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Abstract - The reliable prediction of phase stability is a challenging computational problem in
chemical process simulation, optimization and design. The phase stability problem can be
formulated either as a minimization problem or as an equivalent nonlinear equation solving problem.
Conventional solution methods are initialization dependent, and may fail by converging to trivial

or nonphysical solutions or to a point that is a local but not global minimum. Thus there has been
considerable recent interest in developing more reliable techniques for stability analysis. In this
paper we demonstrate, using cubic equation of state models, a technigue that can solve the phase
stability problem with complete reliability. The technique, which is based on interval analysis, is
initialization independent, and if properly implemented provides a mathematical guarantee that the
correct solution to the phase stability problem has been found.

INTRODUCTION

The determination of phase stability, i.e., whether or not a given phase will split into multiple phases, is a
key step in phase equilibrium calculations, and thus in the simulation and design of a wide variety of processes,
especially those involving separation operations such as distillation and extraction. The phase stability problem is
frequently formulated in terms of the tangent plane condition (Bakeal, 1982). Minima in the tangent plane
distance are sought, usually by solving a system of nonlinear equations for the stationary points (Michelsen, 1982).
If any of these yield a negative tangent plane distance, indicating that the tangent plane intersects (or lies above) the
Gibbs energy of mixing surface, the phase is unstable. The difficulty lies in that, in general, given any arbitrary
equation of state or activity coefficient model, most computational methods cannot find with complete certainty all
the stationary points, and thus there is no guarantee that the phase stability problem has been correctly solved.

Standard methods (e.g., Michelsen, 1982) for solving the phase stability problem typically rely on the use
of multiple initial guesses, carefully chosen in an attempt to locate all stationary points in the tangent plane distance
function. However, these methods offer no guarantee that the global minimum in the tangent plane distance has been
found. Because of the difficulties that thus arise, there has been significant recent interest in the development of
more reliable methods for solving the phase stability problem (e.g., Sun and Seider, 1995; Etubhnk992;
Wasylkiewiczet al, 1993; McDonald and Floudas, 1995). For example, Sun and Seider (1995) apply a homotopy-
continuation method, which will often find all the stationary points, and is easier to initialize than Michelsen’s
approach. However, their technique is still initialization dependent and provides no theoretical guarantees that all
stationary points have been found. The "area" method of Euebak(1992), which is based on exhaustive search
over a grid, can also be very reliable. They suggest that a course grid be used first to find the approximate location
of solutions. Then, regions appearing not to contain a solution are arbitrarily eliminated from consideration and the
search continues with a finer grid in the remaining regions. However, there is no mathematical guarantee provided
that the regions eliminated do not contain solutions. McDonald and Floudas (1995) show that for certain activity
coefficient models, the phase stability problem can be reformulated to make it amenable to solution by powerful
global optimization techniques, which do guarantee that the correct answer is found. However, in general there
appears to remain a need for an efficigeneral-purposenethod that can perform phase stability calculations with
mathematical certaintyor any arbitrary equation of state (EOS) or activity coefficient model.

An alternative approach that satisfies these needs has been suggested by Sadth@995) and Huat
al. (1996), and applied to both activity coefficient models and a simple cubic EOS (Van der Waals equation). This
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technique, which is based on interval analysis, in particular the use of an interval Newton/generalized bisection
algorithm, isinitialization independenand can solve the phase stability problarth mathematical certainty In

this paper we seek to extend the application of this technique to cubic EOS models in general. Though the technique
developed is general-purpose, the applications presented focus on the Peng-Robinson (PR) and Soave-Redlich-Kwong
(SRK) models.

PHASE STABILITY ANALYSIS

The determination of phase stability is often done using tangent plane analysis (@akér 1982;
Michelsen, 1982). A phase at specifi&édP, and feed mole fractioz is unstable if the Gibbs energy of mixing
versus composition surfage = Ag"/RT ever falls below a plane tangent to the surface.alThat is, if the tangent
plane distance

1)

is negative for any compositiox the phase is unstable. The subscript zero indicates evaluatior af andn is

the number of components. A common approach for determiniBgisfever negative is to minimizB subject to

the mole fractions summing to one. It is readily shown that the stationary points in this optimization problem can
be found by solving the system of nonlinear equations:

0, i=1,.n-1 2

n
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If an EOS model fom is used, so thamn is expressed in terms of andv, the molar volume of the mixture, then
(2) and (3) must be solved simultaneously with the EOS. The model used here is the generalized cubic EOS

P - RT + a =0 (4)

v-b y2 4 ouby + wh?

given by Reidet al. (1987). With the appropriate choice ofandw, common models such as PR, w=-1) and
SRK (u=1, w=0) may be obtained. For all the example problems considered here, standard mixing rules, namely
b = 2xb, anda = ZZxxa; are used.

