧ Z) =⇒ πt−n(Z)

and low-dimensional computations of π∗Z. Our analysis of the algebraic AKSS has
allowed us to identify H∗,∗(V ), together with the boundary homomorphism

H∗,∗,∗(Calg)
∂alg−−→ H∗,∗(V )

in the form of d1+ε differentials in the algebraic AKSS. Theorem 6.4.3 gives the
E1-term of the May-Ravenel SS

(8.4.1) MRE1(σ̃(2))⇒ H∗,∗(C).
It does not exclude the possibility of differentials, but there are no possibilities of
differentials in the range of interest.

We record the following fundamental observations regarding the d1-differential in
the tmf-ASS.

• An evil class cannot kill a good class via a d1-differential since V ∗,∗(Z) is

a subcomplex of tmfE∗,∗1 (Z).
• The d1-differentials between evil classes are completely determined by those

in the algebraic AKSS since V ∗,∗(Z) ∼= V ∗,0,∗alg (Z).
• The d1-differentials from good classes to evil classes are determined by the

differentials in the algebraic AKSS. This is Lemma 7.2.4.

In Figure 8.6, we draw MRE1(σ̃(2)) in the range 0 ≤ t− n ≤ 40, together with the
information about H∗,∗(V ) and differentials obtained from the algebraic AKSS.

We use the map of spectral sequences from tmf-based ASS to the classical ASS to
ascertain that, in the range t− s ≤ 39, there are no additional differentials.
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Proposition 8.4.2. There are no non-trivial differentials in the classical ASS for
Z with source in stem t− s ≤ 39.

Proof. In the computations of π∗Z for 0 ≤ ∗ ≤ 39, the possible differentials have
source in stems

t− s = 30, 31, 36, 37, 38, 40.

In stems t − s < 40, the potential sources for differentials are the image of evil
classes which are permanent cycles in the tmf-based ASS. Indeed, for degree reasons,
these classes are permanent cycles provided that they are d1-cycles. Since all d1-
differentials on evil classes have been recorded in Figure 8.6 and all of the potential
sources are d1-cycles, the claim follows. �

Remark 8.4.3. There is a potential d2-differential in stem t−s = 40 in the classical
ASS for Z. In fact, this problem is tied to the ambiguity in (8.3.3), as we will see
in the proof of the next proposition, where we will establish that such a non-trivial
d2 differential must occur in the ASS for Z.

Proposition 8.4.4. The only non-trivial differential dr for r > 1 in the tmf-based
ASS with source in the range t− n ≤ 40 is

d2(v2h3,1) = (32, 3 : 3)ev.

Proof. Combining degree arguments with v2-linearity, the only two possibilities are

d2(v2h3,1) = (32, 3 : 3)ev,

d3(v2
2h3,1) = (38, 4 : 4)ev.

By Proposition 8.4.2, the classical ASS for Z collapses in this range. Therefore,
π32Z and π33Z have order 2. For this to be the case, we must have d2(v2h3,1) =
(32, 3 : 3)ev in the tmf-based ASS. This settles the first possibility.

We turn now to the second possible differential d3(v2
2h3,1). Recall from (8.3.3) that

we were unable to determine the coefficient α1 in

d1+ε(h3,0h3,1) = α1(39, 3 : 3)ev.

It will turn out that these two ambiguities are interrelated, and through analyzing
this relationship we will settle both.

Since h̃2,1h4,0 is not an element in H∗,∗(C), if α1 = 0 and

d1+ε(h3,0h3,1) = 0,

then it follows from the tmf-based ASS that we must have

d3(v2
2h3,1) = (39, 3 : 3)ev

and π39Z has order 4. If, however, α1 = 0 and

d1+ε(h3,0h3,1) = (39, 3 : 3)ev,

then it follows from the tmf-based ASS that π39Z has order 2.

From the structure of the tmf-ASS we deduce that the map

v2 : π33(Z)
v2−→ π39(Z)
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is zero. It is immediate from Figure 8.2 that the ASS for A2 collapses in degree 39
to give

π39(A2) = Z/2.
It follows from the long exact sequence associated to the cofiber sequence

Σ6Z
v2−→ Z → A2

that we must have
π39(Z) = Z/2.

We therefore conclude that α1 = 1, so

d1+ε(h3,0h3,1) = (39, 3 : 3)ev

and
d3(v2

2h3,1) = 0.

�

It follows from Proposition 8.4.2 and Proposition 8.4.4 that Figure 8.6 is complete.

8.5. The E(2)-localization of Z. We end this section with one of the main goals
of this paper, which is to determine the homotopy groups of π∗ZE(2).

Theorem 8.5.1. The Adams Novikov spectral sequence for ZE(2) collapses at the
E2-term.

