The equation for a plane

September 9, 2003

This is a quick note to tell you how to easily write the equation of a plane in 3 -space.

1 Planes passing through the origin

Planes are best identified with their normal vectors. Thus, given a vector $\mathbf{V}=$ $\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, the plane P_{0} that passes through the origin and is perpendicular to \mathbf{V} is the set of all points (x, y, z) such that the position vector $\mathbf{X}=\langle x, y, z\rangle$ is perpendicular to \mathbf{V}. In other words, we have

$$
\langle x, y, z\rangle \cdot \mathbf{V}=v_{1} x+v_{2} y+v_{3} z=0
$$

so the equation for the plane P_{0} is $v_{1} x+v_{2} y+v_{3} z=0$.

2 Planes passing through any point

That was only a plane through the origin! We want equations for all planes, including the ones that don't pass through the origin. How do we specify such planes? Given a vector \mathbf{V}, there are infinitely many planes perpendicular to \mathbf{V}. Think about why this is true - for instance, the planes perpendicular to $\hat{\mathbf{k}}$ are those of the form $z=C$ for some constant C. Since C can be any real number, there are infinitely many such planes.

To specify one of these planes, we just need to specify a point that it passes through. This should be compared to lines in 2 -space: there are infinitely many lines with slope m, but only one line with slope m that passes through a given point $\left(x_{0}, y_{0}\right)$. Suppose that P is the plane passing through $\left(x_{0}, y_{0}, z_{0}\right)$ which is perpendicular to \mathbf{V}. What is the equation for P ? If we subtract the position vector $X_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ from all of the points in the plane, this has the effect that the plane is translated to the origin. Call this translated plane P_{0} - this was the sort of plane we dealt with in Section 1. Thus the point (x, y, z) with position vector $\mathbf{X}=\langle x, y, z\rangle$ is in P if and only if the translated point

$$
\mathbf{X}-\mathbf{X}_{\mathbf{0}}
$$

is in P_{0}. This is equivalent to

$$
\left(\mathbf{X}-\mathbf{X}_{\mathbf{0}}\right) \cdot \mathbf{V}=0
$$

or

$$
\mathbf{X} \cdot \mathbf{V}=\mathbf{X}_{\mathbf{0}} \cdot \mathbf{V}
$$

when expanded out, this equation reads

$$
v_{1} x+v_{2} y+v_{3} z=\mathbf{X}_{\mathbf{0}} \cdot \mathbf{V}
$$

and this is the equation of the plane P which is perpendicular to \mathbf{V} and passes through $\left(x_{0}, y_{0}, z_{0}\right)$.

3 Half spaces

A plane P as above divides 3 -space into two regions. These regions are given by the inequalities

$$
\begin{align*}
v_{1} x+v_{2} y+v_{3} z & >\mathbf{X}_{\mathbf{0}} \cdot \mathbf{V} \tag{1}\\
v_{1} x+v_{2} y+v_{3} z & <\mathbf{X}_{\mathbf{0}} \cdot \mathbf{V} \tag{2}
\end{align*}
$$

The region given by Equation 1 is the region that the vector \mathbf{V} is pointing toward, and the region given by Equation 2 is the region that the vector \mathbf{V} is pointing away from. Try this out (draw) with a simple example to see what I mean by this.

4 A simplified approach

As an afterthought to writing this document I realized the following approach may be simpler to conceptualize. Consider the plane perpendicular to a fixed vector \mathbf{u} that passes through a point P_{0}. The picture is below.

Region II

The plane divides 3 -space into two regions: region I, which lies on the same side of the plane as \mathbf{u}, and region II, which lies on the other side of the plane. For a point P in 3 -space, we have

- P lies on the plane if and only if $\overrightarrow{P_{0} P} \cdot \mathbf{u}=0$.
- P lies in region I if and only if $\overrightarrow{P_{0} P} \cdot \mathbf{u}>0$.
- P lies in region II if and only if $\overrightarrow{P_{0} P} \cdot \mathbf{u}<0$.

This formulation should be intuitively more clear, and more useful for problem 4 of part B.