The (+1) x (n+1) system given by equations (2)-(4) above has a trivial root atz andv = v, and
frequently has multiple nontrivial roots as well. Thus conventional equation solving techniques such as Newton’s
method may fail by converging to the trivial root or give an incorrect answer to the phase stability problem by
converging to a stationary point that is not the global minimur®ofThis is aptly demonstrated by the experiments
of Greenet al. (1993), who show that the pattern of convergence from different initial guesses demonstrates a
complex fractal-like behavior for even very simple models. We demonstrate here the use of an interval
Newton/generalized bisection method for solving the system (2)-(4). The method requires no initial guess, and will
find with certaintyall the stationary points ob.

INTERVAL COMPUTATIONS

A realinterval, X, is defined as a set of real numbers lying between (and including) upper and lower bounds;
i.e,X=[abl={x0O0|a<x<b}, whereab OO anda<b. Arealinterval vectoX = (X;,X,,...X,)" hasn real
interval components and since it can be interpreted geometricallyradiamensional rectangle, is frequently referred
to as abox Note that in this section lower case quantities are real numbers and upper case quantities are intervals.
Several good introductions to computation with intervals are available, including recent monographs by Neumaier
(1990) and Hansen (1992).



Of patrticular interest here are interval Newton/generalized bisection (IN/GB) methods. These techniques
provide the power to find with confidence all solutions of a system of nonlinear equations (Neumaier, 1990; Kearfott
and Novoa, 1990), and to find with total reliability the global minimum of a nonlinear objective function (Hansen,
1992), provided only that upper and lower bounds are available for all variables. Efficient techniques for
implementing IN/GB are a relatively recent development, and thus such methods have not yet been widely applied.
Schnepper and Stadtherr (1990) have suggested the use of this method for solving chemical process modeling
problems, and recently described an implementation (Schnepper and Stadtherr, 1996t Bhldj995) have also
successfully applied the method to chemical engineering problems.

Consider the solution of the system of real nonlinear equatipf)s= 0, where it is desired to find all
solutions in an specified initial interv¥©. The basic iteration step in interval Newton methods is, given an interval
X®, to solve the linear interval equation system

FXB)N - x®) = ~f(x¥) ©)

for a new intervalN®, wherek is an iteration counter,’BX®) is an interval extension of the real Jacobi&m)fof

f(x) over the current intervak®, andx® is a point in the interior oX®, usually taken to be the midpoint. The
interval extension £X®) of the Jacobian is determined by substituting the inteX/8lfor x in the expressior (x)

for the real Jacobian, and performing interval operations in place of real operations. It can be shown (Moore, 1966)
that any rootx* of the set of equations that is within the current interval, ke.0 X®, is also contained in the

newly computed intervall®. This suggests that the next iteration ¥should be the intersection & with N®,

i.e. X®D = X® 1 N®  There are various interval Newton methods, which differ in how they deterhthérom
equation (5) and thus in the tightness with wh# encloses the solution set of (5).