Proof. This spectral sequence is isomorphic (E2 onwards) to the v2-localized tmf-
ASS

v−1
2

tmfEn,t1 (Z) =⇒ πt−nZE(2).

Inverting v2 in the short exact sequence

0→ V ∗,∗(Z)→ tmfE∗,∗1 (Z)→ C∗,∗(Z)→ 0

gives an isomorphism
v−1

2
tmfE∗,∗1 (Z) ∼= v−1

2 C∗,∗(Z),

and hence an isomorphism

(8.5.2) v−1
2

tmfE2(Z) ∼= v−1
2 H∗,∗(C(Z)).

Consider the v2-localized May-Ravenel spectral sequence

v−1
2

MRE1(σ̃(2))⇒ v−1
2 H∗,∗(C(Z)).

The E1-term is given by inverting v2 in Theorem 6.4.3, and so is isomorphic to

(8.5.3) F2[v±1
2 ]⊗ E[h3,0, h̃2,1, h3,1, h̃4,1].

Since the E2-term of ANSS for ZE(2) was computed in [BE20b] to be isomorphic to
(8.5.3), we deduce from (8.5.2) that the v2-localized May-Ravenel spectral sequence
must collapse at E1. The v2-localized tmf-ASS for Z is displayed in Figure 8.7. All
differentials are v2-linear since ZE(2) has a v1

2-self map. Furthermore, there is a

horizontal vanishing line at E2. Indeed, En,t2 = 0 for n ≥ 5. The class labeled by
1 is the image of π0S

0 → π0ZE(2) so is a permanent cycle. For degree reasons, the

only possible non-trivial differentials are d3’s with sources vk2h31. However, since

d3(v2
2h3,1) in the tmf-based ASS is zero, v2

2h3,1 maps to a d3-cycle in v−1
2

tmfEn,t1 .
�
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Figure 8.6. The topological AKSS computing πt−n(Z) drawn in
grading (x, y) = (t − n, n), starting at the E1+ε-page. Gray lines
are differentials. They are dashed, if our method is inconclusive.
Dotted lines are known v2-multiplications. Dashed line are known
ν-multiplications. The gray line of slope 1/11 is the line of Propo-
sition 7.3.7.
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Figure 8.7. The E∞-page of the Adams Novikov spectral se-
quence for ZE(2) = ZK(2). The only possible non-trivial multi-
plication by 2 extensions are dotted. Classes denoted by ◦ are
multiples of ζ2 ∈ π−1S

0
K(2).

Next, we solve all but one exotic extension:

Theorem 8.5.4. For k 6≡ 3 mod 6, the groups πkZE(2) are annihilated by multi-
plication by 2.

Proof. The class detected by h̃2,1 in π11Z and h3,0 in π13Z have order 2 since there
is no room in the tmf-based ASS for exotic extensions in these degrees. Therefore,
their images in π∗ZE(2) = π∗ZK(2) have order 2, and so do all their multiples.

The class detected by v−10
2 h̃4,1 is in the image of the bottom cell, S0

K(2) → ZK(2).

Indeed, it is the image of the element ζ2 ∈ π−1S
0
K(2) discussed in [DH04, Proposition

2.2.1].7 So, any multiple of v−10
2 h̃4,1 has order 2. �

Remark 8.5.5. In [BE20b], the authors study the Adams Novikov spectral se-
quence for ZK(2), where K(2) is the Morava K-theory whose formal group law is
the Honda formal group law. Since the homotopy type of ZK(2) is independent of
the choice of K(2), Theorem 8.5.1 and Theorem 8.5.4 settle Conjecture 1 of [BE20b]

for our particular choice of Z ∈ Z̃, except for the group structure of π3+6nZK(2).

9. Discussion of the telescope conjecture for Z.

While the telescope conjecture was initially proposed by Ravenel [Rav84], Ravenel
was also the first to propose that it should be false for chromatic levels ≥ 2 [Rav92b].
The method of disproof proposed in [Rav92b] (the parameterized Adams spectral se-
quence) turned out to not be sufficient to provide a counterexample to the telescope
conjecture, but it laid out the blueprint for what could go wrong.

A more detailed account of this story is laid out by Mahowald-Ravenel-Shick
[MRS01], who studied a family of Thom spectra y(n) (defined for all primes p
and all n ≥ 1) and some conjectures about their localized Adams spectral se-
quences, which, if true, would provide counterexamples to the telescope conjecture

7Our notation differs from [Rav77, (3.4) Theorem]. In this reference, our class v−10
2 h̃4,1 is

closely related to ρ2 and Ravenel’s ζ2 is closely related to v−2
2 h̃2,1.
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for all primes p and all n ≥ 2. These conjectures lay the groundwork for a con-
crete counter-conjecture for the homotopy of the telescopes proposed by Ravenel
in [Rav95], which we shall call the parabola conjecture.

