THE STRUCTURE OF THE v_{2}-LOCAL ALGEBRAIC tmf RESOLUTION

M. BEHRENS, P. BHATTACHARYA, AND D. CULVER

Abstract

We give a complete description of the E_{1}-term of the v_{2}-local as well as g-local algebraic tmf resolution.

Contents

1. Introduction 1
2. bo-Brown-Gitler comodules 6
3. The groups $\pi_{*, *}^{A(2)_{*}}\left(\mathrm{bo}_{1}^{k}\right)$ 8
4. An algebraic model of $\mathrm{TMF}_{0}(3)$ 9
5. Splitting $\mathrm{bo}_{1}^{\otimes k}$ 19
6. Generating functions 22
7. g-local computations 23
8. The attaching maps ∂_{j} and ∂_{j}^{\prime} 25
9. Applications to the g-local algebraic tmf-resolution 29
Appendix A. A splitting of $\mathrm{bo}_{1}^{\wedge 3}$ 31
References 34

1. Introduction

Let bo denote the connective real K-theory spectrum. Mahowald and his collaborators used the bo resolution (aka the bo-based Adams spectral sequence) to study stable homotopy groups to great effect. Specifically, they computed the image of the J-homomorphism DM89, proved the 2-primary height 1 telescope conjecture [Mah81], LM87, computed the unstable v_{1}-periodic homotopy groups of spheres [Mah82, and applied homotopy theoretic methods to a variety of geometric problems DGM81.

The spectrum bo has two distinct advantages that lend itself to these applications at the prime 2. Firstly, π_{0} bo is torsion free and π_{*} bo is Bott periodic (i.e. v_{1} torsion free), so it is equipped to detect the zeroth and first layers of the chromatic filtration. Secondly, v_{1}-periodic homotopy at the prime 2 is more complicated than at odd primes, and this is witnessed by the elements η and η^{2} generating additional anomalous torsion Ada66]. These elements and their v_{1}-multiples are detected by the bo-Hurewicz homomorphism

$$
\pi_{*}^{s} \rightarrow \pi_{*} \text { bo. }
$$

At chromatic height 2, the 2-primary stable stems have a vast collection of anomalous torsion, and a significant portion of this v_{2}-periodic torsion is detected by the spectrum tmf of topological modular forms (see BMQ21). As such the tmf resolution represents a significant upgrade to the bo resolution. Indeed, partial analysis of the tmf resolution has resulted in numerous powerful results BHHM08, [BHHM20, $\mathrm{BBB}^{+} 21$, BMQ21.

For a spectrum X, the tmf resolution of X is the tower of cofiber sequences

Here $\overline{\mathrm{tmf}}$ is the cofiber of the unit

$$
S \rightarrow \operatorname{tmf} \rightarrow \overline{\operatorname{tmf}}
$$

Applying π_{*} to the tower above results in the tmf-based Adams spectral sequence

$$
{ }^{\operatorname{tmf}} E_{1}^{n, t}(X)=\pi_{t}\left(\operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{\wedge n} \wedge X\right) \Rightarrow \pi_{t-n} X
$$

Ultimately, the successful applications of the tmf-resolution so far have been limited by our ability to compute the E_{1}-page of the tmf-based Adams spectral sequence - computations to date have relied on computations of the E_{1}-page in certain regions. Unlike the bo case, we are not able to completely compute this E_{1} page for $X=S$. The goal of this paper is to make a significant step towards rectifying this deficiency.

The computations of the E_{1}-page that have been successfully performed used the classical Adams spectral sequence. We focus our attention at the prime 2. Recall that for a connective spectrum Y, the mod 2 Adams spectral sequence (ASS) takes the form

$$
{ }^{\text {ass }} E_{2}^{s, t}(Y)=\operatorname{Ext}_{A_{*}}^{s, t}\left(\mathbb{F}_{2}, H_{*} Y\right) \Rightarrow \pi_{t-s} Y_{2}^{\wedge}
$$

where H_{*} denotes mod 2 homology and A_{*} is the dual Steenrod algebra. The E_{1} term of the tmf-resolution than can then itself be approached by computing the ASS's

$$
{ }^{a s s} E_{2}^{s, t}\left(\operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{n} \wedge X\right) \Rightarrow \pi_{t-s}\left(\operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{n} \wedge X\right)={ }^{\operatorname{tmf}} E_{1}^{n, t-s}(X)
$$

In practice, given the computation of the E_{2}-pages, these Adams spectral sequences can be completely computed, as the majority of the differentials can be deduced
from the Adams spectral sequence for tmf (as computed in [BR22]). The tmfresolution can then be studied through the Miller square Mil81]

Here, the left side of the square is the algebraic tmf-resolution, the analog of the tmf-resolution obtained by applying $\operatorname{Ext}_{A_{*}}$ to (1.1). The starting point is therefore the computation of the E_{1}-page of the algebraic tmf resolution of the sphere

$$
{ }^{\text {ass }} E_{2}^{s, t}\left(\operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{n}\right)
$$

Analogous to the case of the bo-resolution and the $B P\langle 2\rangle$-resolution Mah81 Cul19, we propose the following conjecture.

Conjecture 1.2. The map

$$
{ }^{a s s} E_{2}^{s, t}\left(\operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{n}\right) \rightarrow v_{2}^{-1 a s s} E_{2}^{s, t}\left(\operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{n}\right)
$$

is injective for $s>0$.

This conjecture is consistent with computations in low degrees (see, for instance, BOSS19]). It implies a good-evil decomposition of the tmf-resolution of the sphere, analogous to that of $\left[\mathrm{BBB}^{+} 20, \mathrm{BBB}^{+} 21\right.$.

In this paper we give a complete computation of

$$
v_{2}^{-1 \text { ass }} E_{2}^{*, *}\left(\operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{n}\right)
$$

We now summarize the main results.
For a graded Hopf algebra Γ over k, let \mathcal{D}_{Γ} denote Hovey's stable homotopy category of Γ-comodules. Briefly, \mathcal{D}_{Γ} is similar to the derived category, with the chief difference that weak equivalences are defined to be the $\pi_{*, *}^{\Gamma}$-isomorphisms, where for a Γ-comodule M, the homotopy groups $\pi_{*, *}^{\Gamma}$ are defined to be

$$
\pi_{n, s}^{\Gamma}(M):=\operatorname{Ext}_{\Gamma}^{s, s+n}(k, M)
$$

For $M \in \mathcal{D}_{\Gamma}$, we let $\Sigma^{n, s} M$ denote a shift in internal degree by $s+n$ and in cohomological degree by s, so we have

$$
\pi_{k, l}^{\Gamma}\left(\Sigma^{n, s} M\right)=\pi_{k-n, l-s}^{\Gamma}(M)
$$

and

$$
\left[\Sigma^{n, s} k, M\right]_{\Gamma}=\pi_{n, s}^{\Gamma}(M)
$$

For a spectrum X, we shall let

$$
\underline{X} \in \mathcal{D}_{A_{*}}
$$

denote the object associated to the $\bmod 2$ homology $H_{*} X$. In this notation the ASS takes the form

$$
{ }^{\text {ass }} E_{2}^{s, t}(X)=\pi_{t-s, s}^{A_{*}}(\underline{X}) \Rightarrow \pi_{t-s} X_{2}^{\wedge} .
$$

Since $\underline{\operatorname{tmf}}=(A / / A(2))_{*}$ Mat16 (where $A(2)$ is the subalgebra of the mod 2 Steenrod algebra generated by $\mathrm{Sq}^{1}, \mathrm{Sq}^{2}$, and Sq^{4}), we have a change of rings isomorphism

$$
\begin{equation*}
\pi_{*, *}^{A_{*}(\underline{\operatorname{tmf}} \otimes M) \cong \pi_{*, *}^{A(2)_{*}}(M), ~(M)} \tag{1.3}
\end{equation*}
$$

for any $M \in \mathcal{D}_{A_{*}}$. Therefore the E_{1}-term of the algebraic tmf-resolution takes the form

$$
{ }^{\text {ass }} E_{2}^{*, *}\left(\operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{\wedge n}\right) \cong \pi_{*, *}^{A(2)_{*}}\left(\overline{\operatorname{tmf}}^{\otimes n}\right)
$$

There is a decomposition [BHHM08]

$$
\begin{equation*}
\underline{\mathrm{tmf}}^{\otimes n} \simeq \bigoplus_{i_{1}, \ldots, i_{n}>0} \Sigma^{8\left(i_{1}+\cdots+i_{n}\right)} \underline{\mathrm{bo}}_{i_{1}} \otimes \cdots \otimes \underline{\mathrm{bo}}_{i_{n}} \tag{1.4}
\end{equation*}
$$

in $\mathcal{D}_{A(2)_{*}}$, where $\underline{\mathrm{bo}}_{i}$ denotes the homology of the i th bo-Brown-Gitler spectrum (see Section 2).
For an object $M \in \mathcal{D}_{A(2)_{*}}$, the localization $v_{2}^{-1} M$ denotes the localization of M with respect to the element

$$
v_{2}^{8} \in \pi_{48,8}^{A(2) *}\left(\mathbb{F}_{2}\right)
$$

so we have

$$
v_{2}^{-1 \text { ass }} E_{2}^{*, *}\left(\operatorname{tmf} \wedge \overline{\operatorname{tmf}}^{\wedge n}\right) \cong \pi_{*, *}^{A(2)_{*}}\left(v_{2}^{-1} \underline{\operatorname{tmf}}^{\otimes n}\right)
$$

We will prove
Theorem 1.5 (see Corollary 8.6 and 2.9). There are equivalences in $\mathcal{D}_{A(2)_{*}}$

$$
\begin{aligned}
v_{2}^{-1} \underline{\mathrm{bo}}_{2 j} & \simeq \Sigma^{8 j} v_{2}^{-1} \underline{\mathrm{bo}}_{j} \oplus \Sigma^{8 j+8,1} v_{2}^{-1} \underline{\mathrm{bo}}_{j-1} \\
v_{2}^{-1} \underline{\mathrm{bo}}_{2 j+1} & \simeq v_{2}^{-1} \Sigma^{8 j} \underline{\mathrm{bo}}_{j} \otimes \underline{\mathrm{bo}}_{1}
\end{aligned}
$$

The splittings of 1.4 and Theorem 1.5 inductively imply that in $\mathcal{D}_{A(2) *}$ the objects $v_{2}^{-1} \underline{\underline{\operatorname{tmf}}}^{\otimes n}$ split as a wedge of bigraded suspensions of $v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes k}$. We are left with identifying these explicitly.

To this end we will introduce an object

$$
\underline{\mathrm{TMF}_{0}(3)} \in \mathcal{D}_{A(2)_{*}}
$$

which serves as an algebraic version of the tmf-module $\mathrm{TMF}_{0}(3)$ (the theory of topological modular forms associated to the congruence subgroup $\left.\Gamma_{0}(3)<S L_{2}(\mathbb{Z})\right)$, and prove
Theorem 1.6 (Proposition 5.1 and 5.2). There are splittings in $\mathcal{D}_{A(2)_{*}}$

$$
\begin{aligned}
& v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 3} \simeq 2 \Sigma^{16,1} v_{2}^{-1} \underline{\mathrm{bo}}_{1} \oplus \Sigma^{24,2} \mathrm{TMF}_{0}(3) \\
& \mathrm{TMF}_{0}(3) \otimes \underline{\mathrm{bo}_{1}} \simeq \Sigma^{24,3} \underline{\mathrm{TMF}_{0}(3)} \oplus \Sigma^{40,6} \underline{\mathrm{TMF}}_{0}(3)
\end{aligned}
$$

The splittings of Theorem 1.6 imply that the objects $v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes k}$ split in $\mathcal{D}_{A(2)_{*}}$ as a direct sum of bigraded suspensions of copies of $v_{2}^{-1} \mathbb{F}_{2}, v_{2}^{-1} \underline{\mathrm{bo}}_{1}, v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2}$, and $\mathrm{TMF}_{0}(3)$.

Putting this all together, we have the following theorem (see Corollary 8.7 for a more precise formulation).

Theorem. There is a splitting of

$$
v_{2}^{-1}{\underline{\underline{\mathrm{tmf}}}}^{\otimes n} \in \mathcal{D}_{A(2)_{*}}
$$

into a well-described sum of various bigraded suspensions of

- $v_{2}^{-1} \mathbb{F}_{2}$,
- $v_{2}^{-1} \underline{b o}_{1}$,
- $v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2}$,
- $\mathrm{TMF}_{0}(3)$.

The most subtle step to all of this is the first equivalence of Theorem 1.5. Indeed an explicit exact sequence (see 2.5) of BHHM08] implies that $v_{2}^{-1} \underline{\mathrm{bo}}_{2 j}$ is built from $v_{2}^{-1} \Sigma^{8 j} \underline{\mathrm{bo}}_{j}$ and $v_{2}^{-1} \Sigma^{8 j+8,1} \underline{\mathrm{bo}}_{j-1}$ in $\mathcal{D}_{A(2)_{*}}$. The hard part is showing that the attaching map between these two components is trivial. This is accomplished by showing that if this attaching map is non-trivial, then it is non-trivial after g-localization where g is the generator of $\pi_{20,4}^{A(2) *}\left(\mathbb{F}_{2}\right)$. We then prove the g-local attaching map is trivial (see Corollary 8.5 and Theorem 9.3), strengthening the results of BBT21].