While the iteration scheme discussed above can be used to tightly enclose a solution, what is of most
significance here is the power of (5) to provide a test of whether a solution exists within a given interval and whether
it is a unique solution. For several techniques for findiif) from (5), it can be proven (e.g., Neumaier, 1990) that
if N® is totally contained withinX®, i.e. N® 0O X®, then there is aniquezero of the set of nonlinear equations
f(x) = 0in X®, and furthermore that Newton’s method with real arithmetilt convergeto that solution starting
from any point in X®. Thus, ifN® is determined using one of these techniques, the computation can be used as a
root inclusion test for any intervad®: 1) If X% andN® do not intersect, i.eX® n N® = [, then there is no root
in X®, 2) If N® is totally contained inX®, then there is exactly one root X* and Newton’s method with real
arithmetic will find it. Otherwise, 3) no conclusion can be drawn. In the last case, one could then repeat the root
inclusion test on the next interval Newton iterat&™, assuming it is sufficiently smaller thax®, or one could
bisectX®) and repeat the root inclusion test on the resulting intervals. This is the basic idea of IN/GB methods.
If f(x) = 0 has a finite number of real solutions in the specified initial box, a properly implemented IN/GB method
can find with mathematical certaintyany and all solutions to a specified tolerance, or can determiitle
mathematical certaintyhat there are no solutions in the given box (Kearfott and Novoa, 1990; Kearfott, 1990). The
technique used here for computitN® from (5) is the preconditioned Gauss-Seidel-like technique developed by
Hansen and Sengupta (1981). A detailed step-by-step description of the IN/GB algorithm used here is given by
Schnepper and Stadtherr (1996).

The set of equations (2)-(4) that must be solved involvek variables, th&@ component mole fractions and
the molar volume. For the mole fractions, the initial B6® = [0,1] is suitable. In practice the initial lower bound
is set to an arbitrarily small positive numbe(10*° was used) to avoid taking the logarithm of zero in subsequent
calculations. This can be done without the loss of reliability providing a sufficiently small valaésaised. The
lower limit on the molar volume was taken to be the smallest pure component size parameter b, and the upper bound
was taken to be the ideal gas molar volume for Thend P under investigation. Although it is possible to have
compressibility factors greater than one at very higghthis was deemed satisfactory for the rangeToénd P,
explored below. Our implementation of the IN/GB method for the phase stability problem is based on appropriately
modified routines from the packages INTBIS (Kearfott and Novoa, 1990) and INTLIB (Keatfait, 1994).

RESULTS

To test this initial implementation of IN/GB to solve phase stability problems for cubic equations of state,
several different mixtures have been used. Results for three mixtures using either the SRK or PR model are
presented here.

Problem 1 This is a mixture of hydrogen sulfide (1) and methane (2) at 190 K and 40.53 bar. The SRK



model was used with parameters calculated fiog=

373.2 K,P,, =89.4 barw, =0.1,T_, =190.6 K,P_, = D( x)
46.0 barw, = 0.008, and a binary interaction parametegr
k, = 0.08. Feeds of, = 0.0185 andz = 0.5 were 0.1

considered. Results are presented in Table 1, which
shows the roots (stationary points) found, and the valtie 0.08
of the tangent plane distand® at each root. Both 0. 06
feeds are unstable, as indicated by the negative vallies
found for D. For thez = 0.5 case, our results ar 0.04
consistent with those given by Sun and Seider (1995) o 2
for this problem. For the, = 0.0185 case, a plot @ Mv
vs. X, is shown in Figs. 1 and 2. Note that, as pointe ] 02 02 06 038 1 X
out by Michelsen (1982), if one uses a locall

convergent solver, with pure GHx, = 0) as the initial Figure 1. D vs. x, for Problem 1 withz = 0.0185.

guess, convergence will be to the trivial solutionXat \/griical lines demarcate region of multiple real volume
=2z =0.0185. And if pure K5 (x, = 1) is the initial | 4ntg (see Fig. 2).

guess, convergence will be to the local, but not global,

minimum atx, = 0.8826. Using only these initial

guesses would lead to the incorrect conclusion that the mixture is stable. This is indicative of the importance of the
initialization strategy when conventional methods are used, An important advantage of the IN/GB approach
described here is that it eliminates the initialization problem, sinceiftifiglization independent In this case, it

finds all the stationary points, including the global minimunxgt 0.0751. Note also that the presence of multiple

real volume roots does not present any difficulty, since the solver simply flidsots for the given system.