In this section we outline the analog of this conjectural story for Z, and explain
how the structure of the tmf-ASS for Z described in this paper is consistent with

the parabola conjecture. Specifically, let Ẑ denote the telescope of the v2-self map
on Z. The telescope conjecture predicts that the map

(9.0.1) Ẑ → ZE(2)

is an equivalence. In Theorem 8.5.1, we have already verified (up to a potential
additive extension) that

π∗ZE(2)
∼= F2[v±1

2 ]⊗ E[h̃2,1, h3,0, h3,1, h̃4,1].

The parabola conjecture predicts the structure of π∗Ẑ, and in particular predicts
that the map (9.0.1) is neither injective nor surjective in homotopy.

9.1. The localized Adams spectral sequence for Z. Consider the localized
Adams spectral sequence

(9.1.1) v−1
2

assE∗,∗2 (Z)⇒ π∗Ẑ.

The E2-term of this spectral sequence was computed in Proposition 7.3.1:

v−1
2

assE∗,∗2 (Z) ∼= F2[v±2 , h̃2,1, h3,0, h3,1, h4,0, h4,1, . . .].

The analog of Mahowald-Ravenel-Shick’s differentials conjecture [MRS01, Conj. 3.16]
is the following.

Conjecture 9.1.2. (Differentials Conjecture) In the localized Adams spectral se-
quence (9.1.1) we have

d2(h4,0) = v2h̃
2
2,1,

d2(hi,0) = v2h
2
i−2,1,

d4(hi,1) = v2h
4
i−1,0.

The idea is that the d2 differentials in the above conjecture are lifted from the
analogous differentials in the May-Ravenel spectral sequence (Theorem 6.2.3), and
that the d4 differentials arise from these through an extended power argument
[Rav92b].

Note that Z is not a ring spectrum, as we have already seen in the topological

AKSS, where h̃2,1 is a permanent cycle but h̃2
2,1 supports a non-trivial differential.

However, assuming these are the only dr differentials for r ≤ 4, and that they
satisfy the Leibniz rule, we would have

v−1
2

assE∗,∗5 (Z) ∼= F2[v±2 ]⊗ E[h̃2,1, h3,0, h3,1, x3, x4, x5, · · · ]
where

xi := h2
i,0.



72 A. BEAUDRY, M. BEHRENS, P. BHATTACHARYA, D. CULVER, AND Z. XU

In particular, we have h2
3,0 = x3 rather than h2

3,0 = 0, but this is somewhat irrel-

evant given that Z is not a ring spectrum. Our choice to present v−1
2 E5 in this

manner leads to a more uniform discussion.

In the discussion after Conjecture 5.12 of [MRS01] (see also [Rav92b]), Mahowald-
Ravenel-Shick predict the collapse of the localized ASS for y(n) at a finite stage.
The analog of their conjecture in our context is the following.

Conjecture 9.1.3 (Parabola Conjecture). The localized ASS for Z collapses at
E5, and therefore

π∗Ẑ ∼= F2[v±2 ]⊗ E[h̃2,1, h3,0, h3,1, x3, x4, x5, · · · ].
Moreover, the telescope conjecture is false, and the kernel of (9.0.1) is the ideal

(x3, x4, · · · ) ⊂ π∗Ẑ
and the ideal

(h̃4,1) ⊂ π∗ZE(2)

maps isomorphically onto the cokernel of (9.0.1).

Remark 9.1.4. Note that the element v−10
2 h̃4,1 is the image of the element ζ2 ∈

π−1SK(2) (see the proof of Theorem 8.5.1), so the second part of the parabola
conjecture predicts that ζ2 is not in the image of the telescopic homotopy. Note that
this was the basis of Ravenel’s initial attempt to disprove the telescope conjecture
[Rav92b].

We will now explain why we call Conjecture 9.1.3 the “parabola conjecture.”

9.2. Unbounded v2-torsion in the tmf-ASS for Z. The key to Mahowald’s
proof of the telescope conjecture at chromatic level 1 was his bounded torsion the-
orem [Mah81], which states that the E2-page of the bo-ASS for the sphere de-
composes into a direct sum of v1-periodic classes, and v2

1-torsion classes. We will
explain how the analogous phenomenon likely fails in the context of the tmf-ASS
for Z.

We have already seen (Theorem 6.4.3) that the May-Ravenel E1-page has un-
bounded v2-torsion. But we must run some more differentials in the tmf-ASS
to relate this unbounded v2-torsion to the kernel of the map (9.0.1).

We will assume the following optimistic conjecture in order to simplify our discus-
sion.

Conjecture 9.2.1 (Torsion Conjecture). The May-Ravenel spectral sequence col-
lapses at E1 with no hidden v2-extensions.