Theorem. There is a splitting of

$$
g^{-1} \underline{\underline{\operatorname{tmf}}}^{\otimes n} \in \mathcal{D}_{A(2)_{*}}
$$

into a well-described sum of various bigraded suspensions of

- $g^{-1} \mathbb{F}_{2}$,
- $g^{-1} \underline{\mathrm{bo}}_{1}$,
- $g^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2}$.

The v_{2}-local results of this paper may be applied to understand the TMF-resolution, where

$$
\mathrm{TMF}=\operatorname{tmf}\left[\Delta^{-1}\right]
$$

Namely, there are localized ASS's

$$
\pi_{*, *}^{A(2)_{*}}\left(v_{2}^{-1} \underline{\operatorname{tmf}}^{\otimes s} \otimes \underline{X}\right) \Rightarrow \pi_{*}\left(\mathrm{TMF} \wedge \overline{\mathrm{TMF}}^{\wedge s} \wedge X\right)_{2}^{\wedge}
$$

Our v_{2}-local results also may be used to understand the v_{2}-localized algebraic tmf resolution

$$
\left.v_{2}^{-1} \pi_{*, *}^{A(2)_{*}}{\overline{\overline{\mathrm{tmf}}}}^{\otimes n} \otimes M\right) \Rightarrow v_{2}^{-1} \pi_{*, *}^{A_{*}}(M)
$$

Here, the v_{2}-localized Ext groups $v_{2}^{-1} \pi_{*, *}^{A_{*}}$ are as defined in MS87.
The g-local results of this paper may be applied to understand g-local Ext over the Steenrod algebra, using the g-local algebraic tmf-resolution

$$
\pi_{*, *}^{A(2)_{*}}\left(g^{-1} \underline{\underline{\operatorname{tmf}}}^{\otimes n} \otimes M\right) \Rightarrow g^{-1} \pi_{*, *}^{A_{*}}(M)
$$

Organization of the paper. In Section 2 we reduce the study of tmf to the bo-Brown-Gitler comodules $\underline{\mathrm{bo}}_{j}$. We review exact sequences which relate these comodules to $\underline{\mathrm{bo}}_{1}^{\otimes k}$. Upon v_{2}-localization, we show that these exact sequences give complete decompositions of $v_{2}^{-1} \mathrm{bo}_{j}$ in terms of bigraded suspensions of $v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes k}$ for various k, provided certain obstructions $\partial_{j^{\prime}}$ vanish for $j^{\prime} \leq j / 2$.

In Section 3 we review the structure of $\left.\pi_{*, *}^{A(2)}\right)_{*}\left(\underline{\mathrm{bo}}_{1}^{\otimes k}\right)$ for $0 \leq k \leq 4$. These will form the computational input for the rest of the paper.

In Section 4 we construct $\mathrm{TMF}_{0}(3) \in \mathcal{D}_{A(2)_{*}}$, our algebraic analog of $\mathrm{TMF}_{0}(3)$, and establish some basic properties.

In Section 5 we prove a few key splitting theorems that inductively give complete decompositions of $\underline{\mathrm{bo}}_{1}^{\otimes k} \in \mathcal{D}_{A(2)_{*}}$ into indecomposable summands. Provided the obstructions $\partial_{j^{\prime}}$ vanish, we therefore get complete decompositions of $v_{2}^{-1} \underline{\mathrm{bo}}_{j}$.

In Section 6 we define certain generating functions which conveniently allow for algebraic computation of the putative decompositions of $v_{2}^{-1} \underline{\mathrm{bo}}_{j}$.

In Section 7 we explain the analogs of the v_{2}-local decompositions of $\underline{\mathrm{bo}}_{j}$ and $\underline{\mathrm{bo}}_{1}^{\otimes k}$ in the g-local category. The decompositions of $g^{-1}{\underline{\mathrm{bo}_{j}}}_{j}$ depend on the vanishing of certain obstructions ∂_{j}^{\prime}.

Section 8 , we prove our main result: the obstructions ∂_{j} and ∂_{j}^{\prime} vanish for all j. This results in a complete decomposition of $v_{2}^{-1} \underline{\underline{\operatorname{mf}}}^{\otimes n}$ and $g^{-1} \underline{\underline{\operatorname{tmf}}}^{\otimes n}$.

In Section 9 we relate our g-local results to the computations of Bhattacharya, Bobkova, and Thomas BBT21], providing a strengthening of their results.

In Appendix A. we discuss a stable splitting of $\mathrm{bo}_{1}^{\wedge 3}$ and its relationship with Theorem 1.6 .

Acknowledgments. The results of this paper were made possible with the assistance of the computational Ext software of R. Bruner and A. Perry, and the computer algebra systems Fermat and Sage. The first author was supported by NSF grants DMS-1547292 and DMS-2005476.

2. bo-Brown-Gitler comodules

In this section we reduce the analysis of $v_{2}^{-1} \underline{\mathrm{tmf}}^{\otimes n}$ to the analysis of v_{2}-local bo-Brown-Gitler comodules. These are A_{*}-comodules which are the homology of the bo-Brown-Gitler spectra constructed by [GJM86. Mahowald used integral BrownGitler spectra to analyze the bo resolution Mah81. The bo-Brown-Gitler comodules play a similar role in the algebraic tmf resolution BHHM08, MR09, DM10, BOSS19, BHHM20, BMQ21.

Endow the mod 2 homology of bo

$$
\underline{\mathrm{bo}} \cong A / / A(1)_{*}=\mathbb{F}_{2}\left[\zeta_{1}^{4}, \zeta_{2}^{2}, \zeta_{3}, \ldots\right]
$$

(where ζ_{i} denotes the conjugate of $\xi_{i} \in A_{*}$) with a multiplicative grading by declaring the weight of ζ_{i} to be

$$
\begin{equation*}
w t\left(\zeta_{i}\right)=2^{i-1} \tag{2.1}
\end{equation*}
$$

The i th bo-Brown-Gitler comodule is the subcomodule

$$
\underline{\mathrm{bo}}_{i} \subset A / / A(1)_{*}
$$

spanned by monomials of weight less than or equal to $4 i$.
For an object $M \in \mathcal{D}_{A(2)_{*}}$, let

$$
D M=\operatorname{Hom}_{\mathbb{F}_{2}}\left(M, \mathbb{F}_{2}\right)
$$

be its \mathbb{F}_{2}-linear dual. We record the following useful result.
Proposition 2.2. There is an equivalence

$$
v_{2}^{-1} D \underline{\mathrm{bo}}_{1} \simeq \Sigma^{-16,-1} v_{2}^{-1} \underline{\mathrm{bo}}_{1} .
$$

Proof. This follows from the short exact sequence

$$
0 \rightarrow \underline{\mathrm{bo}}_{1} \rightarrow A(2) / / A(1)_{*} \rightarrow \Sigma^{17} D \underline{\mathrm{bo}}_{1} \rightarrow 0
$$

Our interest in the bo-Brown-Gitler comodules stems from the fact that there is a splitting of $A(2)_{*}$-comodules BHHM08, Cor. 5.5]:

$$
\begin{equation*}
\underline{\mathrm{tmf}} \cong \bigoplus_{i \geq 0} \Sigma^{8 i}{\underline{\mathrm{bo}_{i}}}_{i} \tag{2.3}
\end{equation*}
$$

where $\Sigma^{8 j}{\underline{\mathrm{bo}_{j}}}_{j}$ is spanned by the monomials of

$$
\underline{\mathrm{tmf}}=A / / A(2)_{*}=\mathbb{F}_{2}\left[\zeta_{1}^{8}, \zeta_{2}^{4}, \zeta_{3}^{2}, \zeta_{4}, \ldots\right]
$$

of weight $8 j$. We therefore have a splitting of $A(2)_{*}$-comodules

$$
\begin{equation*}
\underline{\mathrm{tmf}}^{\otimes n} \cong \bigoplus_{i_{1}, \ldots, i_{n}>0} \Sigma^{8\left(i_{1}+\cdots+i_{n}\right)}{\underline{\mathrm{bo}_{i}}}_{i_{1}} \otimes \cdots \otimes \underline{\mathrm{bo}}_{i_{n}} \tag{2.4}
\end{equation*}
$$

The object

$$
\Sigma^{8\left(i_{1}+\cdots+i_{n}\right)}{\underline{\mathrm{bo}_{i_{1}}}}_{i_{1}} \cdots \otimes \underline{\mathrm{bo}}_{i_{n}} \in \mathcal{D}_{A(2)_{*}}
$$

can be inductively built from $\underline{b o}_{1}^{\otimes k}$ by means of a set of exact sequences of $A(2)_{*^{-}}$ comodules which relate the $\underline{\mathrm{bo}}_{i}$'s [BHHM08, Sec. 7]:

$$
\begin{gather*}
0 \rightarrow \Sigma^{8 j} \underline{\mathrm{bo}}_{j} \rightarrow \underline{\mathrm{bo}}_{2 j} \rightarrow A(2) / / A(1)_{*} \otimes \underline{\mathrm{tmf}}_{j-1} \rightarrow \Sigma^{8 j+9} \underline{\mathrm{bo}}_{j-1} \rightarrow 0 \tag{2.5}\\
0 \rightarrow \Sigma^{8 j} \underline{\mathrm{bo}}_{j} \otimes \underline{\mathrm{bo}}_{1} \rightarrow \underline{\mathrm{bo}}_{2 j+1} \rightarrow A(2) / / A(1)_{*} \otimes \underline{\mathrm{tmf}}_{j-1} \rightarrow 0 . \tag{2.6}
\end{gather*}
$$

Here, $\underline{\operatorname{tmf}}_{j}$ is the j th tmf-Brown-Gitler comodule - it is the subcomodule of $\underline{\mathrm{tmf}}$ spanned by monomials of weight less than or equal to $8 j$.

Remark 2.7. Technically speaking, as is addressed in BHHM08, Sec. 7], the comodules

$$
A(2) / / A(1)_{*} \otimes \underline{\operatorname{tmf}}_{j-1}
$$

in the above exact sequences have to be given a slightly different $A(2)_{*}$-comodule structure from the standard one arising from the tensor product. However, this
different comodule structure ends up being Ext-isomorphic to the standard one. As the analysis of this paper only requires

$$
\begin{aligned}
& v_{2}^{-1} A(2) / / A(1)_{*} \otimes \underline{\operatorname{tmf}}_{j-1} \simeq 0 \\
& g^{-1} A(2) / / A(1)_{*} \otimes \underline{\operatorname{tmf}}_{j-1} \simeq 0
\end{aligned}
$$

and these equivalences hold for the non-standard comodule structures, the reader can safely ignore this subtlety.

Since

$$
v_{2}^{-1} A(2) / / A(1)_{*} \otimes \underline{\operatorname{tmf}}_{j-1} \simeq 0
$$

The exact sequences 2.5 and 2.6 give rise to a cofiber sequence in $\mathcal{D}_{A(2)_{*}}$

$$
\begin{equation*}
\Sigma^{8 j} v_{2}^{-1} \underline{\mathrm{bo}}_{j} \rightarrow v_{2}^{-1} \underline{\mathrm{bo}}_{2 j} \rightarrow \Sigma^{8 j+8,1} v_{2}^{-1} \underline{\mathrm{bo}}_{j-1} \tag{2.8}
\end{equation*}
$$

and an equivalence

$$
\begin{equation*}
\Sigma^{8 j} v_{2}^{-1} \underline{\mathrm{bo}}_{j} \otimes \underline{\mathrm{bo}}_{1} \simeq v_{2}^{-1} \underline{\mathrm{bo}}_{2 j+1} . \tag{2.9}
\end{equation*}
$$

Thus, 2.8 and 2.9 inductively build

$$
v_{2}^{-1} \underline{\mathrm{bo}}_{i} \in \mathcal{D}_{A(2)_{*}}
$$

out of $v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes k}$.
The connecting homomorphism of the cofiber sequence 2.8

$$
\begin{equation*}
\partial_{j}: v_{2}^{-1} \Sigma^{8 j+8,1} \underline{\mathrm{bo}}_{j-1} \rightarrow v_{2}^{-1} \Sigma^{8 j+1,-1} \mathrm{bo}_{j} \tag{2.10}
\end{equation*}
$$

is the obstruction to the cofiber sequence being split. We will prove in Section 8 that the connecting homomorphism $\partial_{j}=0$ for all j, so we have

$$
\begin{equation*}
v_{2}^{-1} \underline{\mathrm{bo}}_{2 j} \simeq v_{2}^{-1} \Sigma^{8 j} \underline{\mathrm{bo}}_{j} \oplus v_{2}^{-1} \Sigma^{8 j+8,1} \underline{\mathrm{bo}}_{j-1} \tag{2.11}
\end{equation*}
$$

3. The groups $\pi_{*, *}^{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{k}\right)$

In the previous section we related the comodules $\underline{\mathrm{bo}}_{j}$ to the comodules $\underline{\mathrm{bo}}_{1}^{\otimes k}$. We now review the structure of

$$
\pi_{*, *}^{A(2)_{*}} \underline{\mathrm{bo}}_{1}^{\otimes k}
$$

for $0 \leq k \leq 4$.
In order to give names to the v_{0}-torsion-free generators of $\pi_{*, *}^{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes k}\right)$, we review the corresponding v_{0}-local computations. The entire structure of the v_{0}-local algebraic tmf resolution is given in BMQ21 (see also BOSS19]).

Observe that we have

$$
\begin{equation*}
v_{0}^{-1} \pi_{*, *}^{A(2)_{*}}\left(\mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[v_{0}^{ \pm}, v_{1}^{4}, v_{2}^{2}\right] \tag{3.1}
\end{equation*}
$$

Note that $c_{4}, c_{6} \in\left(\operatorname{tmf}_{*}\right)_{\mathbb{Q}}$ are detected in the v_{0}-localized ASS by v_{1}^{4} and $v_{0}^{3} v_{2}^{2}$, respectively.

