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Abstract

The reliable prediction of phase stability is a challenging computational problem in chemi-

cal process simulation, optimization and design. The phase stability problem can be formulated

either as a minimization problem or as an equivalent nonlinear equation solving problem. Con-

ventional solution methods are initialization dependent, and may fail by converging to trivial or

non-physical solutions or to a point that is a local but not global minimum. Thus there has been

considerable recent interest in developing more reliable techniques for stability analysis. Recently

we have demonstrated, using cubic equation of state models, a technique that can solve the phase

stability problem with complete reliability. The technique, which is based on interval analysis, is

initialization independent, and if properly implemented provides a mathematical guarantee that

the correct solution to the phase stability problem has been found. However, there is much room

for improvement in the computational e�ciency of the technique. In this paper we consider two

means of enhancing the e�ciency of the method, both based on sharpening the range of interval

function evaluations. Results indicate that by using the enhanced method, computation times can

be reduced by nearly an order of magnitude in some cases.



1 Introduction

The determination of phase stability, i.e., whether or not a given mixture can split into multiple

phases, is a key step in phase equilibrium calculations, and thus in the simulation and design of a

wide variety of processes, especially those involving separation operations such as distillation and

extraction. The phase stability problem is frequently formulated in terms of the tangent plane

condition (Baker et al., 1982). Minima in the tangent plane distance are sought, usually by solving

a system of nonlinear equations for the stationary points (Michelsen, 1982). If any of these yield

a negative tangent plane distance, indicating that the tangent plane intersects (or lies above) the

Gibbs energy of mixing surface, the phase is unstable and can split (in this context, unstable refers

to both the metastable and classically unstable cases). The di�culty lies in that, in general, given

any arbitrary equation of state or activity coe�cient model, most computational methods cannot

�nd with complete certainty all the stationary points, and thus there is no guarantee that the phase

stability problem has been correctly solved.

Standard methods (e.g., Michelsen, 1982) for solving the phase stability problem typically rely

on the use of multiple initial guesses, carefully chosen in an attempt to locate all stationary points

in the tangent plane distance function. However, these methods o�er no guarantee that the global

minimum in the tangent plane distance has been found. Because of the di�culties that thus arise,

there has been signi�cant recent interest in the development of more reliable methods for solving

the phase stability problem (e.g., Nagarajan et al., 1991; Sun and Seider, 1995; Eubank et al., 1992;

Wasylkiewicz et al., 1996; McDonald and Floudas, 1995a,b,c,1997). For example, Sun and Seider

(1995) apply a homotopy-continuation method, which will often �nd all the stationary points, and

is easier to initialize than Michelsen's approach. However, their technique is still initialization de-
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pendent and provides no theoretical guarantees that all stationary points have been found. The

\area" method of Eubank et al. (1992), which is based on exhaustive search over a grid, can also

be very reliable. They suggest that a course grid be used �rst to �nd the approximate location of

solutions. Then, regions appearing not to contain a solution are eliminated from consideration and

the search continues with a �ner grid in the remaining regions. However, there is no mathematical

guarantee provided that the regions eliminated do not contain solutions. McDonald and Floudas

(1995a,b,c,1997) show that for certain activity coe�cient models, the phase stability problem can

be reformulated to make it amenable to solution by powerful global optimization techniques, gen-

erally involving branch and bound using convex underestimating functions. This method does

provide a mathematical guarantee that the global minimum of the tangent plane distance has been

found. While global optimization methods based on branch and bound can provide mathematical

guarantees, in principle this guarantee can be lost computationally if the technique is implemented

in oating point arithmetic, due to rounding error. As shown by the example given originally by

Rump (1988) and also discussed by Hansen (1992), the impact of rounding error is something that

should not be taken lightly. However, if the variables are well scaled, which is not the case in

Rump's example, but which occurs naturally in this application when compositions are expressed

as mole fractions, then rounding errors are unlikely to cause di�culties in practice. Nevertheless,

in principle, rounding errors can accumulate even in well scaled problems.

An alternative approach for solving the phase stability problem, based on interval analysis, that

provides both mathematical and computational guarantees of global optimality, with resolution

limited only by machine precision, was originally suggested by Stadtherr et al. (1995), who applied

it in connection with activity coe�cient models, as later done also by McKinnon et al. (1996).

This technique, in particular the use of an interval Newton/generalized bisection algorithm, is
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initialization independent and can solve the phase stability problem with mathematical certainty,

while also dealing automatically with rounding error. Recently Hua et al. (1996a,b) extended this

method to problems modeled with cubic equation of state (EOS) models, in particular the Van

der Waals (VDW), Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) models with standard

mixing rules. Though the technique developed is general-purpose, the applications presented here

focus on these models as well.

While the interval approach can provide guarantees of reliability, there remains much room

for improvement in the computational e�ciency of the technique. In this paper we consider two

means of enhancing the e�ciency of the method, both based on sharpening the range of interval

function evaluations. Results indicate that by using the enhanced method, computation times can

be reduced by nearly an order of magnitude in some cases.