Also included in Table 1 are the number o
root inclusion tests performed in the computation, the D( x)
level reached in the binary tree generated in the

bisection, and the total CPU time on an HP 9000/735 (4 (2
workstation. We would expect standard approaches|to
the phase stability problem to be faster, but these 0. 015
methods do not reliably solve the problem in all cases.
Thus, as one might expect, to obtain guaranteed 0.01
reliability some premium must be paid in terms of . o5
computation time. It should be noted that earligr
0.852__04 015 02

experience (Stadtheret al, 1995) in applying the
IN/GB approach to liquid/liquid phase stability
problems using the NRTL equation, indicated that the

computational efficiency of IN/GB compared favorabl)1:igure 2. Enlargement of Fig. 1 showing region near the

with the model-specific technique of McDonald andyigin, Vertical lines demarcate region of multiple real
Floudas (1995), which also offers guaranteed reliabilitys| me roots.

on the NRTL problem. It should also be noted that

this is an initial implementation of IN/GB for the phase

stability problem with the generalized cubic equation of state, and we anticipate that significant improvements can
be made in its computational efficiency.

Problem 2 This is a mixture of methane (1) and propane (2) at 277.6 K and 50 bar. The SRK model was
used with parameters calculated from methane data given abgve,369.8 K, P, = 42.5 bar,w, = 0.152, and a
binary interaction parametds;, = 0.029. Feeds of, = 0.1, 0.4, and 0.6 were considered, with results shown in
Table 1. The first feed is stable and the others unstable, which is consistent with known phase behavior (Prausnitz,
et. al, 1986). Several other values of P, andz, have also been tried and correct results obtained.

Problem 3 This is a mixture of nitrogen (1) and ethane (2) at 270 K and 76 bar. The PR model was used
with parameters calculated from, = 126.2 K,P,, = 33.9 barw, = 0.04 ,T,, = 305.4 K,P,, = 48.8 barw, = 0.098,
and a binary interaction parametgy = 0.08. Feeds of, = 0.1, 0.3, and 0.65 were considered, with results shown
in Table 1. The second feed is unstable and the others stable, which is consistent with known phase behavior
(Prausnitzet. al, 1986). Several other valueshave also been tried and correct results obtained.

While the results presented here are for binary mixtures only, the method is applicable to problems with a
larger number of components, and tests involving ternary and larger systems are currently under way.



Table 1. Roots (stationary points) found and performance

Root Level CPU Time
inclusion reached in HP 9000/
Feed ¢, z,) Roots &, X,, v [cm*mol]) D tests binary tree 735 (sec)
Problem 1:
0.5, 0.5 0.5, 0.5, 41.32 0.0 4778 30 2.39
0.8819, 0.1181, 36.60 -0.0569
0.0746, 0.9254, 64.44 -0.0825
0.0184, 0.9816, 207.5 -0.0793
0.0311, 0.9689, 114.9 -0.0721
0.0185, 0.9815 0.0185, 0.9815, 207.48 0.0 4764 30 2.40
0.8826, 0.1174, 36.59 0.0197
0.0751, 0.9249, 64.36 -0.0034
0.0311, 0.9689, 115.0 0.0081
0.4978, 0.5022, 41.36 0.0778
Problem 2:
0.1, 0.9 0.1, 0.9, 86.71 0.0 2029 19 1.01
0.4, 0.6 0.4, 0.6, 89.46 0.0 4459 24 2.24
0.8654, 0.1346, 378.4 -0.153
0.5516, 0.4484, 115.3 0.0106
0.6, 0.4 0.7058, 0.2942, 313.0 -0.0065 3948 20 1.98
0.1928, 0.8072, 86.07 -0.223
0.6, 0.4, 216.5 0.0
Problem 3:
0.1, 0.9 0.1, 0.9, 71.11 0.0 1932 18 0.88
0.3, 0.7 0.3, 0.7, 112.3 0.0 4813 23 2.24
0.4893, 0.5107, 198.3 -0.0138
0.1767, 0.8233, 78.18 -0.0069
0.65, 0.35 0.65, 0.35, 238.4 0.0 2828 20 1.21

CONCLUSIONS AND SIGNIFICANCE

Results demonstrate that the interval Newton/generalized bisection algorithm can solve phase stability
problems for a generalized cubic equation of state model efficiently and asithplete reliability This work
represents an entirely new method for solving these problems, a method that can guartmieathematical
certaintythat the correct solutions are found, thus eliminating computational problems that are frequently encountered
with currently available techniques. The method is initialization independent; it is also model independent and can
be applied in connection with other equations of state or with activity coefficient models.
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