Then H∗,∗(C) has basis:

(I′) vm2 h
ε̄3
3,0h̃

ε2
2,1h

ε3
3,1h̃

ε4
4,1,

m ≥ 0; εj , ε̄j ∈ {0, 1},

(I′′) v<2i+1

2 hε̄33,0x
ki+1
i x

ki+1

i+1 x
ki+2

i+2 · · · h̃ε22,1hε33,1h̃ε44,1h
εi+3

i+3,1 · · · ,
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i ≥ 3; kj ≥ 0; εj , ε̄j ∈ {0, 1},

(II) hε̄33,0h
ε̄i+3

i+3,0h
ε̄i+4

i+4,0 · · ·xk33 x
k4
4 · · · h̃ε22,1 · · ·h

εi−1

i−1,1h
li+2
i,1 h

li+1

i+1,1 · · · ,

i ≥ 2; kj , lj ≥ 0; εj , ε̄j ∈ {0, 1}.

The long exact sequence (3.3.2) implies that the unbounded v2-torsion in tmfE∗,∗2 (Z)
arises from the terms (I′) and (I′′) above. Since the terms (II) above, as well as

H∗,∗(V ) are v1
2-torsion, the elements of tmfE∗,∗2 (Z) not mapping to terms of the

form (I′) or (I′′) are at most v2
2-torsion.

The d4-differentials of the Differentials Conjecture 9.1.2 suggest the following anal-
ogous conjecture for the tmf-ASS.

Conjecture 9.2.2 (Differentials Conjecture, v2, part 1). In the tmf-ASS for Z
there are differentials

d3(vm2 h
ε̄3
3,0x

ki+1
i x

ki+1

i+1 x
εi+2

i+2 x
εi+3

i+3 · · ·x
kl−1

l−1 x
kl
l · · · h̃ε22,1hε33,1h̃ε44,1hl,1h

εl+1

l+1,1h
εl+2

l+2,1 · · · )
= vm+1

2 hε̄33,0x
ki+1
i x

ki+1

i+1 x
εi+2

i+2 x
εi+3

i+3 · · ·x
kl−1+2
l−1 xkll · · · h̃ε22,1hε33,1h̃ε44,1h

εl+1

l+1,1h
εl+2

l+2,1 · · ·
+ · · ·

for i ≥ 3, l ≥ i+ 3, m < 2i+1 − 1, kj ≥ 0, and εj , ε̄j ∈ {0, 1}.

After running these d3-differentials the only remaining classes in the tmf-ASS for
Z are either v2

2-torsion, or of the form

(I′) vm2 h
ε̄3
3,0h̃

ε2
2,1h

ε3
3,1h̃

ε4
4,1,

m ≥ 0; εj , ε̄j ∈ {0, 1},

(I′′′) v<2i+1

2 h̃ε12,1h
ε2
3,0h

ε3
3,1h̃

ε4
4,1x

ki+1
i x

ki+1

i+1 x
εi+2

i+2 x
εi+3

i+3 · · · ,

i ≥ 3; kj ≥ 0; εj , ε̄j ∈ {0, 1}.

9.3. Parabolas. In the tmf-ASS for Z, we have differentials (Theorem 6.2.3)

d1(hi+2,1) = v2i+1

2 xi

whereas in the Adams spectral sequence there are conjecturally differentials (Con-
jecture 9.1.2)

d4(hi+2,1) = v2x
2
i+1.

This suggests the following.

Conjecture 9.3.1 (Extension Conjecture). In the tmf-ASS there are hidden ex-
tensions

v2i+1

2 xi = v2x
2
i+1.
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Figure 9.1. The v2-periodic family supported by x3

This conjecture predicts that the v2-torsion families of type (I′′′) of Conjecture 9.2.2
in the tmf-ASS for Z actually assemble via an infinite sequence of hidden extensions
to form v2-periodic families in π∗(Z). Figure 9.1 shows one such v2-periodic family.

If we assign a mass to xi via

M(xi) :=
1

2i−2

and, more generally for monomials

M(vm2 x
k3
3 x

k4
4 · · · ) := k3M(x3) + k4M(x4) + · · ·

then one finds that all of the terms of the form

vm2 x
ki+1
i x

ki+1

i+1 x
ε̄i+2

i+2 x
ε̄i+3

i+3 · · ·
(for i ≥ 3, 0 < m < 2i+1, kj ≥ 0, and ε̄j ∈ {0, 1}) lie in the same v2-periodic family
if and only if they have the same mass.

Each of these v2-periodic families begins with a term of the form

xk33 x
ε̄4
4 x

ε̄5
5 · · ·

(with k3 ≥ 0 and ε̄j ∈ {0, 1}) with corresponding mass

M =
k3

2
+
ε̄4
4

+
ε̄5
8

+ · · · .