2 Background

2.1 Phase Stability Analysis

The determination of phase stability is often done using tangent plane analysis (Baker et al.,

1982; Michelsen, 1982). A phase at speci�ed temperature T , pressure P , and feed mole fraction z

is unstable if the molar Gibbs energy of mixing surface m(x; v) = �gmix = �Ĝmix=RT ever falls

below a plane tangent to the surface at z. That is, if the tangent plane distance

D(x; v) = m(x; v) �m0 �
nX
i=1

�
@m

@xi

�
0
(xi � zi) (1)

is negative for any composition x, the phase is unstable. The subscript zero indicates evaluation

at x = z, n is the number of components, and v is the molar volume of the mixture. A common

approach for determining if D is ever negative is to minimize D subject to the mole fractions
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summing to one and subject to the equation of state relating x and v. It is readily shown that

the stationary points in this optimization problem can be found by solving the system of nonlinear

equations:
��

@m

@xi

�
�
�
@m

@xn

��
�
��

@m

@xi

�
�
�
@m

@xn

��
0
= 0; i = 1; : : : ; n� 1 (2)

1�
nX
i=1

xi = 0 (3)

P � RT

v � b
+

a

v2 + ubv + wb2
= 0 (4)

Equation (4) is the generalized cubic EOS given by Reid et al. (1987). With the appropriate choice

of u and w, common models such as PR (u = 2, w = �1), SRK (u = 1, w = 0), and VDW

(u = 0, w = 0) may be obtained. For all the example problems considered here, standard mixing

rules, namely b =
Pn

i=1 xibi and a =
Pn

i=1

Pn
j=1 xixjaij, are used, with aij = (1 � kij)

p
aiiajj.

The aii(T ) and bi are pure component properties determined from the system temperature T , the

critical temperatures Tci, the critical pressures Pci and acentric factors !i. If there are multiple

real volume roots at the feed composition z, then in evaluating equations (2) and (3), the molar

volume v0 at the feed composition must be the root yielding the minimum value of m0 = m(z; v0),

the reduced molar Gibbs energy of mixing at the feed.

The (n+1)�(n+1) system given by equations (2){(4) above has a trivial root at (x; v) = (z; v0)

and frequently has multiple nontrivial roots as well. Thus conventional equation solving techniques

may fail by converging to the trivial root or give an incorrect answer to the phase stability problem

by converging to a stationary point that is not the global minimum ofD. This is aptly demonstrated

by the experiments of Green et al. (1993), who show that the pattern of convergence from di�erent

initial guesses demonstrates a complex fractal-like behavior for even very simple models like VDW.
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We use here an interval Newton/generalized bisection method for solving the system of equations

(2){(4). The method requires no initial guess, and will �nd with certainty enclosures of all the

stationary points of the tangent plane distance D.

2.2 Interval Computations

A real interval, X, is de�ned as the continuum of real numbers lying between (and including)

given upper and lower bounds; i.e., X = [a; b] = fx 2 < j a � x � bg, where a; b 2 < and a � b. A

real interval vector X = (Xi) = (X1;X2; :::;Xn)
T has n real interval components and since it can

be interpreted geometrically as an n-dimensional rectangle, is frequently referred to as a box. Note

that in this section lower case quantities are real numbers and upper case quantities are intervals.

Several good introductions to computation with intervals are available, including monographs by

Neumaier (1990), Hansen (1992), and Kearfott (1996).

Of particular interest here are interval Newton/generalized bisection (IN/GB) methods. These

techniques provide the power to �nd, with con�dence, enclosures of all solutions of a system of

nonlinear equations (Neumaier, 1990; Kearfott and Novoa, 1990), and to �nd with total reliability

the global minimum of a nonlinear objective function (Hansen, 1992), provided only that upper

and lower bounds are available for all variables. E�cient techniques for implementing IN/GB

are a relatively recent development, and thus such methods have not yet been widely applied.

Schnepper and Stadtherr (1990) suggested the use of this method for solving chemical process

modeling problems, and recently described an implementation (Schnepper and Stadtherr, 1996).

Balaji et al. (1995) have also successfully applied the method to chemical engineering problems.

For a system of nonlinear equations f(x) = 0 with x 2 X(0), the basic iteration step in interval
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Newton methods is, given an interval X(k), to solve the linear interval equation system

F 0(X(k))(N(k) � x(k)) = �f(x(k)) (5)

for a new interval N(k), where k is an iteration counter, F 0(X(k)) is an interval extension of the

real Jacobian f 0(x) of f(x) over the current interval X(k), and x(k) is a point in the interior of

X(k). It can be shown (Moore, 1966) that any root x� 2 X(k) is also contained in the image N(k),

suggesting the iteration scheme X(k+1) = X(k) \ N(k). While this iteration scheme can be used

to tightly enclose a solution, what is also of signi�cance here is the power of equation (5) as an

existence and uniqueness test. For several techniques for �nding N(k) from equation (5), it can be

proven (e.g., Neumaier, 1990; Kearfott, 1996) that if N(k) � X(k), then there is a unique zero of

f(x) in X(k), and that Newton's method with real arithmetic can be used to �nd it, starting from

any point in X(k). This suggests a root inclusion test for X(k):

1. (Range Test) Compute an interval extension F(X(k)) containing the range of f(x) over X(k)

and test to see whether it contains zero. Clearly, if 0 =2 F(X(k)) � ff(x) j x 2 X(k)g then

there can be no solution of f(x) = 0 in X(k) and this interval need not be further tested.

2. (Interval Newton Test) Compute the image N(k) by solving equation (5).

(a) If X(k) \ N(k) = ;, then there is no root in X(k).

(b) If N(k) � X(k), then there is exactly one root in X(k) .

(c) If neither of the above is true, then no further conclusion can be drawn.

In the last case, one could then repeat the root inclusion test on the next interval Newton iterate

X(k+1), assuming it is su�ciently smaller than X(k), or one could bisect X(k+1) and repeat the

root inclusion test on the resulting intervals. This is the basic idea of interval Newton/generalized

6



bisection methods. A detailed step-by-step description of the basic IN/GB algorithm used here is

given by Schnepper and Stadtherr (1996).

Once an enclosure has been found in 2(a) above that contains a unique root, that enclosure

can be tightened by continuing the interval Newton iteration, which will converge quadratically.

Alternatively, a point approximation of the root can be located using a (point-valued) Newton's

method, which will converge to the root starting from any point in the enclosure. If desired,

a veri�ed enclosure for the root can then be obtained by doing an �-expansion (Kearfott, 1996)

around the point approximation of the root to obtain a narrow enclosure, and then veri�ng that

this contains the root using the range and interval Newton tests above. This latter procedure is

what is used here.

