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Abstract - The reliable prediction of phase stability is a challenging computational problem in
chemical process simulation, optimization and design. The phase stability problem can be
formulated either as a minimization problem or as an equivalent nonlinear equation solving problem.
Conventional solution methods are initialization dependent, and may fail by converging to trivial
or nonphysical solutions or to a point that is a local but not global minimum. Thus there has been
considerable recent interest in developing more reliable techniques for stability analysis. In this
paper we demonstrate, using cubic equation of state models, a technique that can solve the phase
stability problem with complete reliability. The technique, which is based on interval analysis, is
initialization independent, and if properly implemented provides a mathematical guarantee that the
correct solution to the phase stability problem has been found.

INTRODUCTION

The determination of phase stability, i.e., whether or not a given phase will split into multiple phases, is a
key step in phase equilibrium calculations, and thus in the simulation and design of a wide variety of processes,
especially those involving separation operations such as distillation and extraction. The phase stability problem is
frequently formulated in terms of the tangent plane condition (Bakeret al., 1982). Minima in the tangent plane
distance are sought, usually by solving a system of nonlinear equations for the stationary points (Michelsen, 1982).
If any of these yield a negative tangent plane distance, indicating that the tangent plane intersects (or lies above) the
Gibbs energy of mixing surface, the phase is unstable. The difficulty lies in that, in general, given any arbitrary
equation of state or activity coefficient model, most computational methods cannot find with complete certainty all
the stationary points, and thus there is no guarantee that the phase stability problem has been correctly solved.

Standard methods (e.g., Michelsen, 1982) for solving the phase stability problem typically rely on the use
of multiple initial guesses, carefully chosen in an attempt to locate all stationary points in the tangent plane distance
function. However, these methods offer no guarantee that the global minimum in the tangent plane distance has been
found. Because of the difficulties that thus arise, there has been significant recent interest in the development of
more reliable methods for solving the phase stability problem (e.g., Sun and Seider, 1995; Eubanket al. ,1992;
Wasylkiewiczet al., 1993; McDonald and Floudas, 1995). For example, Sun and Seider (1995) apply a homotopy-
continuation method, which will often find all the stationary points, and is easier to initialize than Michelsen’s
approach. However, their technique is still initialization dependent and provides no theoretical guarantees that all
stationary points have been found. The "area" method of Eubanket al. (1992), which is based on exhaustive search
over a grid, can also be very reliable. They suggest that a course grid be used first to find the approximate location
of solutions. Then, regions appearing not to contain a solution are arbitrarily eliminated from consideration and the
search continues with a finer grid in the remaining regions. However, there is no mathematical guarantee provided
that the regions eliminated do not contain solutions. McDonald and Floudas (1995) show that for certain activity
coefficient models, the phase stability problem can be reformulated to make it amenable to solution by powerful
global optimization techniques, which do guarantee that the correct answer is found. However, in general there
appears to remain a need for an efficientgeneral-purposemethod that can perform phase stability calculations with
mathematical certaintyfor any arbitrary equation of state (EOS) or activity coefficient model.

An alternative approach that satisfies these needs has been suggested by Stadtherret al. (1995) and Huaet
al. (1996), and applied to both activity coefficient models and a simple cubic EOS (Van der Waals equation). This
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technique, which is based on interval analysis, in particular the use of an interval Newton/generalized bisection
algorithm, isinitialization independentand can solve the phase stability problemwith mathematical certainty. In
this paper we seek to extend the application of this technique to cubic EOS models in general. Though the technique
developed is general-purpose, the applications presented focus on the Peng-Robinson (PR) and Soave-Redlich-Kwong
(SRK) models.

PHASE STABILITY ANALYSIS

The determination of phase stability is often done using tangent plane analysis (Bakeret al., 1982;
Michelsen, 1982). A phase at specifiedT, P, and feed mole fractionz is unstable if the Gibbs energy of mixing
versus composition surfacem = ∆gM/RTever falls below a plane tangent to the surface atz. That is, if the tangent
plane distance

is negative for any compositionx, the phase is unstable. The subscript zero indicates evaluation atx = z, andn is

(1)

the number of components. A common approach for determining ifD is ever negative is to minimizeD subject to
the mole fractions summing to one. It is readily shown that the stationary points in this optimization problem can
be found by solving the system of nonlinear equations:

(2)

(3)

If an EOS model form is used, so thatm is expressed in terms ofx andv, the molar volume of the mixture, then
(2) and (3) must be solved simultaneously with the EOS. The model used here is the generalized cubic EOS

(4)

given by Reidet al. (1987). With the appropriate choice ofu andw, common models such as PR (u=2, w=−1) and
SRK (u=1, w=0) may be obtained. For all the example problems considered here, standard mixing rules, namely
b = Σxibi anda = ΣΣxixjaij, are used.