Thus for each monomial

h̃ε12,1h
ε2
3,0h

ε3
3,1h̃

ε4
4,1 ∈ E[h̃2,1, h3,0, h3,1, h̃4,1]

and each mass M ∈ Z[1/2]>0 there is a corresponding non-trivial monomial

xk33 x
ε̄4
4 x

ε̄5
5 · · · ∈ F2[x3]⊗ E[x4, x5, x6, · · · ]

such that

h̃ε12,1h
ε2
3,0h

ε3
3,1h̃

ε4
4,1x

k3
3 x

ε̄4
4 x

ε̄5
5 · · ·

supports a v2-family with mass M . For each of these v2-families, the elements

h̃ε12,1h
ε2
3,0h

ε3
3,1h̃

ε4
4,1v2x

2i−2M
i

represent a cofinal collection of elements which lie in the family. The elements

v2x
2i−2M
i lie on the (sideways) parabola

(9.3.2) t− n =
4

M
n2 − 3n+ 6

in the (t− n, n)-plane. As such, we will refer to these v2-families as v2-parabolas.



THE TELESCOPE CONJECTURE AT HEIGHT 2 AND THE TMF RESOLUTION 75

9.4. The vanishing line. Theorem 6.4.3 and Proposition 7.3.6 imply the follow-
ing.

Theorem 9.4.1. In the tmf-ASS for Z, we have tmfEn,t2 (Z) = 0 for

n >
t− n+ 12

11
.

Unfortunately, Conjecture 9.2.1 only predicts the bounded v2-torsion in this E2-
term is v2

2-torsion. This means that the v2
2-torsion could in principle assemble (via

infinite sequences of hidden extensions) to detect non-trivial v2-periodic families in
π∗Z which lie along curves with derivatives ≥ 1/12 in the (t − n, n)-plane. Thus
Theorem 9.4.1 is not strong enough to preclude the bounded v2

2-torsion contributing

to the homotopy of Ẑ.

This 1/11 vanishing line essentially arises from the element h̃2,1 ∈ H∗,∗(C).8 How-
ever, the results of [AD73] imply that assE∗,∗2 (A2) has a vanishing line of slope
1/13. Moreover, the element h4

2,2 in the May spectral sequence (corresponding to

h̃4
2,1 ∈ H∗,∗(C(Z))) detects the element g2 ∈ assE2(S). The element g2 is not nilpo-

tent [Isa14], but it detects the element κ̄2 ∈ π44(S) which necessarily is nilpotent
by the Nishida nilpotence theorem. It seems likely this can be used to prove the
following, which would imply that the bounded v2

2-torsion cannot contribute to the

homotopy of Ẑ.

Conjecture 9.4.2 (Vanishing Line Conjecture). There is an r so that tmfEn,tr (Z)
has a 1/13 vanishing line.

9.5. The parabola conjecture. Assuming all of the conjectures so far are true,

the homotopy of Ẑ can only be detected by the v2-periodic elements or the v2-
parabolas in tmfE4(Z). We therefore are left to consider the possibility of differen-
tials between these families. The only possibilities are:

(1) differentials between v2-periodic elements,
(2) differentials from v2-periodic elements to v2-parabolas,
(3) differentials from a v2-parabola of mass M to a v2-parabola of mass M ′

with M ′ > M .

Differentials of type (1) are ruled out by Theorem 8.5.1. Proposition 8.4.4 estab-

lishes that h̃2,1, h3,0, and v2
2h3,1 are permanent cycles in the tmf-ASS. While Z is

not a ring spectrum, one might nevertheless suspect that the v2-families

vm2 h̃
ε1
2,1h

ε2
3,0h

ε3
3,1

cannot support differentials of type (2), and presumably this could be easily estab-
lished be extending our low dimensional calculations a little further.

We therefore turn to considering differentials of type (2) involving the element h̃4,1.

Note that since v−10
2 h̃4,1 detects ζ2 ∈ π−1ZE(2), this is equivalent to the question

of whether the element ζ2 ∈ π−1ZE(2) lifts to π−1Ẑ (compare with Remark 9.1.4).

8If one replaces Z with the Thom spectrum y(2) of [MRS01], a similar analysis to Theorem 9.4.1
easily yields a vanishing line of slope 1/13.
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Figure 9.2. The conjectural differentials on vm2 h̃4,1.

We first note that Conjecture 9.2.2 does not include the differential

d4(h4,1) = v2x
2
3

of Conjecture 9.1.2. We therefore offer this second installment to Conjecture 9.1.2
which does include this differential, and its consequences.