Though it does not occur in any of the problems considered here, in some cases the bisection

process may continue until an interval narrower than the prescribed precision is obtained that still

satis�es the range test, but that does not satisfy the test 2(a) for containing a unique root. This

typically occurs if there is a root at or very near a singular point. In this case, the interval may

contain one or more roots. In the context of phase stability analysis, this does not present any

di�culties since, as emphasized below, the underlying problem is a global minimization problem

and it is thus not necessary to �nd all the stationary points.

The system of equations (2){(4) to be solved here involves n + 1 variables, the n component

mole fractions x and the molar volume v. For the mole fraction variables, initial intervals of [0,1]

are suitable. In practice the initial lower bound is set to an arbitrarily small positive number "

(10�10 was used) to avoid taking the logarithm of zero in subsequent calculations. This can be

done without the loss of reliability providing a su�ciently small value of " is used. The lower limit

on the molar volume was taken to be the smallest pure component size parameter bi, and the upper
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bound was taken to be the ideal gas molar volume for the T and P under investigation. Although

it is possible to have compressibility factors greater than one at very high reduced pressure, this

was deemed satisfactory for the range of reduced temperature and pressure explored below. For

these problems, the initial upper bound on v can be further increased without signi�cant impact

on computational e�ciency since intervals with these higher values of volume tend to be quickly

eliminated based on the range test for the EOS. Our implementation of the IN/GB method for

the phase stability problem is based on appropriately modi�ed double-precision routines from the

packages INTBIS (Kearfott and Novoa, 1990) and INTLIB (Kearfott et al., 1994).

3 Enhancements

The e�ciency of the method discussed above depends to a considerable extent on how tightly one

can compute interval extensions F (X) of real expressions f(x). Denoting FR(X) = ff(x) j x 2 Xg

as the exact range of f(x) over the interval X, then an interval extension of f(x) is an enclosure

for FR, that is, F (X) � FR(X). The most common approach to enclosing FR is to use the natural

interval extension of f(x), which is obtained from the expression f(x) by simply replacing each

occurrence of the variable x by the interval X and evaluating the real arithmetic operations using

the corresponding interval arithmetic operations (Moore, 1966). Computing the natural interval

extension of an expression may generate its actual range FR, but unfortunately it is not uncommon

for the natural interval extension to provide a drastic overestimation for FR. This can be seen,

for example, using the simple expression f(x) = x=(x � 1) and evaluating its interval extension

for x 2 [2; 3]. Computing the natural interval extension yields F ([2; 3]) = [2; 3]=([2; 3] � 1) =

[2; 3]=[1; 2] = [1; 3] which is a considerable overestimate of the true range FR([2; 3]) = [1:5; 2]. In

general, such overestimations may occur when an interval variable appears more than once in an
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expression. This so-called "dependence problem" occurs because interval arithmetic essentially

treats all occurrences of a variable independently rather than recognizing their dependence. For

example, if one rearranges f(x) = x=(x�1) so that x appears only once, f(x) = 1+1=(x�1), then

the natural interval extension yields F ([2; 3]) = 1+1=([2; 3]�1) = 1+1=[1; 2] = 1+[0:5; 1] = [1:5; 2],

which the same as FR. In fact, it can be shown that if each variable in an expression appears only

once that then the natural interval extension will always yield the true (though, in computational

practice, outwardly rounded) range FR. Unfortunately for most of the functions of interest in phase

stability analysis it is not possible to perform rearrangements that eliminate all but one occurrence

of each variable. Thus we need to consider other means of computing tighter interval extensions.

There have been considerable e�orts made toward developing systematic methods for most

sharply bounding the range of a given real function over an interval (e.g., Ratschek and Rokne, 1984;

Rokne, 1986; Neumaier, 1990). Among these are the use of centered forms of the function, such as

the mean value form, and the use of slope forms. We concentrate here on two other approaches,

namely the use of monotonicity (e.g. Hansen, 1992) and the use of constraint information. Both

are relatively simple and inexpensive computationally, and o�er the potential to obtain the true

range.

3.1 Monotonicity

If a function is known to be monotonic on a given interval, then clearly its range can be tightly

bounded simply by evaluating the function at the endpoints of the interval. For a function f(x)

of a single variable, if f(x) is known to be monotonically nondecreasing on the interval X = [a; b],

then its monotonic interval extension FM = [f(a); f(b)] yields the true range FR. Similarly, if f(x)

is monotonically nonincreasing on X, then FM = [f(b); f(a)] = FR. To determine whether or not
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f(x) is monotonic, the natural interval extension F 0 of its �rst derivative f 0 = @f=@x can be used.

Thus if F 0(X) � 0 then f is known to be monotonically nondecreasing on X and if F 0(X) � 0

then f is known to be monotonically nonincreasing on X. Testing for and using monotonicity

will frequently yield sharper bounds than the natural interval extension. For example, consider

f(x) = x lnx on the interval X = [0:4; 0:5]. The natural interval extension yields F = [0:4; 0:5] �

ln[0:4; 0:5] = [0:4; 0:5] � [�0:9163;�0:6932] = [�0:4582;�0:2772]. Checking for monotonicity, it

is seen that f 0(x) = 1 + lnx and F 0 = 1 + ln[0:4; 0:5] = [0:0837; 0:3069] � 0, and thus FM =

[0:4 ln 0:4; 0:5 ln 0:5] = [�0:3666;�0:3465], which is only about 10% the width of the natural interval

extension, and which is (within roundout) the true range FR. The monotonic interval extension FM

for a function of more than one variable is also easily computed, as explained in detail by Hansen

(1992). If for every variable the function is either monotonically nonincreasing or monotonically

nondecreasing, then FM = FR; otherwise, FM is no less sharp than the natural extension. The

e�ect of using monotonicity in evaluating interval extensions in the context of the phase stability

problem is shown below in Section 4.