We have (regarding $\underline{\mathrm{bo}}_{1}$ as a subcomodule of $A / / A(2)_{*}$)

$$
v_{0}^{-1} \pi_{*, *}^{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}\right)=\mathbb{F}_{2}\left[v_{0}^{ \pm}, v_{1}^{4}, v_{2}^{2}\right]\left\{\bar{\xi}_{1}^{8}, \bar{\xi}_{2}^{4}\right\}
$$

We therefore have an isomorphism

$$
\begin{equation*}
v_{0}^{-1} \pi_{*, *}^{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes k}\right) \cong \mathbb{F}_{2}\left[v_{0}^{ \pm}, v_{1}^{4}, v_{2}^{2}\right] \otimes \mathbb{F}_{2}\left\{\bar{\xi}_{1}^{8}, \bar{\xi}_{2}^{4}\right\}^{\otimes k} \tag{3.2}
\end{equation*}
$$

To make for more compact notation, we will use bars to denote elements of tensor powers:

$$
\begin{equation*}
x_{1}|\cdots| x_{n}:=x_{1} \otimes \cdots \otimes x_{n} \tag{3.3}
\end{equation*}
$$

$\pi_{*, *}^{A(2)_{*}}\left(\mathbb{F}_{2}\right):$ (Figure 3.1)
All of the elements are $c_{4}=v_{1}^{4}$-periodic, and v_{2}^{8}-periodic. Exactly one v_{1}^{4} multiple of each element is displayed with the \bullet replaced by a \circ. Observe the wedge pattern beginning in $t-s=35$. This pattern is infinite, propagated horizontally by $h_{2,1^{-}}$ multiplication and vertically by v_{1}-multiplication. Here, $h_{2,1}$ is the name of the generator in the May spectral sequence of bidegree $(t-s, s)=(5,1)$, and $h_{2,1}^{4}=g$.
$\pi_{*, *}^{A(2)_{*}}\left(\mathrm{bo}_{1}^{\otimes k}\right)$, for $k=1,2,3,4:$ (Figures 3.2, 3.3, 3.4 3.5
Every element is v_{2}^{8}-periodic. However, unlike $\pi_{*, *}^{A(2) *}\left(\mathbb{F}_{2}\right)$, not every element of these Ext groups is v_{1}^{4}-periodic. Rather, it is the case that either an element $x \in \operatorname{Ext}_{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes k}\right)$ satisfies $v_{1}^{4} x=0$, or it is v_{1}^{4}-periodic. Each of the v_{1}^{4}-periodic elements fit into families which look like shifted and truncated copies of $\pi_{*, *}^{A(1)_{*}}\left(\mathbb{F}_{2}\right)$, and are labeled with a \circ. We have only included the beginning of these v_{1}^{4}-periodic patterns in the chart. The other generators are labeled with a \bullet. A \square indicates a polynomial algebra $\mathbb{F}_{2}\left[h_{2,1}\right]$. Elements which are v_{0}-torsion-free are named in these charts using (3.2), in the bar notation of (3.3).

4. An algebraic model of $\mathrm{TMF}_{0}(3)$

The spectrum $\mathrm{TMF}_{0}(3)$ is an analog of TMF associated to the moduli of elliptic curves with with $\Gamma_{0}(3)$-structures introduced and studied by Mahowald and Rezk MR09. In fact, Mahowald and Rezk proposed three different connective spectra whose $E(2)$-localizations are $\mathrm{TMF}_{0}(3)$ (also see [DM10]).

We will emulate MR09, DM10] in the category of $\mathcal{D}_{A(2)}$ to construct the $\mathrm{TMF}_{0}(3)$.

Lemma 4.1. The composite

$$
\Sigma^{6,2} \mathbb{F}_{2} \xrightarrow{h_{2}^{2}} \mathbb{F}_{2} \hookrightarrow \Sigma^{7} D \underline{\mathrm{bo}}_{1}
$$

extends to a map

$$
\widetilde{h_{2}^{2}}: \Sigma^{6,2}{\underline{\mathrm{bo}_{1}}}_{1} \rightarrow \Sigma^{7} D \underline{\mathrm{bo}}_{1}
$$

Our algebraic model of $\operatorname{TMF}_{0}(3)$ is defined to be

$$
\underline{\mathrm{TMF}_{0}(3)}:=v_{2}^{-1}\left(\Sigma^{24,3} D \underline{\mathrm{bo}}_{1} \cup_{\widetilde{h_{2}^{2}}} \Sigma^{24,4}{\underline{\mathrm{bo}_{1}}}_{1}\right) .
$$

Figure 4.1 shows a computation of the homotopy of $D \underline{b o}_{1} \cup_{\widetilde{h_{2}^{2}}} \Sigma^{0,1} \underline{b o}_{1}$. In this figure, the solid dots correspond to $D \underline{\mathrm{bo}}_{1}$ and the open dots correspond to $\underline{\mathrm{bo}}_{1}$. One convenient way of accessing the homotopy of $D \underline{\mathrm{bo}}_{1}$ is from the short exact

Figure 3.1. $\pi_{*, *}^{A(2)_{*}}\left(\mathbb{F}_{2}\right)$.

Figure 3.2. $\pi_{*, *}^{A(2) *}\left(\underline{\mathrm{bo}}_{1}\right)$.

Figure 3.3. $\pi_{*, *}^{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes 2}\right)$.

Figure 3.4. $\pi_{*, *}^{A(2) *}\left(\underline{\mathrm{bo}_{1}}{ }_{1}^{\otimes 3}\right)$.

Figure 3.5. $\pi_{*, *}^{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes 4}\right)$.
sequence in the proof of Proposition 2.2 A chart of $\pi_{*, *}^{A(2)_{*}}\left(\underline{\left.\mathrm{TMF}_{0}(3)\right)}\right.$ is displayed in Figure 4.2.

Lemma 4.2. Any map

$$
f: \mathrm{TMF}_{0}(3) \rightarrow \mathrm{TMF}_{0}(3)
$$

which is the identity on $\pi_{0,0}^{A(2)_{*}}$ is an equivalence.
Proof. Let $1_{\mathrm{TMF}_{0}(3)} \in \pi_{0,0}^{A(2)_{*}}\left(\underline{\mathrm{TMF}_{0}(3)}\right)$ denote the generator. The $\pi_{*, *}^{A(2) *}\left(\mathbb{F}_{2}\right)-$ module structure implies f is the identity on $g \cdot 1_{\mathrm{TMF}_{0}(3)}$ and $v_{2}^{4} h_{1}$. It follows from h_{2} linearity that f is the identity on x_{17} (see Figure 4.2). Therefore f is the identity on $v_{2}^{4} h_{1} x_{17}$. It follows from h_{0}, h_{1}, h_{2}, and v_{1}^{4} linearity that f is an isomorphism on $v_{0}^{-1} \pi_{*, *}^{A(2) *}\left(\mathrm{TMF}_{0}(3)\right)$. Here we must use the fact that the v_{0}-localization of f is a map of $v_{0}^{-1} \overline{\pi_{*, *}\left(\mathbb{F}_{2}\right) \text {-modules. It then follows that } f \text { is a } \pi_{*, *}^{A(2)_{*}} \text {-isomorphism. } \text {. } \text {. }{ }^{\text {is }} \text {. }}$

We have the following algebraic version of the Recognition Principle of Davis-Mahowald-Rezk (see MR09, Prop. 7.2]).
Theorem 4.3 (Recognition Principle). Suppose that $X \in \mathcal{D}_{A(2) *}$ satisfies

$$
\begin{equation*}
\pi_{*, *}^{A(2) *}(X) \cong \pi_{*, *}^{A(2)_{*}}\left(\underline{\mathrm{TMF}_{0}(3)}\right) \tag{4.4}
\end{equation*}
$$

where the above isomorphism preserves $v_{0}, h_{1}, h_{2}, v_{1}^{4}, v_{0} v_{2}^{2}, v_{2}^{8}, v_{2}^{4} h_{1}$, and g multiplications. Then there is an equivalence

$$
X \simeq \underline{\operatorname{TMF}_{0}(3)} .
$$

Proof. Let

$$
x_{17}: \Sigma^{17,3} \mathbb{F}_{2} \rightarrow X
$$

represent the generator of $\pi_{17,3}^{A(2) *}(X)$. Since

$$
\pi_{17,4}^{A(2)_{*}}(X)=\pi_{19,4}^{A(2)_{*}}(X)=\pi_{23,4}^{A(2)_{*}}(X)=0,
$$

there exists an extension of x_{17} to a map

$$
\Sigma^{24,3} D \mathrm{bo}_{1} \rightarrow X
$$

Since

$$
\pi_{23,5}^{A(2)_{*}}(X)=\pi_{27,5}^{A(2)_{*}}(X)=\pi_{29,5}^{A(2)_{*}}(X)=\pi_{30,5}^{A(2)_{*}}(X)=0
$$

there exists a further extension of this map to a map

$$
\Sigma^{24,3} D \underline{\mathrm{bo}}_{1} \cup \Sigma^{24,4} \underline{\mathrm{bo}}_{1} \rightarrow X .
$$

The conditions on the isomorphism (4.4) imply that $X \simeq v_{2}^{-1} X$. Thus the map above localizes to a map

$$
v_{2}^{-1}\left(\Sigma^{24,3} D \underline{\mathrm{bo}}_{1} \cup \Sigma^{24,4} \underline{\mathrm{bo}}_{1}\right) \rightarrow X .
$$

The conditions on the isomorphism 4.4 then force the map above to be a $\pi_{*, *}^{A(2)_{*}}$ isomorphism.

Figure 4.1. Computing the homotopy of $D \underline{\mathrm{bo}}_{1} \cup_{\widetilde{h}_{2}^{2}} \Sigma^{0,1} \underline{\mathrm{bo}}_{1}$.

$$
\leftrightarrow \lll<
$$

Figure 4.2. $\pi_{*, *}^{A(2)_{*}}\left(\underline{\operatorname{TMF}_{0}(3)}\right)$.

For us, a weak ring object in $\mathcal{D}_{A(2)_{*}}$ is an object $R \in \mathcal{D}_{A(2)_{*}}$ with a unit

$$
u: \mathbb{F}_{2} \rightarrow R
$$

and a multiplication

$$
m: R \otimes R \rightarrow R
$$

such that the two composites

$$
\begin{aligned}
& R \otimes \mathbb{F}_{2} \xrightarrow{1 \otimes u} R \otimes R \xrightarrow{m} R, \\
& \mathbb{F}_{2} \otimes R \xrightarrow{u \otimes 1} R \otimes R \xrightarrow{m} R
\end{aligned}
$$

are equivalences.
Proposition 4.5. $\underline{\mathrm{TMF}}_{0}(3)$ is a weak ring object in $\mathcal{D}_{A(2)_{*}}$.

Proof. We shall need to imitate the "first model" of MR09, DM10. Start with the A_{*}-comodule \underline{Y} described in [DM10, Thm. 2.1(a)]. Then the method of proof for [DM10, Thm. 2.1(b)] shows that there exists a map

$$
\widetilde{h_{0} h_{2}}: \Sigma^{3,2} \underline{Y} \rightarrow \mathbb{F}_{2}
$$

in $\mathcal{D}_{A_{*}}$ extending $h_{0} h_{2}$, so we can take the cofiber

$$
\underline{X}:=\mathbb{F}_{2} \cup_{\widetilde{h_{0} h_{2}}} \Sigma^{4,1} \underline{Y} .
$$

Regarding this cofiber as an object of $\mathcal{D}_{A(2)_{*}}$, define

$$
R:=v_{2}^{-1} \underline{X} \in \mathcal{D}_{A(2)_{*}} .
$$

We will show (a) $R \simeq \underline{\operatorname{TMF}_{0}(3)}$ and (b) R is a ring object of $\mathcal{D}_{A(2)_{*}}$.
For (a), we will compute $\pi_{*, *}^{A(2)_{*}}(R)$. To this end, we observe that the methods of the proof of [DM10, Thm. 2.1(c)] show that there is a map

$$
f: \underline{X} \rightarrow A(2) / / A(1)_{*}
$$

which extends the inclusion $\mathbb{F}_{2} \hookrightarrow A(2) / / A(1)_{*}$. Let \underline{C} be the cofiber of f :

$$
\begin{equation*}
\underline{X} \xrightarrow{f} A(2) / / A(1)_{*} \rightarrow \underline{C} . \tag{4.6}
\end{equation*}
$$

Then the proof of DM10, Thm. 2.1(d)] shows that

$$
\pi_{*, s}^{A(2)_{*}}\left(A(2)_{*} \otimes \underline{C}\right) \cong \begin{cases}\Sigma^{4} A(2) / A(2)\left(\mathrm{Sq}^{4}, \mathrm{Sq}^{5} \mathrm{Sq}^{1}\right)_{*}, & s=0 \\ 0, & s>0\end{cases}
$$

as an $A(2)_{*}$-comodule. The $A(2)_{*}$-based Adams spectral sequence for \underline{C} then collapses to give an isomorphism

$$
\pi_{n, s}^{A(2)_{*}}(\underline{C}) \cong \operatorname{Ext}_{A(2)_{*}}^{s+n, s}\left(\mathbb{F}_{2}, \Sigma^{4} A(2) / A(2)\left(\mathrm{Sq}^{4}, \mathrm{Sq}^{5} \mathrm{Sq}^{1}\right)_{*}\right)
$$