Conjecture 9.5.1 (Differentials conjecture, v2, part 2). In the tmf-ASS, for m�
0, the v2-families

vm2 h̃
ε1
2,1h

ε2
3,0h

ε3
3,1h̃4,1

support differentials which hit the v2-parabolas supported by

h̃ε12,1h
ε2
3,0h

ε3
3,1x

2
3

and the v2-parabolas supported by

h̃ε12,1h
ε2
3,0h

ε3
3,1h̃4,1x

k3
3 x

ε̄4
4 x

ε̄5
5 · · ·

support differentials which hit the v2-parabolas

h̃ε12,1h
ε2
3,0h

ε3
3,1x

k3+2
3 xε̄44 x

ε̄5
5 · · · .

Figure 9.2 shows an example of such a family of differentials. Note that the lengths
of each of the families of differentials predicted by Conjecture 9.5.1 are unbounded.
However, it could be that far enough out in the family, the differentials are all zero.
This could occur, for instance, if another parabola supporting shorter differentials
kills the v2-family which is the putative target. Such a phenomenon would be a

means for ζ2 to exist in π∗Ẑ without violating Conjecture 9.5.1.

The following version of the parabola conjecture offers a maximally anti-telescope
point of view, and is consistent with Conjecture 9.1.3.

Conjecture 9.5.2 (Parabola Conjecture, v2). The differentials of Conjecture 9.5.1
are non-trivial, and all of the remaining v2-parabolas have elements which are
permanent cycles. Thus the v2-periodic homotopy of Z is generated by the v2-
families

vm2 h
ε̄3
3,0h̃

ε2
2,1h

ε3
3,1, m ≥ 0, εj ∈ {0, 1},

and the v2-parabolas are supported by

hε̄33,0h̃
ε2
2,1h

ε3
3,1x

ε̄3
3 x

ε̄4
4 · · · , εj , ε̄j ∈ {0, 1}.

Remark 9.5.3. Recent work of Carmeli-Schlank-Yanovski [CSY21] gives some cir-
cumstantial evidence that it could be the case that ζ2 ∈ π∗ZE(2) lifts to an element

of π∗Ẑ. If this turns out to be true, then it flies in the face of the conventional
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wisdom on the subject, but it does not seem to necessarily force the telescope con-
jecture to be true. Rather, it is totally possible that a weak form of the parabola
conjecture is true, where the map

π∗Ẑ → π∗ZE(2)

is surjective with non-trivial kernel generated by a portion of the v2-parabolas.

Appendix A. A(2) as a module over the Steenrod algebra

Here, we describe the A-module structure on A(2) resulting from [Rot77, p. 30,
Chapter III] and present it as a definition file for Bruner’s program [Bru93]. The
definition file is a text file, where the first line is an integer n which records the
dimension of the A-module as an F2-vector space. We should then interpret that
we are given an ordered basis g0, . . . , gn−1. The second line of the text file is an
ordered list of integers d0, . . . , dn−1, where di is the internal degree of gi. For A(2),
the first two lines of Bruner’s definition file reads as:

64

0 1 2 3 3 4 4 5 5 6 6 6 7 7 7 7 8 8 8 9 9 9 9 10 10 10 10 10 11 11 11

11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15 15 16 16 16 16 17 17

17 18 18 19 19 20 20 21 22 23

Every subsequent line in the text file describes a nontrivial action of some Sqk on
some generator gi. For example, if

Sqk(gi) = gj1 + . . .+ gjl

we would encode this fact by writing the line

i k l j1 . . . jl

followed by a line break. Actions which are not indicated by such data are assumed
to be trivial.
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0 1 2 3