3.2 Mole Fraction Weighted Averages

Mole fraction weighted averages of pure component property parameters appear frequently in

the set of equations (2)-(4) used for phase stability analysis. If these expressions can be more

sharply bounded it will lead to sharper bounds on the functions in which they appear. Thus, we

develop here an interval extension for mole fraction weighted averages. Consider the mole fraction

weighted average f(x) = �s =
Pn

i=1 xisi, where the si are constants and
Pn

i=1 xi = 1. The natural

interval extension of �s will yield the true range of the expression in the space in which all the

mole fraction variables xi are independent. However, the range can be tightened by considering
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the constraint that the mole fractions must sum to one. Thus we seek to compute the constrained

space interval extension FCS of f(x) = �s.

One approach for doing this is simply to eliminate one of the mole fraction variables, say xn.

Then an enclosure for the range of �s in the constrained space can be determined by computing the

natural interval extension of sn +
Pn�1

i=1 (si � sn)xi. However, as we will see below, this may not

yield the sharpest possible bounds on �s in the constrained space. For the mole fraction interval

X = [xL;xU ] = (Xi), with Xi = [xLi ; x
U
i ], the true upper and lower bounds on �s in the constrained

space are solutions of the linear programming (LP) problem

opt �s =
nX
i=1

xisi

subject to

1�
nX
i=1

xi = 0

xLi � xi � xUi ; i = 1; : : : ; n:

This is a standard LP problem with N = 3n variables, the n mole fractions plus n slack variables

and n surplus variables, and with M = 2n + 1 constraints, the normality condition plus n upper

bounds and n lower bounds. At an optimal vertex of an LP problem, there are N �M = n � 1

variables (the nonbasic variables) that must equal zero. Since in general the xLi are nonzero and

thus the xi are nonzero, this indicates that n � 1 of the slack or surplus variables must be zero.

Thus, at the minimum or maximum of �s in the constrained space, at least n�1 of the mole fraction

variables must be at their upper or lower bound. This knowledge can be used (Tessier, 1997) to

easily construct the desired upper and lower bounds for FCS without actually using an LP problem

solver.

To do this we note that, using the natural interval extension, the lower bound on �s is evaluated
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as �s(xL), and
Pn

i=1 x
L
i � 1 (if not then there is no point in X that can satisfy equation (3) and so

this interval can be discarded). To evaluate the lower bound of FCS = [�sL; �sU ], we want to increase

some components of xL to a point x� at which
Pn

i=1 x
�
i = 1, and to do this in such a way that

�s(x�) will be the best lower bound �sL of �s. This can be done by �rst increasing as much as possible

(considering the interval bounds) the mole fraction xi for which the corresponding si is the lowest,

then repeating for the next lowest, continuing until
Pn

i=1 x
�
i = 1. Similarly, to evaluate the upper

bound of FCS , we want to decrease some components of xU to a point x+ at which
Pn

i=1 x
+
i = 1,

and to do this in such a way that �s(x+) will be the best upper bound �sU of �s. This can be done

by �rst decreasing as much as possible (considering the interval bounds) the mole fraction xi for

which si is the lowest, then repeating for the next lowest, continuing until
Pn

i=1 x
+
i = 1.

Algorithmically, this can be expressed as follows:

1. Rank the si and let rk be the index i of the si ranked k-th from lowest. For example, if n = 4

and s3 � s4 � s1 � s2, then r1 = 3, r2 = 4, r3 = 1 and r4 = 2.

2. Initialize x� = xL and x+ = xU . Also, de�ne �� =
Pn

i=1 x
�
i and �+ =

Pn
i=1 x

+
i . If �

� > 1

or �+ < 1, then eliminate this interval and stop.

3. Determine x�. For k = 1 : n,

(a) If �� + (xUrk � xLrk) � 1, then set x�rk = xUrk and update ��.

(b) Else set x�rk = xLrk + (1 � ��). Return current x� and proceed to determine x+ in the

next step.

4. Determine x+. For k = 1 : n,

(a) If �+ � (xUrk � xLrk) � 1, then set x+rk = xLrk and update �+.
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(b) Else set x+rk = xUrk � (�+ � 1). Return current x+ and proceed to determine �sL and �sU

in the next step.

5. Compute �sL = �s(x�) and �sU = �s(x+).

Note that at x� and x+ all but one of the components, the one determined in step 3(b) for x� and

in step 4(b) for x+ are at their upper or lower bounds. In general, the one remaining component

will not be at a bound, but it may be. In practice, the above algorithm is implemented in interval

arithmetic.

For example, consider the case n = 3 with s1 = 1, s2 = 2 and s3 = 3 on the mole fraction

interval X1 = [0:1; 0:4], X2 = [0:2; 0:4] and X3 = [0:3; 0:5] . The natural interval extension of

�s = x1 + 2x2 + 3x3 is [0.1 + 2(0.2) + 3(0.3), 0.4 + 2(0.4) + 3(0.5)] = [1.4,2.7]. Using the

approach in which xn = x3 is eliminated, we would instead compute the natural interval extension

of 3� 2x1 � x2, which is 3� [0:2; 0:8]� [0:2; 0:4] = [2:2; 2:8]� [0:2; 0:4] = [1:8; 2:6]. While this is an

improvement over the unconstrained natural extension, it is still does not represent the true range

of �s in the constrained space (since the range of x3 is never used). To get the true range F
CS we

�rst determine x� as above. Initially �� = 0:6 and x� = xL = (0:1; 0:2; 0:3)T . For k = 1, rk = 1,

and in step 3(a), �� + (xU1 � xL1 ) = 0:6 + (0:4 � 0:1) = 0:9 � 1, so we set x�1 = xU1 = 0:4 and

�� = 0:9. For k = 2, rk = 2, and in step 3(a), �� + (xU2 � xL2 ) = 0:9 + (0:4 � 0:2) = 1:1 6� 1, so

we set x�2 = xL2 + (1 � ��) = 0:2 + (1 � 0:9) = 0:3 and return x� = (0:4; 0:3; 0:3)T . Similarly, in

step 4, x+ is determined to be (0:1; 0:4; 0:5)T . Then, �sL = �s(x�) = 0:4 + 2(0:3) + 3(0:3) = 1:9 and

�sU = �s(x+) = 0:1+2(0:4) + 3(0:5) = 2:4. Thus, the constrained space extension is FCS = [1:9; 2:4]

and this is the tightest possible range for �s in the constrained space.