These Ext groups were computed in [DM10, Thm. 2.9]. The cofiber sequence 4.6) gives an equivalence

$$
R \simeq \Sigma^{-1,1} v_{2}^{-1} \underline{C} .
$$

We see by inspection of Davis-Mahowald's Ext computation alluded to above that there is an isomorphism

$$
\pi_{*, *}^{A(2)}\left(\Sigma^{-1,1} v_{2}^{-1} \underline{C}\right) \cong \pi_{*, *}^{A(2)_{*}}\left(\underline{\mathrm{TMF}_{0}(3)}\right)
$$

satisfying the hypotheses of the Recognition Principle (Theorem4.3). We deduce that there is an equivalence

$$
\operatorname{TMF}_{0}(3) \simeq R
$$

We now just need to prove R is a ring object in $\mathcal{D}_{A(2)_{*}}$. For this we imitate the proof of [DM10, Thm. 2.1(e)]. Namely, consider the composite

$$
\bar{m}: \underline{X} \otimes \underline{X} \xrightarrow{f \otimes f} A(2) / / A(1)_{*} \otimes A(2) / / A(1)_{*} \xrightarrow{\mu} A(2) / / A(1)_{*} .
$$

By the cofiber sequence (4.6), the map \bar{m} lifts to a map

$$
m: \underline{X} \otimes \underline{X} \rightarrow \underline{X}
$$

if the composite

$$
\underline{X} \otimes \underline{X} \xrightarrow{\bar{m}} A(2) / / A(1)_{*} \rightarrow \underline{C}
$$

is null. In the proof of DM10, Thm. 2.1(e)], it is established using Bruner's Ext software that

$$
[\underline{X} \otimes \underline{X}, \underline{C}]_{A(2)_{*}}=0 .
$$

Therefore, the lift m exists. Since it is a lift of \bar{m}, it is the identity on the bottom cell. It follows that the composites

$$
\begin{aligned}
& \underline{X} \otimes \mathbb{F}_{2} \hookrightarrow \underline{X} \otimes \underline{X} \xrightarrow{m} \underline{X}, \\
& \mathbb{F}_{2} \otimes \underline{X} \hookrightarrow \underline{X} \otimes \underline{X} \xrightarrow{m} \underline{X}
\end{aligned}
$$

are the identity on the bottom cell. It follows from Lemma 4.2 that after $v_{2^{-}}$ localization, the composites

$$
\begin{aligned}
& R \otimes \mathbb{F}_{2} \hookrightarrow R \otimes R \xrightarrow{m} R, \\
& \mathbb{F}_{2} \otimes R \hookrightarrow R \otimes R \xrightarrow{m} R
\end{aligned}
$$

are equivalences. Thus m gives R the structure of a weak ring object. (In fact, the analog of Lemma 4.2 holds for \underline{X}, and so \underline{X} is also a weak ring object.)

5. Splitting $\underline{\mathrm{bo}}_{1}^{\otimes k}$

In this section we prove our main v_{2}-local splitting theorems, which will be the basis of all of our subsequent v_{2}-local decomposition results.

Proposition 5.1. There is a splitting

$$
v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 3} \simeq 2 \Sigma^{16,1} v_{2}^{-1} \underline{\mathrm{bo}}_{1} \oplus \Sigma^{24,2} \operatorname{TMF}_{0}(3) .
$$

Proof. Since we are working in characteristic 2, there is a decomposition

$$
\underline{\mathrm{bo}}_{1}^{\otimes 3} \simeq\left(\underline{\mathrm{bo}}_{1}^{\otimes 3}\right)^{h C_{3}} \oplus B
$$

where C_{3} acts by cyclically permuting the terms, and we have

$$
\pi_{*, *}^{A(2)_{*}}\left(\left(\underline{\mathrm{bo}}_{1}^{\otimes 3}\right)^{h C_{3}}\right)=\pi_{*, *}^{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes 3}\right)^{C_{3}} .
$$

It is easily checked, using the names of the generators in Figure 3.4, that there is an isomorphism

$$
v_{2}^{-1} \pi_{*, *}^{A(2)_{*}}\left(\left(\underline{\mathrm{bo}}_{1}^{\otimes 3}\right)^{h C_{3}}\right) \cong \pi_{*, *}^{A(2)_{*}}\left(\underline{\mathrm{TMF}_{0}(3)}\right) .
$$

A direct application of the Recognition Principle (Theorem 4.3) shows that

$$
v_{2}^{-1}\left(\underline{\mathrm{bo}}_{1}^{\otimes 3}\right)^{h C_{3}} \simeq \Sigma^{24,2} \underline{\operatorname{TMF}_{0}(3)} .
$$

Let

$$
x_{16}: \Sigma^{16,1} \mathbb{F}_{2} \rightarrow \underline{\mathrm{bo}}_{1}^{\otimes 2}
$$

correspond to the generator of $\pi_{16,1}^{A(2) *}\left(\underline{\mathrm{bo}}_{1}^{\otimes 2}\right)$. Then the composite

$$
\Sigma^{16,1} v_{2}^{-1} \underline{\mathrm{bo}}_{1} \oplus \Sigma^{16,1} v_{2}^{-1} \underline{\mathrm{bo}}_{1} \xrightarrow{x_{16} \otimes 1 \oplus 1 \otimes x_{16}} v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 3} \rightarrow v_{2}^{-1} B
$$

is seen to be a $\pi_{*, *}^{A(2)_{*}}$-isomorphism, hence an equivalence.
Proposition 5.2. There is a splitting

$$
\underline{\mathrm{TMF}_{0}(3)} \wedge{\underline{\mathrm{bo}_{1}}}^{\simeq \Sigma^{24,3} \mathrm{TMF}_{0}(3)} \oplus \Sigma^{40,6} \underline{\mathrm{TMF}_{0}(3)}
$$

Proof. Tensoring the splitting of Proposition 5.1 with $\underline{\mathrm{bo}}_{1}$, we have

$$
v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 4} \simeq 2 \Sigma^{16,1} v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2} \oplus \Sigma^{24,2} \underline{\operatorname{TMF}_{0}(3)} \wedge{\underline{\mathrm{bo}_{1}}}_{1}
$$

Examination of $\pi_{*, *}^{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes 4}\right)$ (Figure 3.5 reveals that

$$
\begin{aligned}
& \pi_{*, *}^{A(2)_{*}}\left(v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 4}\right) \simeq \\
& \quad 2 \pi_{*, *}^{A(2)_{*}}\left(\Sigma^{16,1} v_{2}^{-1} \underline{\mathrm{bo}_{1}^{\otimes 2}}\right) \oplus \pi_{*, *}^{A(2)_{*}}\left(\Sigma^{48,5} \underline{\mathrm{TMF}_{0}(3)}\right) \oplus \pi_{*, *}^{A(2)_{*}}\left(\Sigma^{64,8} \mathrm{TMF}_{0}(3)\right)
\end{aligned}
$$

It follows that there is an isomorphism

$$
\pi_{*, *}^{A(2)_{*}}\left(\underline{\mathrm{TMF}_{0}(3)} \wedge \underline{\mathrm{bo}}_{1}\right) \cong \pi_{*, *}^{A(2)_{*}}\left(\Sigma^{24,3} \underline{\mathrm{TMF}_{0}(3)}\right) \oplus \pi_{*, *}^{A(2)_{*}}\left(\Sigma^{40,6} \underline{\mathrm{TMF}_{0}(3)}\right)
$$

Moreover, one can check form the $\pi_{*, *}^{A(2)_{*}}\left(\mathbb{F}_{2}\right)$-module structure of $\pi_{*, *}^{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes 4}\right)$ that the isomorphism preserves multiplication by

$$
v_{0}, v_{1}^{4}, v_{0} v_{2}^{2}, v_{2}^{8}, h_{1}, h_{2}, g, v_{2}^{4} h_{1}
$$

The map

$$
\Sigma^{24,3} \mathbb{F}_{2} \oplus \Sigma^{40,6} \mathbb{F}_{2} \rightarrow \underline{\operatorname{TMF}_{0}(3)} \wedge \underline{\mathrm{bo}}_{1}
$$

which maps the two generators in gives rise to a map of $\mathrm{TMF}_{0}(3)$-modules

$$
\Sigma^{24,3} \underline{\mathrm{TMF}_{0}(3)} \oplus \Sigma^{40,6} \underline{\mathrm{TMF}_{0}(3)} \rightarrow \underline{\mathrm{TMF}_{0}(3)} \wedge \underline{\mathrm{bo}_{1}}
$$

One can then use $\pi_{*, *}^{A(2)_{*}}\left(\mathbb{F}_{2}\right)$-module structures to determine that this map is an isomorphism on $\pi_{*, *}^{A(2)_{*}}$.

Remark 5.3. Propositions 5.1 and 5.2 allow one to inductively compute a splitting of $v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes k}$ in $\mathcal{D}_{A(2)_{*}}$ as a sum of suspensions of $v_{2}^{-1} \underline{\mathrm{bo}}_{1}, v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2}$ and $\mathrm{TMF}_{0}(3)$. For example, we have

$$
\begin{aligned}
& v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 4} \simeq\left(2 \Sigma^{16,1} v_{2}^{-1}{\underline{\mathrm{bo}_{1}} \oplus \Sigma^{24,2}}^{\mathrm{TMF}_{0}(3)}\right) \otimes \underline{\mathrm{bo}_{1}} \\
& 2 \Sigma^{16,1} v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2} \oplus \Sigma^{24,2} \mathrm{TMF}_{0}(3) \\
& \mathrm{To}_{1} \\
& 2 \Sigma^{16,1} v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2} \oplus \Sigma^{48,5} \underline{\mathrm{TMF}}_{0}(3)
\end{aligned} \Sigma^{64,8} \underline{\mathrm{TMF}_{0}(3)} .
$$

In the next case, we can further simplify the answer using v_{2}^{8} periodicity.

$$
\begin{aligned}
v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 5} \simeq & \left(2 \Sigma^{16,1} v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2} \oplus \Sigma^{48,5} \underline{\mathrm{TMF}_{0}(3)} \oplus \Sigma^{64,8} \underline{\mathrm{TMF}_{0}(3)}\right) \otimes \underline{\mathrm{bo}_{1}} \\
\simeq & 2 \Sigma^{16,1} v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 3} \oplus \Sigma^{48,5} \underline{\mathrm{TMF}_{0}(3)} \otimes \underline{\mathrm{bo}_{1} \oplus} \oplus \Sigma^{64,8} \underline{\mathrm{TMF}_{0}(3)} \otimes \underline{\mathrm{bo}}_{1} \\
\simeq & 4 \Sigma^{32,2} v_{2}^{-1} \underline{\mathrm{bo}}_{1} \oplus 2 \Sigma^{40,3} \underline{\mathrm{TMF}_{0}(3)} \oplus \Sigma^{72,8} \mathrm{TMF}_{0}(3) \\
& \oplus 2 \Sigma^{88,11} \mathrm{TMF}_{0}(3) \oplus \Sigma^{104,14} \underline{\mathrm{TMF}_{0}(3)} \\
\simeq & 4 \Sigma^{32,2} v_{2}^{-1} \underline{\mathrm{bo}_{1} \oplus \Sigma^{24}} \underline{\mathrm{TMF}_{0}(3) \oplus 4 \Sigma^{40,3}} \underline{\mathrm{TMF}_{0}(3) \oplus} \oplus \Sigma^{56,6} \underline{\mathrm{TMF}_{0}(3) .}
\end{aligned}
$$

We similarly may compute

$$
\begin{gather*}
v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 6} \simeq 4 \Sigma^{32,2} v_{2}^{-1} \underline{\mathrm{bo}_{1}^{\otimes 2} \oplus \Sigma^{48,3}} \underline{\mathrm{TMF}_{0}(3)} \oplus 5 \Sigma^{64,6} \underline{\mathrm{TMF}_{0}(3)} \tag{5.4}\\
\oplus 5 \Sigma^{32,1} \underline{\mathrm{TMF}_{0}(3)} \oplus \Sigma^{48,4} \underline{\mathrm{TMF}_{0}(3)} .
\end{gather*}
$$

Finally, we will find the following splitting to be useful.
Proposition 5.5. There is a splitting

$$
\underline{\mathrm{TMF}_{0}(3)^{\otimes 2}} \simeq \underline{\mathrm{TMF}_{0}(3)} \oplus \Sigma^{0,-1} \underline{\mathrm{TMF}_{0}(3)} \oplus \Sigma^{16,2} \underline{\mathrm{TMF}_{0}(3)} \oplus \Sigma^{32,5} \underline{\mathrm{TMF}_{0}(3)}
$$

Proof. Smashing the splitting of Proposition 5.1 with itself, and applying Proposition 5.2 and v_{2}^{8}-periodicity, we have

$$
\begin{aligned}
& v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 6} \simeq 4 \Sigma^{32,2} \underline{\mathrm{bo}}_{1}^{\otimes 2} \oplus 4 \Sigma^{40,3} \underline{\mathrm{bo}}_{1} \otimes \underline{\mathrm{TMF}}_{0}(3) \oplus \Sigma^{48,4} \underline{\mathrm{TMF}}_{0}(3)^{\otimes 2} \\
& \simeq 4 \Sigma^{32,2} \underline{\mathrm{bo}}_{1}^{\otimes 2} \oplus 4 \Sigma^{64,6} \mathrm{TMF}_{0}(3) \oplus 4 \Sigma^{80,9} \mathrm{TMF}_{0}(3) \oplus \Sigma^{48,4} \underline{\mathrm{TMF}}_{0}(3)^{\otimes 2} \\
& \simeq 4 \Sigma^{32,2} \underline{\mathrm{bo}_{1}^{\otimes 2} \oplus 4 \Sigma^{64,6}} \overline{\mathrm{TMF}_{0}(3)} \oplus 4 \Sigma^{32,1} \overline{\mathrm{TMF}_{0}(3)} \oplus \Sigma^{48,4} \overline{\mathrm{TMF}_{0}(3)}{ }^{\otimes 2} .
\end{aligned}
$$