The (n+1) × (n+1) system given by equations (2)-(4) above has a trivial root atx = z and v = v0 and
frequently has multiple nontrivial roots as well. Thus conventional equation solving techniques such as Newton’s
method may fail by converging to the trivial root or give an incorrect answer to the phase stability problem by
converging to a stationary point that is not the global minimum ofD. This is aptly demonstrated by the experiments
of Greenet al. (1993), who show that the pattern of convergence from different initial guesses demonstrates a
complex fractal-like behavior for even very simple models. We demonstrate here the use of an interval
Newton/generalized bisection method for solving the system (2)-(4). The method requires no initial guess, and will
find with certaintyall the stationary points ofD.

INTERVAL COMPUTATIONS

A real interval, X, is defined as a set of real numbers lying between (and including) upper and lower bounds;
i.e., X = [a,b] = { x ∈ ℜ | a ≤ x ≤ b}, wherea,b ∈ ℜ anda ≤ b. A real interval vectorX = (X1,X2,...,Xn)

T hasn real
interval components and since it can be interpreted geometrically as ann-dimensional rectangle, is frequently referred
to as abox. Note that in this section lower case quantities are real numbers and upper case quantities are intervals.
Several good introductions to computation with intervals are available, including recent monographs by Neumaier
(1990) and Hansen (1992).



Of particular interest here are interval Newton/generalized bisection (IN/GB) methods. These techniques
provide the power to find with confidence all solutions of a system of nonlinear equations (Neumaier, 1990; Kearfott
and Novoa, 1990), and to find with total reliability the global minimum of a nonlinear objective function (Hansen,
1992), provided only that upper and lower bounds are available for all variables. Efficient techniques for
implementing IN/GB are a relatively recent development, and thus such methods have not yet been widely applied.
Schnepper and Stadtherr (1990) have suggested the use of this method for solving chemical process modeling
problems, and recently described an implementation (Schnepper and Stadtherr, 1996). Balajiet al. (1995) have also
successfully applied the method to chemical engineering problems.

Consider the solution of the system of real nonlinear equationsf(x) = 0, where it is desired to find all
solutions in an specified initial intervalX(0). The basic iteration step in interval Newton methods is, given an interval
X(k), to solve the linear interval equation system

F′(X(k))(N(k) − x(k)) = −f(x(k)) (5)

for a new intervalN(k), wherek is an iteration counter, F′(X(k)) is an interval extension of the real Jacobian f′(x) of
f(x) over the current intervalX(k), andx(k) is a point in the interior ofX(k), usually taken to be the midpoint. The
interval extension F′(X(k)) of the Jacobian is determined by substituting the intervalX(k) for x in the expression f′(x)
for the real Jacobian, and performing interval operations in place of real operations. It can be shown (Moore, 1966)
that any rootx* of the set of equations that is within the current interval, i.e.x* ∈ X(k), is also contained in the
newly computed intervalN(k). This suggests that the next iteration forX should be the intersection ofX(k) with N(k),
i.e. X(k+1) = X(k) ∩ N(k). There are various interval Newton methods, which differ in how they determineN(k) from
equation (5) and thus in the tightness with whichN(k) encloses the solution set of (5).

While the iteration scheme discussed above can be used to tightly enclose a solution, what is of most
significance here is the power of (5) to provide a test of whether a solution exists within a given interval and whether
it is a unique solution. For several techniques for findingN(k) from (5), it can be proven (e.g., Neumaier, 1990) that
if N(k) is totally contained withinX(k), i.e. N(k) ⊂ X(k), then there is auniquezero of the set of nonlinear equations
f(x) = 0 in X(k), and furthermore that Newton’s method with real arithmeticwill convergeto that solution starting
from any point in X(k). Thus, if N(k) is determined using one of these techniques, the computation can be used as a
root inclusion test for any intervalX(k): 1) If X(k) andN(k) do not intersect, i.e.,X(k) ∩ N(k) = ∅, then there is no root
in X(k). 2) If N(k) is totally contained inX(k), then there is exactly one root inX(k) and Newton’s method with real
arithmetic will find it. Otherwise, 3) no conclusion can be drawn. In the last case, one could then repeat the root
inclusion test on the next interval Newton iterateX(k+1), assuming it is sufficiently smaller thanX(k), or one could
bisectX(k+1) and repeat the root inclusion test on the resulting intervals. This is the basic idea of IN/GB methods.
If f(x) = 0 has a finite number of real solutions in the specified initial box, a properly implemented IN/GB method
can find with mathematical certaintyany and all solutions to a specified tolerance, or can determinewith
mathematical certaintythat there are no solutions in the given box (Kearfott and Novoa, 1990; Kearfott, 1990). The
technique used here for computingN(k) from (5) is the preconditioned Gauss-Seidel-like technique developed by
Hansen and Sengupta (1981). A detailed step-by-step description of the IN/GB algorithm used here is given by
Schnepper and Stadtherr (1996).