For phase stability analysis, the constrained space interval extension can be used to evaluate
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the range of b =
Pn

i=1 xibi and of a =
Pn

i=1

Pn
j=1 xixjaij . Obtaining F

CS for b is done as described

above. For a, we note that a =
Pn

i=1 xi
Pn

j=1 xjaij =
Pn

i=1 xi�ai, and �rst obtain the constrained

space extension [�aLi ; �a
U
i ] for each mole fraction weighted average �ai using the procedure above.

We now want the range of
Pn

i=1 xi[�a
L
i ; �a

U
i ] =

Pn
i=1[xi�a

L
i ; xi�a

U
i ] = [

Pn
i=1 xi�a

L
i ;
Pn

i=1 xi�a
U
i ], and note

these upper and lower bounds are themselves mole fraction weighted averages. Thus, to get the

constrained space interval extension of a we get its lower bound by using the procedure above to

determine the lower bound of
Pn

i=1 xi�a
L
i and its upper bound by using the procedure above to

determine the upper bound of
Pn

i=1 xi�a
U
i .

In the next section we consider several example problems and examine the extent to which the

use of the constrained space and monotonic interval extensions improves computational e�ciency.

4 Results

To test the enhancements in computational e�ciency expected to be provided by using the

constrained space and monotonic interval extensions for solving phase stability problems, as well as

to verify that its reliability has not been a�ected, several di�erent mixtures modeled by an equation

of state (VDW, SRK or PR) have been used. In order to emphasize the power of the method, in

these studies we have found all the stationary points. However, it should be emphasized that, for

making a determination of phase stability or instability, �nding all the stationary points is not

always necessary nor desirable, as discussed in more detail below.

The results presented in Tables 1-8 below include roots (stationary points) found, as well as the

value of the tangent plane distance D at each root. It should be noted that, while point approxima-

tions are reported here, we have actually determined veri�ed enclosures of each root and computed
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D for this enclosure. Each such enclosure is known to contain a unique root, based on the interval-

Newton uniqueness test described above. Thus, for example, in Table 1, for the z1 = 0.0115 feed, the

x1 value found for the third root was actually x1 = [0.03258313704886784, 0.03258313704886790]

and the tangent plane distance isD = [.01303899885308101, .01303899885315651]. Similarly narrow

enclosures were determined in all cases.

4.1 Problem 1

This is a mixture of hydrogen sul�de(1) and methane(2) at 190 K and 40.53 bar (40 atm.). The

SRK model was used with parameters calculated from Tc1 = 373.2 K, Pc1 = 89.4 bar, !1 = 0.1,

Tc2 = 190.6 K, Pc2 = 46.0 bar, !2 = 0.008, and a binary interaction parameter k12 = 0.08.

Several feeds were considered, as shown in Table 1. For the z1 = 0.5 case, our results are

consistent with those given by Sun and Seider (1995) for this problem. For the z1 = 0.0187 case,

it is well known, for feeds near this point, that this is a di�cult problem to solve (e.g., Michelsen,

1982; Sun and Seider, 1995; Hua et al., 1996b). As noted by Michelsen and others, if one uses a

locally convergent solver, with nearly pure CH4 as the initial guess, convergence will likely be to

the trivial solution at x1 = z1 = 0:0187. And if nearly pure H2S is the initial guess, convergence

will likely be to the local, but not global, minimum at x1 = 0:8848. Using only these initial

guesses would lead to the incorrect conclusion that the mixture is stable. This is indicative of

the importance of the initialization strategy when conventional methods are used. An important

advantage of the IN/GB approach described here is that it eliminates the initialization problem,

since it is initialization independent. In this case, it �nds all the stationary points, including the

global minimum at x1 = 0:0767, correctly predicting, since D < 0 at this point, that a mixture

with this feed composition is unstable (there will be a vapor-liquid split, with a methane-rich liquid
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phase). Michelsen's algorithm, as implemented in LNGFLASH from the IVC-SEP package (Hytoft

and Gani, 1996), a code that in general we have found to be extremely reliable, incorrectly predicts

that this mixture is stable. As indicated in Table 1, several other feed compositions were tested

using the IN/GB approach, with correct results obtained in each case. It should be noted that the

presence of multiple real volume roots in this problem does not present any di�culty, since the

solver simply �nds enclosures of all roots for the given system. Thus, nothing needs to be done to

select the right volume roots (or compressibility factors).

Also included in Table 1 are the number of root inclusion tests performed in the computation

and the total CPU time on a Sun Ultra 1/170 workstation. This is done for the case (F ) in which

just the natural interval extensions are used, the case (FCS) in which the constrained space interval

extension is used, and the case (FCSM ) in which both the constrained space and monotonic interval

extensions are used. In the latter case, there is a dramatic reduction in the number of intervals

that must be tested for roots, and the computation time is reduced by an average of more than

80%. Most of the savings, about a factor of four, can be attributed to the use of the constrained

space interval extension to bound a and b. We would still expect standard approaches to the phase

stability problem to be faster, but those methods do not reliably solve the problem in all cases.

Thus, as one might expect, to obtain guaranteed reliability some premium must be paid in terms

of computation time.