On the other hand, by (5.4), we have

$$
\begin{gathered}
v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 6} \simeq 4 \Sigma^{32,2} v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2} \oplus \Sigma^{48,3} \underline{\mathrm{TMF}_{0}(3)} \oplus 5 \Sigma^{64,6} \underline{\mathrm{TMF}_{0}(3)} \\
\oplus 5 \Sigma^{32,1} \underline{\mathrm{TMF}_{0}(3)} \oplus \Sigma^{48,4} \underline{\mathrm{TMF}_{0}(3)}
\end{gathered}
$$

Making use of $\pi_{*, *}^{A(2)_{*}}\left(\mathbb{F}_{2}\right)$ module structures, we deduce that there is an isomorphism

$$
\begin{aligned}
& \pi_{*, *}^{A(2)_{*}}\left(\underline{\left.\operatorname{TMF}_{0}(3)^{\otimes 2}\right) \cong}\right. \\
& \left.\quad \pi_{*, *}^{A(2)_{*}\left(\Sigma^{0,-1}\right.} \underline{\mathrm{TMF}_{0}(3)} \oplus \Sigma^{16,2} \underline{\mathrm{TMF}_{0}(3)} \oplus \Sigma^{-16,-3} \underline{\mathrm{TMF}_{0}(3)} \oplus \underline{\mathrm{TMF}_{0}(3)}\right) \\
& \left.\quad \cong \underline{\pi_{*, *}^{A(2)_{*}}\left(\Sigma^{0,-1} \mathrm{TMF}_{0}(3)\right.} \oplus \underline{\Sigma^{16,2}} \underline{\mathrm{TMF}_{0}(3)} \oplus \Sigma^{32,5} \underline{\mathrm{TMF}_{0}(3)} \oplus \underline{\mathrm{TMF}_{0}(3)}\right)
\end{aligned}
$$

of $\pi_{*, *}^{A(2)_{*}}\left(\mathbb{F}_{2}\right)$-modules. Since $\operatorname{TMF}_{0}(3)^{\otimes 2}$ is a $\mathrm{TMF}_{0}(3)$-module, we can extend the $\pi_{*, *}^{A(2)_{*}}\left(\underline{\mathrm{TMF}_{0}(3)}\right)$-module generators of $\left.\pi_{*, *}^{A(2) *}{\overline{\left(\mathrm{TMF}_{0}(3)\right.}}^{\otimes 2}\right)$ to a map

$$
\Sigma^{0,-1} \underline{\mathrm{TMF}_{0}(3)} \oplus \Sigma^{16,2} \underline{\mathrm{TMF}_{0}(3)} \oplus \Sigma^{32,5} \underline{\mathrm{TMF}_{0}(3)} \oplus \underline{\mathrm{TMF}_{0}(3)} \rightarrow \underline{\mathrm{TMF}_{0}(3)}{ }^{\otimes 2}
$$

which is a $\pi_{*, *}^{A(2)_{*}}$-isomorphism, hence an equivalence.

6. Generating functions

In this section we will describe a useful combinatorial way of computing decompositions of $v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes k}$ and $v_{2}^{-1} \underline{\mathrm{bo}}_{j}$.

We will represent the objects of $\mathcal{D}_{A(2)_{*}}$ of the form

$$
\begin{equation*}
\Sigma^{8 i_{1}, j_{1}} v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes k_{1}} \otimes{\underline{\operatorname{TMF}}{ }_{0}(3)^{\otimes l_{1}} \oplus \cdots \oplus \Sigma^{8 i_{n}, j_{n}} v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes k_{n}} \otimes \underline{\operatorname{TMF}}_{0}(3)^{\otimes l_{n}}}^{(} \tag{6.1}
\end{equation*}
$$

by elements of $\mathbb{Z}\left[s^{ \pm}, t^{ \pm}, x, y\right]$:

$$
t^{i_{1}} s^{j_{1}} x^{k_{1}} y^{l_{1}}+\cdots+t^{i_{n}} s^{j_{n}} x^{k_{n}} y^{l_{n}}
$$

Propositions 5.1,5.2, and v_{2}-periodicity impose some relations on this polynomial ring - we therefore work in the quotient ring

$$
\begin{equation*}
R:=\mathbb{Z}\left[s^{ \pm}, t^{ \pm}, x, y\right] /\left(x^{3}=2 t^{2} s x+t^{3} s^{2} y, x y:=t^{3} s^{3} y+t^{5} s^{6} y, t^{6} s^{8}=1\right) \tag{6.2}
\end{equation*}
$$

Note that these relations imply

$$
y^{2}=y+s^{-1} y+t^{2} s^{2} y+t^{4} s^{5} y
$$

This relation reflects the splitting of Prop 7.3 .
We may use the relations of R to reduce x^{k} to a sum of monomials whose terms are of the form $t^{i} s^{j} x, t^{i} s^{j} x^{2}$, and $t^{i} s^{j} y$. These reduced forms of x^{k} correspond to splittings of $v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes k}$. For example, the splitting $\sqrt{5.4}$ corresponds to the expression

$$
x^{6}=5 s^{6} t^{8} y+s^{4} t^{6} y+s^{3} t^{6} y+5 s t^{4} y+4 s^{2} t^{4} x^{2}
$$

in R. Table 1 shows the reduced forms of x^{k} in R for $k \leq 16$.
In light of Propositions 2.2 we can also compute the duals of objects of the form (6.1) represented as an element of R via the ring map:

$$
\begin{aligned}
D: R & \rightarrow R \\
t & \mapsto t^{-1} \\
s & \mapsto s^{-1} \\
x & \mapsto t^{-2} s \cdot x \\
y & \mapsto s \cdot y
\end{aligned}
$$

Note the formula $D(y)=s y$ is forced by the relations of R. We note however that Proposition 5.1 and Proposition 2.2 can be used to deduce that $v_{2}^{-1} D \mathrm{TMF}_{0}(3) \simeq$ $\Sigma^{0,1} \mathrm{TMF}_{0}(3)$.

Now assume that the connecting morphisms ∂_{j} 2.10) are trivial for for $1 \leq j \leq$ j_{0}. (We will eventually prove ∂_{j} is always zero in Theorem 8.1.) Then we can inductively define elements of R which encode the splitting of $v_{2}^{-4} \underline{\text { bo }}_{j}$ for $j \leq 2 j_{0}+1$. These are the bo-Brown-Gitler polynomials, introduced in BHHM20, Sec. 8]. Their

$$
\begin{aligned}
x^{3}= & s^{2} t^{3} y+2 s t^{2} x \\
x^{4}= & s^{5} t^{6} y+t^{2} y+2 s t^{2} x^{2} \\
x^{5}= & s^{6} t^{7} y+4 s^{3} t^{5} y+t^{3} y+4 s^{2} t^{4} x \\
x^{6}= & 5 s^{6} t^{8} y+s^{4} t^{6} y+s^{3} t^{6} y+5 s t^{4} y+4 s^{2} t^{4} x^{2} \\
x^{7}= & 6 s^{7} t^{9} y+s^{6} t^{9} y+14 s^{4} t^{7} y+s^{2} t^{5} y+6 s t^{5} y+8 s^{3} t^{6} x \\
x^{8}= & 20 s^{7} t^{10} y+7 s^{5} t^{8} y+7 s^{4} t^{8} y+20 s^{2} t^{6} y+s t^{6} y+t^{4} y+8 s^{3} t^{6} x^{2} \\
x^{9}= & 8 s^{7} t^{11} y+s^{6} t^{9} y+48 s^{5} t^{9} y+s^{4} t^{9} y+8 s^{3} t^{7} y+27 s^{2} t^{7} y+27 t^{5} y \\
& +16 s^{4} t^{8} x \\
x^{10}= & s^{7} t^{12} y+35 s^{6} t^{10} y+35 s^{5} t^{10} y+s^{4} t^{8} y+75 s^{3} t^{8} y+9 s^{2} t^{8} y \\
& +9 s t^{6} y+75 t^{6} y+16 s^{4} t^{8} x^{2} \\
x^{11}= & 10 s^{7} t^{11} y+166 s^{6} t^{11} y+10 s^{5} t^{11} y+44 s^{4} t^{9} y+110 s^{3} t^{9} y+s^{2} t^{9} y \\
& +s^{2} t^{7} y+110 s t^{7} y+44 t^{7} y+32 s^{5} t^{10} x \\
x^{12}= & 154 s^{7} t^{12} y+154 s^{6} t^{12} y+s^{5} t^{12} y+11 s^{5} t^{10} y+276 s^{4} t^{10} y \\
& +54 s^{3} t^{10} y+54 s^{2} t^{8} y+276 s t^{8} y+11 t^{8} y+t^{6} y+32 s^{5} t^{10} x^{2} \\
= & 584 s^{7} t^{13} y+65 s^{6} t^{13} y+s^{6} t^{11} y+208 s^{5} t^{11} y+430 s^{4} t^{11} y \\
& +12 s^{3} t^{11} y+12 s^{3} t^{9} y+430 s^{2} t^{9} y+208 s t^{9} y+t^{9} y+65 t^{7} y+64 s^{6} t^{12} x \\
x^{13}= & 638 s^{7} t^{14} y+13 s^{6} t^{14} y+77 s^{6} t^{12} y+1014 s^{5} t^{12} y+273 s^{4} t^{12} y \\
& +s^{3} t^{12} y+s^{4} t^{10} y+273 s^{3} t^{10} y+1014 s^{2} t^{10} y+77 s t^{10} y+13 s t^{8} y+638 t^{8} y \\
& +64 s^{6} t^{12} x^{2} \\
x^{14}= & 350 s^{7} t^{15} y+s^{6} t^{15} y+14 s^{7} t^{13} y+911 s^{6} t^{13} y+1652 s^{5} t^{13} y \\
& +90 s^{4} t^{13} y+90 s^{4} t^{11} y+1652 s^{3} t^{11} y+911 s^{2} t^{11} y+14 s t^{11} y+s^{2} t^{9} y \\
& +350 s t^{9} y+2092 t^{9} y+128 s^{7} t^{14} x \\
x^{15}= & 104 s^{7} t^{16} y+440 s^{7} t^{14} y+3744 s^{6} t^{14} y+1261 s^{5} t^{14} y+15 s^{4} t^{14} y \\
& +15 s^{5} t^{2} y+1261 s^{4} t^{12} y+3744 s^{3} t^{12} y+440 s^{2} t^{12} y+s t^{12} y+104 s^{2} t^{10} y \\
& +2563 s t^{10} y+2563 t^{10} y+t^{8} y+128 s^{7} t^{14} x^{2}
\end{aligned}
$$

Table 1. Reduced expressions for x^{k} in R corresponding to decompositions of $v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes k}$.
definition comes from (2.9) and 2.11.

$$
\begin{align*}
f_{0} & :=1 \\
f_{1} & :=x \\
f_{2 j+1} & :=t^{j} x \cdot f_{j} \tag{6.3}\\
f_{2 j} & :=t^{j} f_{j}+t^{j+1} s \cdot f_{j-1}
\end{align*}
$$

Table 2 shows reduced expressions for f_{j} in R for $j \leq 16$.

7. g-LOCAL COMPUTATIONS

We will now consider the g-local bo-Brown-Gitler comodules, for

$$
g=h_{2,1}^{4} \in \pi_{20,4}^{A(2)_{*}}\left(\mathbb{F}_{2}\right)
$$

The g-local results of this section will be crucial for the main result of Section 8 .

$$
\begin{aligned}
f_{1} & =x \\
f_{2} & =t x+s t^{2} \\
f_{3} & =t x^{2} \\
f_{4} & =s t^{3} x+t^{3} x+s t^{4} \\
f_{5} & =t^{3} x^{2}+s t^{4} x \\
f_{6} & =t^{4} x^{2}+s t^{5} x+s^{2} t^{6} \\
f_{7} & =s^{2} t^{7} y+2 s t^{6} x \\
f_{8} & =s t^{6} x^{2}+s t^{7} x+t^{7} x+s t^{8} \\
f_{9} & =s t^{7} x^{2}+t^{7} x^{2}+s t^{8} x \\
f_{10} & =t^{8} x^{2}+s^{2} t^{9} x+2 s t^{9} x+s^{2} t^{10} \\
f_{11} & =s^{2} t^{11} y+s t^{9} x^{2}+2 s t^{10} x \\
f_{12} & =s t^{10} x^{2}+t^{10} x^{2}+s^{2} t^{11} x+s t^{11} x+s^{2} t^{12} \\
f_{13} & =s^{2} t^{13} y+s t^{11} x^{2}+s^{2} t^{12} x+2 s t^{12} x \\
f_{14} & =s^{2} t^{14} y+s t^{12} x^{2}+s^{2} t^{13} x+2 s t^{13} x+s^{3} t^{14} \\
f_{15} & =s^{5} t^{1} 7 y+t^{13} y+2 s t^{13} x^{2} \\
f_{16} & =s^{3} t^{16} y+s t^{14} x^{2}+2 s^{2} t^{15} x+s t^{15} x+t^{15} x+s t^{16}
\end{aligned}
$$

Table 2. Reduced expressions for f_{j} in R.