3 4 4 5

5 6 6 6

7 7 7 7

8 8 8 9

9 9 9 10

10 10 10 10

11 11 11 11

12 12 12 12

13 13 13 13

13 14 14 14

14 15 15 15

16 16 16 16

17 17 17 18

18 19 19 20

20 21 22 23

0 1 1 1

0 2 1 2

0 3 1 3

0 4 1 5

0 5 1 7

0 6 1 9

0 7 1 12

0 10 1 23

0 12 1 32

0 13 1 36

0 14 1 41

0 20 2 59 60

0 21 1 61

1 2 2 3 4

1 3 1 6

1 4 2 7 8

1 5 1 10

1 6 2 12 13

1 7 1 16

1 8 1 19

1 9 1 23

1 12 1 36

1 14 1 45

1 15 1 48

1 20 1 61

1 22 1 63

2 1 1 3

2 2 1 6

2 4 3 9 10 11

2 5 2 12 14

2 6 2 16 17

2 7 1 20

2 8 1 24

2 9 1 28

2 10 1 32

2 11 1 36

2 12 2 41 42

2 14 1 49

2 15 1 52

2 16 1 55

2 18 2 59 60

2 19 1 61

3 2 1 8

3 3 1 10

3 4 2 12 14

3 6 3 19 20 21

3 7 2 23 25

3 8 2 28 29

3 9 1 33

3 10 2 36 37

3 11 1 41

3 12 1 45

3 13 1 48

3 20 1 63

4 1 1 6

4 2 1 8

4 3 1 10

4 4 2 13 15

4 5 2 16 18

4 6 2 19 22

4 7 2 23 26

4 8 1 30

4 9 1 34

4 10 1 38

4 11 1 42

4 12 1 45

4 13 1 48

4 14 1 52

4 16 1 57

4 17 1 59

4 18 1 61

4 20 1 63

5 1 1 7

5 2 2 9 10

5 3 1 12

5 4 1 17

5 5 1 20

5 6 2 23 25

5 8 2 34 35

5 9 1 39

5 10 2 42 43

5 11 1 46

5 12 2 48 49

5 13 1 52

5 16 1 59

5 18 1 62

5 19 1 63

6 2 1 10

6 4 2 16 18

6 6 3 23 26 27

6 7 1 31

6 8 2 34 35

6 9 1 39

6 10 2 42 43

6 11 1 46

6 12 2 48 49

6 13 1 52

6 16 1 59

6 18 1 62

6 19 1 63

7 2 2 12 13

7 3 1 16

7 4 2 19 20

7 5 1 23

7 6 1 29

7 7 1 33

7 8 1 39

8 1 1 10

8 4 3 19 21 22

8 5 3 23 25 26

8 6 2 29 31

8 7 1 33

8 8 4 37 38 39 40

8 9 3 41 42 44

8 10 3 45 46 47

8 11 2 48 50

8 12 2 52 53

8 13 1 55

8 14 1 57

8 15 1 59

8 18 1 63

9 1 1 12

9 2 1 16

9 4 2 23 24

9 5 1 28

9 6 2 32 33

9 7 1 36

9 8 3 41 42 43

9 9 1 46

10 4 3 23 25 26

10 6 2 33 35
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10 7 1 39

10 8 3 41 42 44

10 10 4 48 49 50 51

10 11 2 52 54

10 12 2 55 56

10 13 1 58

10 14 2 59 60

10 15 1 61

10 16 1 62

10 17 1 63

11 1 1 14

11 2 1 17

11 3 1 20

11 4 2 24 27

11 5 2 28 31

11 6 2 32 35

11 7 2 36 39

11 8 2 42 43

11 9 1 46

11 10 1 48

11 12 1 55

11 14 2 59 60

11 15 1 61

11 16 1 62

11 17 1 63

12 2 1 19

12 3 1 23

12 4 1 28

12 6 2 36 37

12 7 1 41

12 8 2 45 46

12 9 1 48

12 10 1 52

13 1 1 16

13 2 1 19

13 3 1 23

13 4 2 29 30

13 5 2 33 34

13 6 2 38 39

13 7 1 42

13 8 2 46 47

13 9 1 50

13 10 1 54

14 2 2 20 21

14 3 1 25

14 4 3 28 29 31

14 5 1 33

14 6 3 36 37 39

14 7 1 41

14 8 2 45 46

14 9 1 48

14 10 1 52

15 1 1 18

15 2 1 22

15 3 1 26

15 4 1 30

15 5 1 34

15 6 1 38

15 7 1 42

15 10 1 52

15 12 1 57

15 13 1 59

15 14 1 61

16 2 1 23

16 4 2 33 34

16 6 2 42 43

16 7 1 46

16 8 2 49 50

16 9 1 52

16 10 1 56

16 11 1 58

17 1 1 20

17 2 1 25

17 4 3 32 33 35

17 5 2 36 39

17 6 1 41

17 8 1 51

17 9 1 54

17 10 1 56

17 11 1 58

17 12 1 59

17 14 1 62

17 15 1 63

18 2 2 26 27

18 3 1 31

18 4 2 34 35

18 5 1 39

18 6 2 42 43

18 7 1 46

18 8 1 49

18 9 1 52

18 12 1 59

18 14 1 62

18 15 1 63

19 1 1 23

19 4 2 37 38

19 5 2 41 42

19 6 2 45 46

19 7 1 48

19 8 1 53

19 9 1 55

19 10 2 57 58

19 11 1 59

19 12 1 61

20 2 1 29

20 3 1 33

20 4 2 36 39