4.2 Problem 2

This is a mixture of methane(1) and propane(2) at 277.6 K; pressures of 50 bar and 100 bar

were considered. The SRK model was used with parameters calculated from the methane pure

component properties given above, Tc2 = 369.8 K, Pc2 = 42.5 bar, !2 = 0.152, and a binary
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interaction parameter k12 = 0.029. Results are shown in Table 2 for P = 50 bar and in Table 3

for P = 100 bar, and are consistent with calculations shown in Prausnitz et al. (1986). The feeds

of z1 = 0.68 and 0.73 at 100 bar represent particularly di�cult problems because they are in a

region near the critical point of the mixture. In both cases, the interval method correctly predicts

instability, as indicated by the negative value of D for at least one stationary point. Again the

use of the enhanced interval extensions provides signi�cant computational savings, with about a

65{85% reduction in CPU time.

4.3 Problem 3

This is a binary mixture modeled using VDW and exhibiting type I behavior according to the

classi�cation of van Konynenburg and Scott (1980). Component 1 is carbon dioxide (Tc = 304:2

K, Pc = 73:8 bar), and the properties of component 2 were chosen to replicate the example used

by van Konynenburg and Scott for a Type I mixture (this corresponds to their values of the

dimensionless parameters � = 0; � = 0:5 and � = �0:05). The resulting size and energy parameters

are b1 = b2 = 42:8374 cm3=mol, a11 = 3:6565�106 (cm6bar)=mol2, a22 = 1:097�107 (cm6bar)=mol2

and a12 = 7:6792�106 (cm6bar)=mol2. The system is described in more detail by Hua et al. (1996a).

Table 4 shows results for selected feeds at two di�erent sets of conditions (reduced by the critical

properties of CO2). In all cases the correct results are obtained. The use of the constrained space

and monotonic interval extensions again yields substantial improvements in CPU time, with about

a 65{75% reduction.

4.4 Problem 4

This is the ternary mixture used by Green et al. (1993) to demonstrate the wide regions of
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initial guesses for which a standard Newton's method will not converge, or converges to trivial

or non-physical solutions. It is modeled using VDW with b11 = b22 = b33 = 61:5375 cm3=mol,

a11 = 5:11�106 (cm6atm)=mol2, a22 = 1:19�107 (cm6atm)=mol2, a33 = 8:52�106 (cm6atm)=mol2,

a12 = 2a11, a13 = (a11a33)
1=2, and a23 = (a22a33)

1=2. Four feeds at P = 80 atm. and T = 400K

were considered. The results are shown in Table 5 and match those of Green et al. (1993). Using

both the constrained space and monotonic interval extensions gives about a 75% reduction in CPU

time on these problems, with again most of this obtained as a result of the constrained space

extension.

4.5 Problem 5

This is a mixture of nitrogen(1) and ethane(2) at 270 K and 76 bar. The PR model was used

with parameters calculated from Tc1 = 126.2 K, Pc1 = 33.9 bar, !1 = 0.04 , Tc2 = 305.4 K, Pc2

= 48.8 bar, !2 = 0.098, and a binary interaction parameter k12 = 0.08. Results for several feed

compositions are shown in Table 6, and are consistent with results in Prausnitz et al. (1986).

Several other values of T , P , and z1 have also been tried for this system and correct results were

obtained. Use of the enhanced interval extensions for computing the range of a and b results in

computation time savings of around 70% on these problems.

4.6 Problem 6

This is a mixture of carbon dioxide(1) and methane(2) at 220 K and 60.8 bar. The PR model

was used with parameters calculated from Tc1 = 304.2 K, Pc1 = 73.8 bar, !1 = 0.225 , the methane

parameters given above, and a binary interaction parameter k12 = 0.095. Results for several feed

compositions are shown in Table 7, and are consistent with results in Prausnitz et al. (1986).
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Several other values of T , P , and z1 have also been tried for this system and correct results

were obtained. The improvement in computational e�ciency due to using the enhanced interval

extensions is substantial, with a reduction in computing time of around 80-85% when both the

constrained space and monotonic extensions are used.

4.7 Problem 7

This is a mixture of nitrogen(1), methane(2) and ethane(3) at 270 K and 76 bar. The PR model

was used with the pure component parameters given above, and the binary interaction parameters

k12 = 0:038, k13 = 0:08 and k23 = 0:021. Four feeds were considered, with results shown in Table

8. The �rst two feeds are not stable and the other two feeds are stable. Again, these results are

consistent with results in Prausnitz et al. (1986). The second and third feeds represent particularly

di�cult problems, since they are in the vicinity of the critical point of the mixture, yet the interval

algorithm has no problem determining the correct solutions. For these two problems, use of the

enhanced interval extensions yields a reduction in computing time of about 88%, nearly an order

of magnitude savings. Savings on the other two feed compositions are impressive as well.

4.8 Discussion

The results clearly show that substantial computational savings can be obtained by using the

enhanced interval extensions described above. Most of the improvements, a factor of over �ve on

the most di�cult problems, can be attributed to the constrained space extension used to more

tightly bound the a and b parameters in the EOS model. This in turn leads to tighter bounds on

expressions containing these parameters. Further tightening of bounds can then be obtained using

the monotonic interval extension. The tightening of bounds on function ranges allows intervals
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to be eliminated more readily than if bounds are not sharp. For instance, if the true range FR

of a function over an interval does not contain zero, then that interval can be eliminated from

further consideration, but an overestimate of FR, such as might be obtained from the natural

interval extension, might well contain zero, leading to further work on this interval and perhaps

its bisection, creating even more work. The use of the monotonic and constrained space interval

extension represent an attempt to prevent this by obtaining bounds that more tightly enclose the

true range.