Because the terms $A(2) / / A(1)_{*} \otimes{\underline{\operatorname{tmf}_{j-1}}}$ in 2.5 and 2.6 are g-locally acyclic in $\mathcal{D}_{A(2) *}$, we have cofiber sequences

$$
\begin{equation*}
\Sigma^{8 j} g^{-1} \underline{\mathrm{bo}}_{j} \rightarrow g^{-1}{\underline{\mathbf{b o}_{2 j}}}_{2 j} \Sigma^{8 j+8,1} g^{-1} \underline{\mathrm{bo}}_{j-1} \xrightarrow{\partial_{j}^{\prime}} \Sigma^{8 j+1,-1} g^{-1} \underline{\mathrm{bo}}_{j} \tag{7.1}
\end{equation*}
$$

and equivalences

$$
\begin{equation*}
g^{-1}{\underline{\mathrm{bo}_{2 j+1}}}_{2} \simeq \Sigma^{8 j} g^{-1}{\underline{\mathrm{bo}_{j}}}_{j} \otimes \underline{\mathrm{bo}}_{1} . \tag{7.2}
\end{equation*}
$$

We therefore get a g-local story completely analogous to the v_{2}-local story, except much easier, because there are no ' $\mathrm{TMF}_{0}(3)$ '-terms.

Proposition 7.3. There is a splitting

$$
g^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 3} \simeq 2 \Sigma^{16,1} g^{-1} \underline{\mathrm{bo}}_{1} .
$$

Proof. This follows the proof of Proposition 5.1. except the situation is simpler because

$$
g^{-1}\left(\underline{\mathrm{bo}}_{1}^{\otimes 3}\right)^{h C_{3}} \simeq 0
$$

since $g^{-1} \pi_{*, *}^{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes 3}\right)^{C_{3}}$ is zero by inspection.

We also have the following g-local analog of Proposition 2.2, whose proof is identical.
Proposition 7.4. We have

$$
g^{-1} D \underline{\mathrm{bo}}_{1} \simeq \Sigma^{-16,-1} g^{-1} \underline{\mathrm{bo}}_{1}
$$

Thus we may analyze the decompositions of $g^{-1} \underline{\text { bo }}_{j}$ by means of generating functions analogous to Section 6. In light of Proposition 7.3, instead of working in the
ring R, we work in the ring

$$
R^{\prime}:=\mathbb{Z}\left[s^{ \pm}, t^{ \pm}, x\right] /\left(x^{3}=2 t^{2} s x\right)
$$

By Proposition 7.4, we may encode g-local Spanier-Whitehead duality by the function

$$
\begin{aligned}
D: R^{\prime} & \rightarrow R^{\prime} \\
s & \mapsto s^{-1} \\
t & \mapsto t^{-1} \\
x & \mapsto t^{-2} s^{-1} x
\end{aligned}
$$

Define elements $f_{j}^{\prime} \in R^{\prime}$ by the same inductive definition 6.3 used to define the elements $f_{j} \in R$. A simple induction reveals the following.

Lemma 7.5. The elements $f_{j}^{\prime} \in R^{\prime}$ take the form

$$
f_{j}^{\prime}= \begin{cases}\sum_{i}\left(a_{i, j} s^{i} t^{j}+b_{i, j} s^{i} t^{j-1} x+c_{i, j} s^{i} t^{j-2} x^{2}\right), & j \text { even } \\ \sum_{i}\left(b_{i, j} s^{i} t^{j-1} x+c_{i, j} s^{i} t^{j-2} x^{2}\right), & j \text { odd }\end{cases}
$$

for $a_{i, j}, b_{i, j}, c_{i, j} \in \mathbb{N}$.
8. The attaching maps ∂_{j} and ∂_{j}^{\prime}

Theorem 8.1. The attaching maps ∂_{j} 2.10) and ∂_{j}^{\prime} 7.1) are zero for all j.

Proof. Write the exact sequence (2.5) as a splice of two short exact sequences

and let

$$
\begin{gathered}
\Sigma^{8 j}{\underline{\mathrm{bo}_{j}}} \rightarrow{\underline{\mathrm{bo}_{2 j}}}_{2} \rightarrow K \xrightarrow{\alpha} \Sigma^{8 j+1,-1}{\underline{\mathrm{bo}_{j}}}_{j} \\
\Sigma^{8 j+8,1} \underline{\mathrm{bo}}_{j-1} \xrightarrow{\beta} K \rightarrow A(2) / / A(1)_{*} \otimes \underline{\mathrm{tmf}}_{j-1} \rightarrow \Sigma^{8 j+9} \underline{\mathrm{bo}}_{j-1}
\end{gathered}
$$

be the cofiber sequences in $\mathcal{D}_{A(2)_{*}}$ induced from these short exact sequences. Then we have the following commutative diagram in $\mathcal{D}_{A(2)_{*}}$.

We therefore have

$$
\begin{equation*}
g^{-1} \partial_{j}=v_{2}^{-1} \partial_{j}^{\prime} \tag{8.2}
\end{equation*}
$$

Now, Assume inductively that ∂_{k} and ∂_{k}^{\prime} are zero for $k<j$. Then for $k<2 j+1$, $v_{2}^{-1} \underline{\mathrm{bo}}_{k}$ and $g^{-1}{\underline{\mathrm{bO}_{k}}}_{k}$ decomposes in $\mathcal{D}_{A(2)_{*}}$ as a sum of terms corresponding to the terms of f_{k} and f_{k}^{\prime}, respectively. Note that we have

$$
\begin{aligned}
& \partial_{j} \in \pi_{7,2}^{A(2)_{*}}\left(v_{2}^{-1} D\left({\underline{\mathrm{bo}_{j-1}}}_{j}\right) \otimes{\underline{\mathrm{bo}_{j}}}_{j}\right), \\
& \partial_{j}^{\prime} \in \pi_{7,2}^{A(2)_{*}}\left(g^{-1} D\left({\underline{\mathrm{bo}_{j-1}}}_{j-1}\right) \otimes \underline{\mathrm{bo}}_{j}\right) .
\end{aligned}
$$

It follows from Lemma 7.5 that

$$
D\left(f_{j-1}^{\prime}\right) \cdot f_{j}^{\prime}=\sum_{i}\left(\alpha_{i} s^{i} x+\beta_{i} s^{i} t^{-1} x^{2}\right)
$$

for $\alpha_{i}, \beta_{i} \in \mathbb{N}$, and therefore

$$
\begin{equation*}
g^{-1} D\left(\underline{\mathrm{bo}}_{j-1}\right) \otimes \underline{\mathrm{bo}}_{j} \simeq \bigoplus_{i}\left(\alpha_{i} \Sigma^{0, i} g^{-1} \underline{\mathrm{bo}}_{1}+\beta_{i} \Sigma^{-8, i} g^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2}\right) \tag{8.3}
\end{equation*}
$$

Note that there is a map of rings

$$
\phi: R^{\prime} \rightarrow R
$$

sending s to s, t to t, and x to x. We have

$$
f_{k} \equiv \phi\left(f_{k}^{\prime}\right) \quad \bmod y
$$

We therefore have

$$
D\left(f_{j-1}\right) \cdot f_{j}=\sum_{i}\left(\alpha_{i} s^{i} x+\beta_{i} s^{i} t^{-1} x^{2}\right)+\sum_{k, l} \gamma_{k, l} s^{k} t^{l} y
$$

It follows that we have

$$
\begin{equation*}
v_{2}^{-1} D\left(\underline{\mathrm{bo}}_{j-1}\right) \otimes \underline{\mathrm{bo}}_{j} \simeq \bigoplus_{i}\left(\alpha_{i} \Sigma^{0, i} v_{2}^{-1} \underline{\mathrm{bo}}_{1}+\beta_{i} \Sigma^{-8, i} v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2}\right) \oplus \bigoplus_{k, l} \Sigma^{8 l, k} \underline{\mathrm{TMF}_{0}(3)} \tag{8.4}
\end{equation*}
$$

Note that

$$
\pi_{8 m+7, n}^{A(2)_{*}}\left(\underline{\operatorname{TMF}_{0}(3)}\right)=0
$$

for all n, m, so the the only potential non-zero components of ∂_{j} under the decomposition 8.4 are the components

$$
\begin{aligned}
& \left(\partial_{j}\right)_{i}^{(1)} \in \pi_{7,2-i}\left(\alpha_{i} v_{2}^{-1} \underline{\mathrm{bo}}_{1}\right) \\
& \left(\partial_{j}\right)_{i}^{(2)} \in \pi_{15,2-i}\left(\beta_{i} v_{2}^{-1}{\underline{\mathbf{b o}_{1}}}_{1}^{\otimes 2}\right)
\end{aligned}
$$

Similarly, let

$$
\begin{aligned}
& \left(\partial_{j}^{\prime}\right)_{i}^{(1)} \in \pi_{7,2-i}\left(\alpha_{i} g^{-1} \underline{\mathrm{bo}}_{1}\right), \\
& \left(\partial_{j}^{\prime}\right)_{i}^{(2)} \in \pi_{15,2-i}\left(\beta_{i} g^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2}\right)
\end{aligned}
$$

denote the components of ∂_{j}^{\prime} under the splitting 8.3).
Note that the splittings 8.3 and 8.4 are compatible under the maps

$$
g^{-1} D\left(\underline{\mathrm{bo}}_{j-1}\right) \otimes{\underline{\mathrm{bo}_{j}}}_{j} \rightarrow v_{2}^{-1} g^{-1} D\left(\underline{\mathrm{bo}}_{j-1}\right) \otimes{\underline{\mathrm{bo}_{j}}}_{j} \leftarrow v_{2}^{-1} D\left({\underline{\mathrm{bo}_{j-1}}}_{j}\right) \otimes \underline{\mathrm{bo}}_{j}
$$

since $g^{-1} \underline{\mathrm{TMF}_{0}(3)} \simeq 0$, and by $8.2 \partial_{j}^{\prime}$ and ∂_{j} map to the same element of

$$
\pi_{7,2}^{A(2)_{*}}\left(v_{2}^{-1} g^{-1} D\left(\underline{\mathrm{bo}}_{j-1}\right) \otimes \underline{\mathrm{bo}}_{j}\right) .
$$

We therefore deduce that under the maps

$$
\begin{aligned}
\alpha_{i} g^{-1} \underline{\mathrm{bo}}_{1} & \rightarrow \alpha_{i} v_{2}^{-1} g^{-1} \underline{\mathrm{bo}}_{1} \leftarrow \alpha_{i} v_{2}^{-1} \underline{\mathrm{bo}}_{1}, \\
\beta_{i} g^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2} & \rightarrow \beta_{i} v_{2}^{-1} g^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2} \leftarrow \beta_{i} v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2}
\end{aligned}
$$

we have

$$
\begin{aligned}
& v_{2}^{-1}\left(\partial_{j}^{\prime}\right)_{i}^{(1)}=g^{-1}\left(\partial_{j}\right)_{i}^{(1)}, \\
& v_{2}^{-1}\left(\partial_{j}^{\prime}\right)_{i}^{(2)}=g^{-1}\left(\partial_{j}\right)_{i}^{(2)} .
\end{aligned}
$$

However, direct inspection of $\pi_{*, *}^{A(2) *}\left(\underline{\mathrm{bo}}_{1}\right)$ and $\pi_{*, *}^{A(2)_{*}}\left(\underline{\mathrm{bo}}_{1}^{\otimes 2}\right)$ reveals:

- The maps

$$
\begin{aligned}
& \pi_{7, s}^{A(2)_{*}}\left(g^{-1} \underline{\mathrm{bo}}_{1}\right) \hookrightarrow \pi_{7, s}^{A(2)_{*}}\left(v_{2}^{-1} g^{-1} \underline{\mathrm{bo}}_{1}\right) \hookleftarrow \pi_{7, s}^{A(2)_{*}}\left(v_{2}^{-1} \underline{\mathrm{bo}}_{1}\right), \\
& \pi_{15, s}^{A(2)_{*}}\left(g^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2}\right) \hookrightarrow \pi_{15, s}^{A(2)_{*}}\left(v_{2}^{-1} g^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2}\right) \hookleftarrow \pi_{15, s}^{A(2)_{*}}\left(v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2}\right)
\end{aligned}
$$

are injections for all s.

- We have

$$
\begin{aligned}
\pi_{7, s}^{A(2)_{*}}\left(g^{-1}{\underline{\mathrm{bo}_{1}}}\right) & =0, \\
\pi_{15, s}^{A(2)_{*}}\left(g^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2}\right) & =0
\end{aligned}
$$

for $s \geq 1$.

- We have

$$
\begin{aligned}
& \pi_{7, s}^{A(2)_{*}}\left(v_{2}^{-1}{\left.\underline{\mathrm{bo}_{1}}\right)}=0,\right. \\
& \pi_{15, s}^{A\left(2(2)_{*}\right.}\left(v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2}\right)=0
\end{aligned}
$$

for $s \leq 1$.