20 6 1 45

20 7 1 48

20 8 1 54

20 10 1 58

21 1 1 25

21 2 1 29

21 3 1 33

21 4 2 37 40

21 5 2 41 44

21 6 2 45 47

21 7 2 48 50

21 8 2 52 53

21 9 1 55

21 10 1 57

21 11 1 59

21 12 1 61

22 1 1 26

22 2 1 31

22 4 3 38 39 40

22 5 2 42 44

22 6 2 46 47

22 7 1 50

22 8 1 53

22 9 1 55

22 10 1 57

22 11 1 59

22 12 1 61

23 4 2 41 42

23 6 2 48 49

23 7 1 52

23 8 1 55

23 10 2 59 60

23 11 1 61

23 12 1 62

23 13 1 63

24 1 1 28

24 2 2 32 33
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24 3 1 36

24 4 1 43

24 5 1 46

24 6 2 48 49

24 7 1 52

24 8 1 56

24 9 1 58

24 12 1 62

24 13 1 63

25 2 1 33

25 4 2 41 44

25 6 3 48 50 51

25 7 1 54

25 8 2 55 56

25 9 1 58

25 10 2 59 60

25 11 1 61

25 12 1 62

25 13 1 63

26 2 1 35

26 3 1 39

26 4 2 42 44

26 6 3 49 50 51

26 7 2 52 54

26 8 2 55 56

26 9 1 58

26 10 2 59 60

26 11 1 61

26 12 1 62

26 13 1 63

27 1 1 31

27 2 1 35

27 3 1 39

27 4 1 43

27 5 1 46

27 6 1 49

27 7 1 52

27 12 1 62

27 13 1 63

28 2 2 36 37

28 3 1 41

28 4 2 45 46

28 5 1 48

28 6 1 52

28 8 1 58

28 12 1 63

29 1 1 33

29 4 2 45 47

29 5 2 48 50

29 6 1 54

29 8 2 57 58

29 9 1 59

29 10 1 61

29 12 1 63

30 1 1 34

30 2 2 38 39

30 3 1 42

30 4 1 47

30 5 1 50

30 6 2 52 54

30 12 1 63

31 2 1 39

31 4 1 46

31 6 1 52

31 12 1 63

32 1 1 36

32 2 1 41

32 4 2 48 49

32 5 1 52

32 8 1 60

32 9 1 61

32 10 1 62

32 11 1 63

33 4 2 48 50

33 6 1 56

33 7 1 58

33 8 1 59

33 10 1 62

33 11 1 63

34 2 2 42 43

34 3 1 46

34 4 2 49 50

34 5 1 52

34 6 1 56

34 7 1 58

35 1 1 39

35 4 2 49 51

35 5 2 52 54

35 6 1 56

35 7 1 58

35 8 1 60

35 9 1 61

35 10 1 62

35 11 1 63

36 2 1 45

36 3 1 48

36 4 1 52

36 8 1 61

36 10 1 63

37 1 1 41

37 2 1 45

37 3 1 48

37 4 1 53

37 5 1 55

37 6 2 57 58

37 7 1 59

37 10 1 63

38 1 1 42

38 2 1 46

38 4 2 52 53

38 5 1 55

38 6 2 57 58

38 7 1 59

38 8 1 61

39 4 2 52 54

39 6 1 58

39 8 1 61

39 10 1 63

40 1 1 44

40 2 1 47

40 3 1 50

40 4 1 53

40 5 1 55

40 6 1 57

40 7 1 59

40 10 1 63

41 2 1 48

41 4 1 55

41 6 2 59 60

41 7 1 61

41 8 1 62

41 9 1 63

42 2 1 49

42 3 1 52

42 4 1 55

42 6 2 59 60

42 7 1 61

42 8 1 62

42 9 1 63
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43 1 1 46

43 2 1 49

43 3 1 52

43 4 1 56

43 5 1 58

44 2 2 50 51

44 3 1 54

44 4 2 55 56

44 5 1 58

44 6 2 59 60

44 7 1 61

44 8 1 62

44 9 1 63

45 1 1 48

45 4 1 57

45 5 1 59

45 6 1 61

45 8 1 63

46 2 1 52

46 4 1 58

47 1 1 50

47 2 1 54

47 4 2 57 58

47 5 1 59

47 6 1 61

48 4 1 59

48 6 1 62

48 7 1 63

49 1 1 52

49 4 1 60

49 5 1 61

49 6 1 62

49 7 1 63

50 2 1 56

50 3 1 58

50 4 1 59

50 6 1 62

50 7 1 63

51 1 1 54

51 2 1 56

51 3 1 58

51 4 1 60

51 5 1 61

51 6 1 62

51 7 1 63

52 4 1 61

52 6 1 63

53 1 1 55

53 2 2 57 58

53 3 1 59

53 6 1 63

54 2 1 58

54 4 1 61

54 6 1 63

55 2 2 59 60

55 3 1 61

55 4 1 62

55 5 1 63

56 1 1 58

56 4 1 62

56 5 1 63

57 1 1 59

57 2 1 61

57 4 1 63

58 4 1 63

59 2 1 62

59 3 1 63

60 1 1 61

60 2 1 62

60 3 1 63

61 2 1 63

62 1 1 63
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