While we have focused here on improving the interval function evaluations that underly the

IN/GB approach for phase stability analysis, we are currently implementing several other simple

ways in which its e�ciency can be improved (Hua et al., 1997). For example, in the problems above

we used IN/GB to �nd enclosures of all the stationary points. However, for making a determination

of phase stability or instability, �nding all the stationary points is not always necessary. For example

if an interval is encountered over which the interval evaluation of D has a negative upper bound,

this guarantees that there is a point at which D < 0, and so one can immediately conclude that the

mixture is unstable without determining all the stationary points. It is also possible to make use

of the underlying global minimization problem. Since the objective function D has a known value

of zero at the mixture feed composition, any interval over which the interval value of D has a lower

bound greater than zero cannot contain the global minimum and can be discarded, even though it

may contain a stationary point (at which D will be positive and thus not of interest). Thus, we can

essentially combine the interval-Newton technique with an interval branch and bound procedure in

which lower bounds are generated using interval techniques as opposed to convex underestimators.

Also, it should be noted that the method described here can easily be combined with existing local

methods for determining phase stability. First, the (fast) local method is used. If it indicates
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instability then this is the correct answer as it means a point at which D < 0 has been found. If

the local method indicates stability, however, this may not be the correct answer since the local

method may have missed the global minimum in D. Applying the new method described here can

then be used to con�rm that the mixture is stable if that is the case, or to correctly determine that

it is really unstable if that is the case (Hua et al., 1997).

These techniques for improving the e�ciency of the method, together with the work described

here on tightening interval extensions, will be particularly important as problems involving a larger

number of components are considered. Like any technique (e.g., branch and bound) based on a

binary tree, the worst case computational complexity of the method described is exponential. Our

previous experience (Schnepper and Stadtherr, 1996) on larger problems indicates that computation

times become unpredictable and that a larger number of variables does not necessarily imply a

larger computation time. This is consistent with our preliminary work on four and �ve component

problems, which shows that computation times for �nding all stationary points vary widely from

a few seconds to tens of minutes. Fortunately, however, implementing the ideas described in this

section, and not �nding all stationary points can reduce computation times by orders of magnitude

in many cases.

5 Conclusions and Signi�cance

Results on several problems, involving VDW, SRK and PR EOS models of binary and ternary

mixtures, indicate that the enhancements described here can substantially improve the e�ciency

of the interval Newton/general bisection approach for phase stability analysis, providing signi�cant

( > 65%) computational savings on all problems and savings of nearly an order of magnitude

on some. The interval Newton/generalized bisection algorithm can solve phase stability problems
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for a generalized cubic equation of state model e�ciently and with complete reliability, providing

a method that can guarantee with mathematical certainty that the correct result is found, and

thus eliminating computational problems that are frequently encountered with currently available

techniques. The method is initialization independent; it is also model independent, straightforward

to use, and can be applied in connection with other equations of state or with activity coe�cient

models.
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Table Headings

Table 1. Problem 1: SRK, hydrogen sul�de(1) and methane(2) at P = 40.53 bar and T = 190

K. Comparison of using natural interval extensions (F ), constrained space interval extensions

(FCS), and constrained space plus monotonic interval extensions (FCSM ).

Table 2. Problem 2: SRK, methane(1) and propane(2) at P = 50 bar and T = 277.6 K.

Table 3. Problem 2: SRK, methane (1) and propane (2) at P = 100 bar and T = 277.6 K.

Table 4. Problem 3: VDW, binary type I mixture.

Table 5. Problem 4: VDW, ternary mixture of Green et al. (1993), P = 80 atm, T = 400 K.

Table 6. Problem 5: PR, nitrogen(1) and ethane(2) at P = 76 bar and T = 270 K.

Table 7. Problem 6: PR, carbon dioxide(1) and methane(2) at P = 60.8 bar and T = 220 K.

Table 8. Problem 7: PR, nitrogen(1), methane(2) and ethane(3), P = 76 Bar, T = 270 K.
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Table 1: Problem 1: SRK, hydrogen sul�de(1) and methane(2) at P = 40.53 bar and T = 190 K.
Comparison of using natural interval extensions (F ), constrained space interval extensions (FCS),
and constrained space plus monotonic interval extensions (FCSM ).

Number of Root CPU Time (sec)

Feed Roots D Inclusion Tests Sun Ultra 1/170

(z1; z2) (x1; x2; v) F FCS FCSM F FCS FCSM

(0.0115,0.9885) (0.0115,0.9885,212.8) 0.0 5424 1385 1079 1.024 0.298 0.234

(0.0237,0.9763,97.82) 0.0137

(0.0326,0.9674,78.02) 0.0130

(0.0187,0.9813) (0.8848,0.1152,36.58) 0.0109 8438 1928 1428 1.671 0.416 0.290

(0.0187,0.9813,207.3) 0.0

(0.0313,0.9687,115.4) 0.0079

(0.0767,0.9233,64.06) -0.004

(0.4905,0.5095,41.50) 0.0729

(0.07,0.93) (0.8743,0.1257,36.65) 0.0512 8504 1927 1414 1.690 0.416 0.298

(0.5228,0.4772,40.89) 0.0965

(0.0178,0.9822,208.0) 0.0015

(0.0304,0.9696,113.7) 0.0100

(0.07,0.93,65.35) 0.0

(0.50,0.50) (0.8819,0.1181,36.60) -0.057 8406 1927 1416 1.660 0.416 0.291

(0.0184,0.9816,207.5) -0.079

(0.0311,0.9689,114.9) -0.071

(0.0746,0.9254,64.44) -0.082

(0.50,0.50,41.32) 0.0

(0.888,0.112) (0.888,0.112,36.55) 0.0 8396 1918 1412 1.671 0.417 0.296

(0.0190,0.9810,207.1) 0.0026

(0.0316,0.9684,116.0) 0.0103

(0.0792,0.9208,63.60) -0.002

(0.4795,0.5205,41.72) 0.0683

(0.89,0.11) (0.89,0.11,36.54) 0.0 8410 1907 1411 1.673 0.421 0.294

(0.0192,0.9808,206.9) 0.0113

(0.0319,0.9681,116.4) 0.0189

(0.0809,0.9191,63.31) 0.0058

(0.4725,0.5275,41.87) 0.0724
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Table 2: Problem 2: SRK, methane(1) and propane(2) at P = 50 bar and T = 277.6 K.