It follows that we must have

$$
\begin{aligned}
\left(\partial_{j}\right)_{i}^{(1)} & =0 \\
\left(\partial_{j}^{\prime}\right)_{i}^{(1)} & =0 \\
\left(\partial_{j}\right)_{i}^{(2)} & =0 \\
\left(\partial_{j}^{\prime}\right)_{i}^{(2)} & =0 .
\end{aligned}
$$

Corollary 8.5. We have

$$
g^{-1}{\underline{\mathrm{bo}_{2 j}}}_{2 j} \simeq \Sigma^{8 j} g^{-1}{\underline{\mathrm{bo}_{j}}}_{j} \oplus \Sigma^{8 j+8,1} g^{-1} \underline{\mathrm{bo}}_{j-1}
$$

Therefore, if we write f_{j}^{\prime} in the form

$$
f_{j}^{\prime}=\sum_{i}\left(a_{i, j} s^{i} t^{j}+b_{i, j} s^{i} t^{j-1} x+c_{i, j} s^{i} t^{j-2} x^{2}\right)
$$

then we have

$$
g^{-1} \underline{\mathrm{bo}}_{j} \simeq \bigoplus_{i}\left(a_{i, j} \Sigma^{8 j, i} g^{-1} \mathbb{F}_{2} \oplus b_{i, j} \Sigma^{8(j-1), i} g^{-1} \underline{\mathrm{bo}}_{1} \oplus c_{i, j} \Sigma^{8(j-2), i} g^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2}\right) .
$$

Corollary 8.6. We have

$$
v_{2}^{-1} \underline{\mathrm{bo}}_{2 j} \simeq \Sigma^{8 j} v_{2}^{-1} \underline{\mathrm{bo}}_{j} \oplus \Sigma^{8 j+8,1} v_{2}^{-1} \underline{\mathrm{bo}}_{j-1}
$$

Therefore, if we write f_{j} in the form

$$
f_{j}=\sum_{i}\left(a_{i, j} s^{i} t^{j}+b_{i, j} s^{i} t^{j-1} x+c_{i, j} s^{i} t^{j-2} x^{2}\right)+\sum_{k, l} d_{j, k, l} s^{k} t^{l} y
$$

then we have

$$
\begin{aligned}
v_{2}^{-1} \underline{\mathrm{bo}}_{j} \simeq \bigoplus_{i}\left(a_{i, j} \Sigma^{8 j, i} v_{2}^{-1} \mathbb{F}_{2} \oplus b_{i, j} \Sigma^{8(j-1), i} v_{2}^{-1} \underline{\mathrm{bo}}_{1} \oplus c_{i, j} \Sigma^{8(j-2), i} v_{2}^{-1} \underline{\mathrm{bo}}_{1}^{\otimes 2}\right) \\
\oplus \bigoplus_{k, l} d_{k, l} \Sigma^{8 l, k} \underline{\mathrm{TMF}_{0}(3)}
\end{aligned}
$$

Corollary 8.7. Consider the element

$$
h:=t f_{1} w+t^{2} f_{2} w^{2}+t^{3} f_{3} w^{3} \cdots \in R[[w]] .
$$

Write the coefficient of w^{j} in h^{n} as

$$
\sum_{i}\left(a_{i, j}^{(n)} s^{i} t^{2 j}+b_{i, j}^{(n)} s^{i} t^{2 j-1} x+c_{i, j}^{(n)} s^{i} t^{2 j-2} x^{2}\right)+\sum_{j, k, l} d_{k, l}^{(n)} s^{k} t^{l} y
$$

then the weight $8 j$ summand of $v_{2}^{-1} \underline{\underline{\mathrm{tmf}}}^{\otimes n}$ decomposes as

$$
\begin{aligned}
& \bigoplus_{i}\left(a_{i, j}^{(n)} \Sigma^{16 j, i} v_{2}^{-1} \mathbb{F}_{2} \oplus b_{i, j}^{(n)} \Sigma^{16 j-8, i} v_{2}^{-1} \underline{\mathrm{bo}}_{1} \oplus c_{i, j}^{(n)} \Sigma^{16 j-16, i} v_{2}^{-1} \underline{\mathrm{bo}_{1}^{\otimes 2}}\right) \\
& \oplus \bigoplus_{k, l} d_{j, k, l}^{(n)} \Sigma^{8 l, k} \underline{\mathrm{TMF}_{0}(3)} .
\end{aligned}
$$

9. Applications to the g-LOCAL ALGEBRAIC tmf-RESOLUTION

Consider the quotient Hopf algebra $C_{*}:=\mathbb{F}_{2}\left[\zeta_{2}\right] /\left(\zeta_{2}^{4}\right)$ of $A(2)_{*}$, with

$$
\pi_{*, *}^{C_{*}}\left(\mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[v_{1}, h_{2,1}\right] .
$$

The second author, Bobkova, and Thomas computed the P_{2}^{1}-Margolis homology of the tmf-resolution, and in the process computed the structure of $A / / A(2)_{*}^{\otimes n}$ as C_{*}-comodules. From this one can read off the Ext groups

$$
h_{2,1}^{-1} \pi_{*, *}^{C_{*}}\left(\underline{\operatorname{tmf}}^{\otimes n}\right)
$$

(see BMQ21, Thm. 3.12]).
The groups $h_{2,1}^{-1} \pi_{*, *}^{C_{*}}$ are closely related to the groups $g^{-1} \pi_{*, *}^{A(2)_{*}}$. In BMQ21, Cor. 3.11], it is proven that for $M \in \mathcal{D}_{A(2)_{*}}$, there is a v_{2}^{8} Bockstein spectral sequence

$$
\begin{equation*}
h_{2,1}^{-1} \pi_{*, *}^{C_{*}}(M) \otimes \mathbb{F}_{2}\left[v_{2}^{8}\right] \Rightarrow g^{-1} \pi_{*, *}^{A(2)_{*}}(M) \tag{9.1}
\end{equation*}
$$

In this section we would like to explain how Corollary 8.5 can be used to compute $g^{-1} \pi_{*, *}^{A(2)_{*}}\left(\mathrm{tmf}^{\otimes n}\right)$. By relating this to BBT21], we will show that in the case of $M=\underline{\mathrm{tmf}}^{\otimes n}$, the spectral sequence 9.1) collapses (Theorem 9.3).

We follow BMQ21 in our summary of the results of BBT21. The coaction of C_{*} is encoded in the dual action of the algebra $E\left[Q_{1}, P_{2}^{1}\right]$ on $\underline{\mathrm{tmf}}^{\otimes n}$. Define elements

$$
\begin{aligned}
& x_{i, j}=1 \otimes \cdots \otimes 1 \otimes \underbrace{\zeta_{i+3}}_{j} \otimes 1 \otimes \cdots \otimes 1, \\
& t_{i, j}=1 \otimes \cdots \otimes 1 \otimes \underbrace{\zeta_{i+1}^{4}}_{j} \otimes 1 \otimes \cdots \otimes 1
\end{aligned}
$$

in $\underline{\mathrm{tmf}}^{\otimes n}$.
For an ordered set

$$
J=\left(\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right)\right)
$$

of multi-indices, let

$$
|J|:=k
$$

denote the number of pairs of indices it contains. Define linearly independent sets of elements

$$
\mathcal{T}_{J} \subset \underline{\operatorname{tmf}}^{\otimes n}
$$

inductively as follows. Define

$$
\mathcal{T}_{(i, j)}=\left\{x_{i, j}\right\} .
$$

For J as above with $|J|$ odd, define

$$
\begin{aligned}
\mathcal{T}_{J,(i, j)} & =\left\{z \cdot x_{i, j}\right\}_{z \in \mathcal{T}_{J}} \\
\mathcal{T}_{J,(i, j),\left(i^{\prime}, j^{\prime}\right)} & =\left\{Q_{1}\left(z \cdot x_{i, j}\right) x_{i^{\prime}, j^{\prime}}\right\}_{z \in \mathcal{T}_{J}} \cup\left\{Q_{1}\left(z \cdot x_{i^{\prime}, j^{\prime}}\right) x_{i, j}\right\}_{z \in \mathcal{T}_{J}}
\end{aligned}
$$

Let

$$
N_{J} \subset \underline{\operatorname{tmf}}^{\otimes n}
$$

denote the \mathbb{F}_{2}-subspace with basis

$$
Q_{1} \mathcal{T}_{J}:=\left\{Q_{1}(z)\right\}_{z \in \mathcal{T}_{J}} .
$$

While the set \mathcal{T}_{J} depends on the ordering of J, the subspace N_{J} does not.
Finally, for a set of pairs of indices

$$
J=\left\{\left(i_{1}, j_{1}\right), \cdots,\left(i_{k}, j_{k}\right)\right\}
$$

as before, define

$$
x_{J} t_{J}:=x_{i_{1}, j_{1}} t_{i_{1}, j_{1}} \cdots x_{i_{k}, j_{k}} t_{i_{k}, j_{k}}
$$

The following is can be read off of the computations of BBT21.
Theorem 9.2 (Bhattacharya-Bobkova-Thomas). As modules over $\mathbb{F}_{2}\left[h_{2,1}^{ \pm}, v_{1}\right]$, we have

$$
\begin{aligned}
& h_{2,1}^{-1} \pi_{*, *}^{C_{*}\left(\mathrm{tmf}_{*}^{\otimes n}\right)=} \\
& \quad \mathbb{F}_{2}\left[h_{2,1}^{ \pm}\right] \otimes\left(\mathbb{F}_{2}\left[v_{1}\right]\left\{x_{J^{\prime}} t_{J^{\prime}}\right\}_{J^{\prime}} \oplus \bigoplus_{|J| \text { odd }} N_{J}\left\{x_{J^{\prime}} t_{J^{\prime}}\right\}_{J \cap J^{\prime}=\emptyset}\right. \\
& \left.\oplus \bigoplus_{|J| \neq 0 \text { even }} \mathbb{F}_{2}\left[v_{1}\right] / v_{1}^{2} \otimes N_{J}\left\{x_{J^{\prime}} t_{J^{\prime}}\right\}_{J \cap J^{\prime}=\emptyset}\right)
\end{aligned}
$$

where J and J^{\prime} range over the subsets of

$$
\{(i, j): 1 \leq i, 1 \leq j \leq n\}
$$

and v_{1} acts trivially on N_{J} for $|J|$ odd.

We now explain how the equivalences

$$
\begin{aligned}
g^{-1} \underline{\mathrm{bo}}_{2 j} & \simeq \Sigma^{8 j} g^{-1}{\underline{\mathrm{bo}_{j}}}_{j} \Sigma^{8 j+8,1} g^{-1} \underline{\mathrm{bo}}_{j-1} \\
g^{-1} \underline{\mathrm{bo}}_{2 j+1} & \simeq \Sigma^{8 j} g^{-1}{\underline{\mathrm{bo}_{j}}}_{j} \otimes \underline{\mathrm{bo}}_{1}
\end{aligned}
$$

are related to Theorem 9.2 . This analysis comes from the definitions of the maps of 2.5) and 2.6) in BHHM08. For a set J of indices of the form

$$
J=\left\{\left(i_{1}, 1\right), \cdots,\left(i_{k}, 1\right)\right\}
$$

define $J+\Delta$ to be the set

$$
J+\Delta=\left\{\left(i_{1}+1,1\right), \cdots,\left(i_{k}+1,1\right)\right\}
$$

Then the induced maps on homotopy are determined by:

$$
\begin{aligned}
& \pi_{*, *}^{A(2)_{*}}\left(\Sigma^{8 j} g^{-1}{\underline{\mathbf{b o}_{j}}}_{j}\right) \rightarrow \pi_{*, *}^{A(2)_{*}}\left(g^{-1}{\underline{\mathbf{b o}_{2 j}}}_{2 j}\right) \\
& N_{J}\left\{x_{J^{\prime}} t_{J^{\prime}}\right\} \mapsto N_{J+\Delta}\left\{x_{J^{\prime}+\Delta} t_{J^{\prime}+\Delta}\right\} \\
& \pi_{*, *}^{A(2)_{*}}\left(\Sigma^{8 j+8,1} g^{-1}{\underline{\mathrm{bo}_{j-1}}} \rightarrow \pi_{*, *}^{A(2)_{*}}\left(g^{-1} \underline{\mathrm{bo}}_{2 j}\right)\right. \\
& N_{J}\left\{x_{J^{\prime}} t_{J^{\prime}}\right\} \mapsto h_{2,1} \cdot N_{J+\Delta}\left\{x_{1,1} t_{1,1} x_{J^{\prime}+\Delta} t_{J^{\prime}+\Delta}\right\} \\
& \pi_{*, *}^{A(2)_{*}}\left(\Sigma^{8 j} g^{-1}{\underline{\mathrm{bo}_{j}}}_{j} \otimes{\underline{\mathrm{bo}_{1}}}\right)=\pi_{*, *}^{A(2)_{*}}\left(g^{-1}{\underline{\mathrm{bo}_{2 j+1}}}_{2 j+1}\right) \\
& N_{J \cup\{(1,2)\}}\left\{x_{J^{\prime}} t_{J^{\prime}}\right\} \mapsto N_{(J+\Delta) \cup\{(1,1)\}}\left\{x_{J^{\prime}+\Delta} t_{J^{\prime}+\Delta}\right\} .
\end{aligned}
$$

We have (with $g=h_{2,1}^{4}$)

$$
\begin{aligned}
\pi_{*,}^{A(2)_{*}}\left(g^{-1} \mathbb{F}_{2}\right) & =\mathbb{F}_{2}\left[h_{2,1}^{ \pm}, v_{1}, v_{2}^{8}\right] \\
\pi_{*, *}^{A(2)_{*}}\left(g^{-1} \underline{\mathbf{b o}}_{1}\right) & =\mathbb{F}_{2}\left[h_{2,1}^{ \pm}, v_{1}, v_{2}^{8}\right] /\left(v_{1}\right)\left\{t_{1,1}\right\}, \\
\pi_{*, *}^{A(2)_{*}}\left(g^{-1} \underline{\mathbf{b o}}_{1}^{\otimes 2}\right) & =\mathbb{F}_{2}\left[h_{2,1}^{ \pm}, v_{1}, v_{2}^{8}\right] /\left(v_{1}^{2}\right)\left\{Q_{1}\left(x_{1,1} x_{1,2}\right)\right\} .
\end{aligned}
$$

Corollary 8.5 therefore implies the following extension of Theorem 9.2 .
Theorem 9.3. As modules over $\mathbb{F}_{2}\left[h_{2,1}^{ \pm}, v_{1}, v_{2}^{8}\right]$, we have

$$
\begin{aligned}
& g^{-1} \pi_{*, *}^{A(2))_{*}}\left(\underline{\operatorname{tmf}}_{*}^{\otimes n}\right)= \\
& \mathbb{F}_{2}\left[h_{2,1}^{ \pm}, v_{2}^{8}\right] \otimes\left(\mathbb{F}_{2}\left[v_{1}\right]\left\{x_{J^{\prime}} t_{J^{\prime}}\right\}_{J^{\prime}} \oplus \bigoplus_{|J| \text { odd }} N_{J}\left\{x_{J^{\prime}} t_{J^{\prime}}\right\}_{J \cap J^{\prime}=\emptyset}\right. \\
&\left.\oplus \bigoplus_{|J| \neq 0 \text { even }} \mathbb{F}_{2}\left[v_{1}\right] / v_{1}^{2} \otimes N_{J}\left\{x_{J^{\prime}} t_{J^{\prime}}\right\}_{J \cap J^{\prime}=\emptyset}\right)
\end{aligned}
$$

where J and J^{\prime} range over the subsets of

$$
\{(i, j): 1 \leq i, 1 \leq j \leq n\}
$$

and v_{1} acts trivially on N_{J} for $|J|$ odd.