Number of Root CPU Time (sec)

Feed Roots D Inclusion Tests Sun Ultra 1/170

(z1; z2) (x1; x2; v) F FCS FCSM F FCS FCSM

(0.10,0.90) (0.10,0.90,86.71) 0.0 1969 675 587 0.413 0.155 0.135

(0.40,0.60) (0.8654,0.1346,378.4) -0.153 4345 1347 1179 0.905 0.318 0.260

(0.5515,0.4485,115.3) 0.0106

(0.40,0.60,89.46) 0.0

(0.60,0.40) (0.7058,0.2942,313.0) -0.007 3706 1210 1091 0.782 0.285 0.252

(0.60,0.40,216.5) 0.0

(0.1928,0.8072,86.07) -0.223

(0.90,0.10) (0.90,0.10,388.5) 0.0 3290 1023 878 0.640 0.216 0.181

29



Table 3: Problem 2: SRK, methane (1) and propane (2) at P = 100 bar and T = 277.6 K.

Number of Root CPU Time (sec)

Feed Roots D Inclusion Tests Sun Ultra 1/170

(z1; z2) (x1; x2; v) F FCS FCSM F FCS FCSM

(0.40,0.60) (0.40,0.60,82.22) 0.0 2518 802 680 0.522 0.185 0.152

(0.68,0.32) (0.7721,0.2279,126.0) -3.3�10�4 19986 6266 3334 3.966 1.368 0.643

(0.6881,0.3119,103.0) 4.10�10�7

(0.68,0.32,101.4) 0.0

(0.73,0.27) (0.7567,0.2433,121.1) -2.0�10�5 14768 4588 2693 2.967 1.021 0.529

(0.73,0.27,113.2) 0.0

(0.6506,0.3494,96.38) -2.9�10�4

(0.90,0.10) (0.90,0.10,165.2) 0.0 2485 793 685 0.514 0.168 0.139
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Table 4: Problem 3: VDW, binary type I mixture.

Number of Root CPU Time (sec)

Feed Roots D Inclusion Tests Sun Ultra 1/170

(Pr; Tr; z1; z2) (x1; x2; v) F FCS FCSM F FCS FCSM

(1.0,1.5,0.60,0.40) (0.9472,0.0528,444.5) -0.3598 4520 1853 1235 0.713 0.304 0.184

(0.6791,0.3209,76.51) 0.00174

(0.60,0.40,66.55) 0.0

(1.0,1.5,0.20,0.80) (0.20,0.80,54.14) 0.0 2303 873 751 0.398 0.152 0.126

(0.8101,0.1899,401.3) 0.3836

(0.6577,0.3423,152.1) 0.4720

(1.0,1.5,0.95,0.05) (0.95,0.05,445.3) 0.0 3738 1621 1083 0.618 0.245 0.153

(3.24,2.0,0.40,0.60) (0.40,0.60,67.76) 0.0 1785 859 681 0.319 0.146 0.108
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Table 6: Problem 5: PR, nitrogen(1) and ethane(2) at P = 76 bar and T = 270 K.

Number of Root CPU Time (sec)

Feed Roots D Inclusion Tests Sun Ultra 1/170

(z1; z2) (x1; x2; v) F FCS FCSM F FCS FCSM

(0.10,0.90) (0.10,0.90,71.11) 0.0 1881 630 604 0.400 0.144 0.134

(0.18,0.82) (0.4943,0.5057,198.3) -0.010 4560 1444 1312 0.979 0.340 0.279

(0.2961,0.7039,110.4) 0.0058

(0.18,0.82,78.61) 0.0

(0.30,0.70) (0.4893,0.5107,198.3) -0.0138 4586 1446 1316 0.980 0.341 0.278

(0.30,0.70,112.3) 0.0

(0.1767,0.8233,78.18) -0.007

(0.44,0.56) (0.44,0.56,181.2) 0.0 4649 1506 1293 0.991 0.359 0.279

(0.3353,0.6647,131.5) 0.0026

(0.1547,0.8453,75.64) -0.016

(0.60,0.40) (0.60,0.40,227.8) 0.0 3312 947 901 0.651 0.201 0.178
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Table 7: Problem 6: PR, carbon dioxide(1) and methane(2) at P = 60.8 bar and T = 220 K.

Number of Root CPU Time (sec)

Feed Roots D Inclusion Tests Sun Ultra 1/170

(z1; z2) (x1; x2; v) F FCS FCSM F FCS FCSM

(0.10,0.90) (0.10,0.90,168.5) 0.0 4162 962 762 0.839 0.193 0.158

(0.20,0.80) (0.20,0.80,141.6) 0.0 13630 3093 2141 2.827 0.713 0.484

(0.2589,0.7411,88.51) 0.0022

(0.4972,0.5028,47.98) -0.007

(0.30,0.70) (0.1848,0.8152,141.6) -0.007 19664 4328 2478 4.078 1.002 0.530

(0.30,0.70,69.79) 0.0

(0.3579,0.6421,59.13) -1.9�10�4

(0.43,0.57) (0.1912,0.8088,138.7) -0.001 15454 3516 2276 3.178 0.808 0.501

(0.2732,0.7268,79.62) 0.0032

(0.43,0.57,52.14) 0.0

(0.60,0.40) (0.60,0.40,43.69) 0.0 10764 2554 1880 2.239 0.585 0.423
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