Appendix A. A splitting of $\mathrm{bo}_{1}^{\wedge 3}$

The v_{2}-local splitting of Proposition 5.1 comes from a stable splitting of $\mathrm{bo}_{1}^{\wedge 3}$ induced by an idempotent decomposition of the identity element

$$
1=\mathrm{f}_{1}+\mathrm{f}_{2}+\mathrm{e} \in \mathbb{Z}_{(2)}\left[\Sigma_{3}\right]
$$

as described in Remark A.2. More precisely, if we set

$$
F_{i}:=\operatorname{hocolim}\left\{\mathrm{bo}_{1}^{\wedge 3} \xrightarrow{\mathrm{f}_{i}} \mathrm{bo}_{1}^{\wedge 3} \xrightarrow{\mathrm{f}_{i}} \ldots\right\}
$$

for $i \in\{1,2\}$ and

$$
E:=\operatorname{hocolim}\left\{\mathrm{bo}_{1}^{\wedge 3} \xrightarrow{\mathrm{e}} \mathrm{bo}_{1}^{\wedge 3} \xrightarrow{\mathrm{e}} \ldots\right\},
$$

using the evident permutation action of Σ_{3} on $\mathrm{bo}_{1}^{\wedge 3}$, then it is easy to see that

$$
\begin{equation*}
\mathrm{bo}_{1}^{\wedge 3} \simeq F_{1} \vee F_{2} \vee E \tag{A.1}
\end{equation*}
$$

In fact, F_{1}, F_{2} and E are finite spectra and their mod 2 cohomology as a Steenrod module can be easily computed using the cocommutativity of Steenrod operations and a Künneth isomorphism (see Rav92, Appendix C]). For the purposes of this paper, we only need their underlying $A(2)$-module structure which we record in the format of a Bruner module definition file BEM17, Apx. A] (see Figure A.1 and Figure A. 2
Remark A.2. In the group ring $\mathbb{Z}_{(2)}\left[\Sigma_{3}\right]$, the identity element 1 can be written as a sum of idempotent elements

$$
\begin{gathered}
\mathrm{f}_{1}=\frac{1+\left(\begin{array}{ll}
1 & 2
\end{array}\right)-\left(\begin{array}{ll}
1 & 3
\end{array}\right)-\left(\begin{array}{ll}
1 & 2
\end{array}\right)}{3}, \mathrm{f}_{2}=\frac{1+\left(\begin{array}{ll}
1 & 3
\end{array}\right)-\left(\begin{array}{ll}
1 & 2
\end{array}\right)-\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)}{3} \text { and } \\
\mathrm{e}=\frac{1+\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)+\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)}{3}
\end{gathered}
$$

Figure A.1. The $A(2)$-module structure of $H^{*}\left(F_{1}\right) \cong H^{*}\left(F_{2}\right)$ as an input file for Bruner's program

Remark A.3. Note that f_{1} and f_{2} are conjugates and therefore, $F_{1} \simeq F_{2}$.
Bruner's program is capable of computing the action of $\pi_{*, *}^{A(2)_{*}}\left(\mathbb{F}_{2}\right)$ on $\pi_{*, *}^{A(2)_{*}}\left(M^{\vee}\right)$, where M^{\vee} is the \mathbb{F}_{2}-linear dual of a finite $A(2)$-module M. Therefore, it can be used for verifying the details necessary in the proof of Proposition 5.1 and Proposition 5.2.

Remark A.4. Using Bruner's program and Figure 4.2 one can easily verify

$$
v_{2}^{-1} \pi_{*, *}^{A(2)_{*}}\left(H_{*}(E)\right) \cong \pi_{*, *}^{A(2)_{*}}\left(\Sigma^{24,2} \underline{\operatorname{TMF}_{0}(3)}\right)
$$

Then by Theorem 4.3 we get $\Sigma^{24,2} \operatorname{TMF}_{0}(3) \simeq v_{2}^{-1} H_{*}(E)$ in $\mathcal{D}_{A(2) *}$.
Remark A. 5 (A different proof of Proposition5.1). Let M_{1} denote the first integral Brown-Gitler module. It consists of three \mathbb{F}_{2}-generators $\left\{x_{0}, x_{2}, x_{3}\right\}$ where $\left|x_{i}\right|=i$ such that

$$
S q^{2}\left(x_{0}\right)=x_{2} \text { and } S q^{1}\left(x_{2}\right)=x_{3}
$$


```
0411
0612
0713
1212
1313
2113
24256 9 2 1 13 15 15 2 2 17 18
25278
34278
3621112
42256
43278
442910
45 2 11112
4621314
47115
5 1 1 7
5 2 1 10 11 1 1 14 14 18 1 1 20
5 3 2 111 12
544121314
5 5 1 15
61118
6 2 1 10
6 3 2 111 12
6421314
6 5 1 15
7}22111
7}
74115
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{\(\begin{array}{lllll}7 & 6 & 2 & 17 & 18\end{array}\)} & 136122 \\
\hline & 137123 \\
\hline 82112 & \\
\hline 83114 & 144120 \\
\hline 84115 & 146122 \\
\hline 8621718 & 147123 \\
\hline 92113 & 15221718 \\
\hline 93115 & 154121 \\
\hline 94116 & 156123 \\
\hline \(\begin{array}{llllll}9 & 5 & 2 & 17 & 18\end{array}\) & \\
\hline 9621920 & \(\begin{array}{lllll}16 & 1 & 217 & 18\end{array}\) \\
\hline 97121 & 16221920 \\
\hline & 163121 \\
\hline \(\begin{array}{lllll}10 & 1 & 2 & 11 & 12\end{array}\) & 164122 \\
\hline 102114 & 165123 \\
\hline 104116 & \\
\hline \(\begin{array}{llllll}10 & 5 & 2 & 17 & 18\end{array}\) & 171120 \\
\hline 10621920 & 172121 \\
\hline 107121 & 174123 \\
\hline \(\begin{array}{llll}11 & 1 & 14\end{array}\) & 181120 \\
\hline 11417 & 182121 \\
\hline 115120 & 184123 \\
\hline \multicolumn{2}{|l|}{116121} \\
\hline & 191121 \\
\hline \(\begin{array}{lllll}12 & 1 & 14\end{array}\) & 192122 \\
\hline 124118 & 193123 \\
\hline 125120 & \\
\hline \multirow[t]{2}{*}{126121} & 202122 \\
\hline & 203123 \\
\hline \(\begin{array}{lllll}13 & 1 & 15\end{array}\) & 212123 \\
\hline 134119 & \\
\hline 135121 & 221123 \\
\hline
\end{tabular}
```

Figure A.2. The $A(2)$-module structure of $H^{*}(E)$ as an input file for Bruner's program

It is tedious but straightforward to check that there is a short exact sequence

$$
0 \rightarrow H^{*}\left(\Sigma^{17} \mathrm{bo}_{1}\right) \longrightarrow \Sigma^{4} A(2) / / A(1) \otimes M_{1} \longrightarrow H^{*} E \rightarrow 0
$$

of $A(2)$-modules. This short exact sequence translates into an $\mathcal{D}_{A(2) *}$-equivalence

$$
v_{2}^{-1} H_{*}\left(F_{1}\right) \cong H_{*}\left(F_{2}\right) \simeq \Sigma^{16,1} v_{2}^{-1}{\underline{\mathrm{bo}_{1}}}_{1}
$$

which, along with Remark A.4 and A.11, gives yet another proof of Proposition 5.1

References

[Ada66] J. F. Adams, On the groups $J(X) . I V$, Topology 5 (1966), 21-71. MR 198470
$\left[\mathrm{BBB}^{+} 20\right]$ A. Beaudry, M. Behrens, P. Bhattacharya, D. Culver, and Z. Xu, On the E_{2}-term of the bo-Adams spectral sequence, J. Topol. 13 (2020), no. 1, 356-415. MR 4138742
$\left[\mathrm{BBB}^{+} 21\right]$ Agnès Beaudry, Mark Behrens, Prasit Bhattacharya, Dominic Culver, and Zhouli Xu, The telescope conjecture at height 2 and the tmf resolution, J. Topol. 14 (2021), no. 4, 1243-1320. MR 4332490
[BBT21] Prasit Bhattacharya, Irina Bobkova, and Brian Thomas, The P_{2}^{1} Margolis homology of connective topological modular forms, Homology Homotopy Appl. 23 (2021), no. 2, 379-402. MR 4319993
[BEM17] Prasit Bhattacharya, Philip Egger, and Mark Mahowald, On the periodic $v_{2}-$ self-map of A_{1}, Algebr. Geom. Topol. 17 (2017), no. 2, 657-692. MR 3623667
[BHHM08] M. Behrens, M. Hill, M. J. Hopkins, and M. Mahowald, On the existence of a v_{2}^{32}-self map on $M(1,4)$ at the prime 2, Homology Homotopy Appl. 10 (2008), no. 3, 45-84. MR 2475617
[BHHM20] , Detecting exotic spheres in low dimensions using coker J, J. Lond. Math. Soc. (2) 101 (2020), no. 3, 1173-1218.
[BMQ21] M. Behrens, , Mark Mahowald, and J.D Quigley, The 2-primary Hurewicz image of tmf, arXiv:2011.08956, 2021.
[BOSS19] M. Behrens, K. Ormsby, N. Stapleton, and V. Stojanoska, On the ring of cooperations for 2-primary connective topological modular forms, J. Topol. 12 (2019), no. 2, 577657.
[BR22] Robert R. Bruner and John Rognes, The Adams spectral sequence for the image-of-J spectrum, Trans. Amer. Math. Soc. 375 (2022), no. 8, 5803-5827. MR 4469237
[Cul19] Dominic Leon Culver, On $\mathrm{BP}\langle 2\rangle$-cooperations, Algebr. Geom. Topol. 19 (2019), no. 2, 807-862. MR 3924178
[DGM81] Donald M. Davis, Sam Gitler, and Mark Mahowald, The stable geometric dimension of vector bundles over real projective spaces, Trans. Amer. Math. Soc. 268 (1981), no. 1, 39-61. MR 628445
[DM89] Donald M. Davis and Mark Mahowald, The image of the stable J-homomorphism, Topology 28 (1989), no. 1, 39-58. MR 991098
[DM10] , Connective versions of TMF(3), Int. J. Mod. Math. 5 (2010), no. 3, 223-252. MR 2779050
[GJM86] Paul G. Goerss, John D. S. Jones, and Mark E. Mahowald, Some generalized BrownGitler spectra, Trans. Amer. Math. Soc. 294 (1986), no. 1, 113-132. MR 819938
[LM87] Wolfgang Lellmann and Mark Mahowald, The bo-Adams spectral sequence, Trans. Amer. Math. Soc. 300 (1987), no. 2, 593-623.
[Mah81] Mark Mahowald, bo-resolutions, Pacific J. Math. 92 (1981), no. 2, 365-383. MR 618072
[Mah82] , The image of J in the EHP sequence, Ann. of Math. (2) 116 (1982), no. 1, 65-112. MR 662118
[Mat16] Akhil Mathew, The homology of tmf, Homology Homotopy Appl. 18 (2016), no. 2, 1-29. MR 3515195
[Mil81] Haynes R. Miller, On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space, J. Pure Appl. Algebra 20 (1981), no. 3, 287312. MR 604321
[MR09] Mark Mahowald and Charles Rezk, Topological modular forms of level 3, Pure Appl. Math. Q. 5 (2009), no. 2, Special Issue: In honor of Friedrich Hirzebruch. Part 1, 853-872. MR 2508904
[MS87] Mark Mahowald and Paul Shick, Periodic phenomena in the classical Adams spectral sequence, Trans. Amer. Math. Soc. 300 (1987), no. 1, 191-206. MR 871672
[Rav92] Douglas C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, vol. 128, Princeton University Press, Princeton, NJ, 1992, Appendix C by Jeff Smith. MR 1192553

University of Notre Dame
Email address: mbehren1@nd.edu

New Mexico State University

Email address: prasit@nmsu.edu

Max Plank Institute for Mathematics

Email address: dculver@mpim-bonn.mpg.de