The set of equations (2)-(4) that must be solved involvesn+1 variables, then component mole fractions and
the molar volume. For the mole fractions, the initial boxX(0) = [0,1] is suitable. In practice the initial lower bound
is set to an arbitrarily small positive numberε (10-10 was used) to avoid taking the logarithm of zero in subsequent
calculations. This can be done without the loss of reliability providing a sufficiently small value ofε is used. The
lower limit on the molar volume was taken to be the smallest pure component size parameter b, and the upper bound
was taken to be the ideal gas molar volume for theT andP under investigation. Although it is possible to have
compressibility factors greater than one at very highPr, this was deemed satisfactory for the range ofTr and Pr

explored below. Our implementation of the IN/GB method for the phase stability problem is based on appropriately
modified routines from the packages INTBIS (Kearfott and Novoa, 1990) and INTLIB (Kearfottet al., 1994).

RESULTS

To test this initial implementation of IN/GB to solve phase stability problems for cubic equations of state,
several different mixtures have been used. Results for three mixtures using either the SRK or PR model are
presented here.

Problem 1. This is a mixture of hydrogen sulfide (1) and methane (2) at 190 K and 40.53 bar. The SRK



model was used with parameters calculated fromTc1 =
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Figure 1. D vs. x1 for Problem 1 withz1 = 0.0185.
Vertical lines demarcate region of multiple real volume
roots (see Fig. 2).

373.2 K,Pc1 = 89.4 bar,ω1 = 0.1,Tc2 = 190.6 K,Pc2 =
46.0 bar,ω2 = 0.008, and a binary interaction parameter
k12 = 0.08. Feeds ofz1 = 0.0185 andz1 = 0.5 were
considered. Results are presented in Table 1, which
shows the roots (stationary points) found, and the value
of the tangent plane distanceD at each root. Both
feeds are unstable, as indicated by the negative values
found for D. For the z1 = 0.5 case, our results are
consistent with those given by Sun and Seider (1995)
for this problem. For thez1 = 0.0185 case, a plot ofD
vs. x1 is shown in Figs. 1 and 2. Note that, as pointed
out by Michelsen (1982), if one uses a locally
convergent solver, with pure CH4 (x1 = 0) as the initial
guess, convergence will be to the trivial solution atx1

= z1 = 0.0185. And if pure H2S (x1 = 1) is the initial
guess, convergence will be to the local, but not global,
minimum at x1 = 0.8826. Using only these initial
guesses would lead to the incorrect conclusion that the mixture is stable. This is indicative of the importance of the
initialization strategy when conventional methods are used, An important advantage of the IN/GB approach
described here is that it eliminates the initialization problem, since it isinitialization independent. In this case, it
finds all the stationary points, including the global minimum atx1 = 0.0751. Note also that the presence of multiple
real volume roots does not present any difficulty, since the solver simply findsall roots for the given system.

Also included in Table 1 are the number of
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Figure 2. Enlargement of Fig. 1 showing region near the
origin. Vertical lines demarcate region of multiple real
volume roots.

root inclusion tests performed in the computation, the
level reached in the binary tree generated in the
bisection, and the total CPU time on an HP 9000/735
workstation. We would expect standard approaches to
the phase stability problem to be faster, but these
methods do not reliably solve the problem in all cases.
Thus, as one might expect, to obtain guaranteed
reliability some premium must be paid in terms of
computation time. It should be noted that earlier
experience (Stadtherret al., 1995) in applying the
IN/GB approach to liquid/liquid phase stability
problems using the NRTL equation, indicated that the
computational efficiency of IN/GB compared favorably
with the model-specific technique of McDonald and
Floudas (1995), which also offers guaranteed reliability
on the NRTL problem. It should also be noted that
this is an initial implementation of IN/GB for the phase
stability problem with the generalized cubic equation of state, and we anticipate that significant improvements can
be made in its computational efficiency.

Problem 2. This is a mixture of methane (1) and propane (2) at 277.6 K and 50 bar. The SRK model was
used with parameters calculated from methane data given above,Tc2 = 369.8 K,Pc2 = 42.5 bar,ω2 = 0.152, and a
binary interaction parameterk12 = 0.029. Feeds ofz1 = 0.1, 0.4, and 0.6 were considered, with results shown in
Table 1. The first feed is stable and the others unstable, which is consistent with known phase behavior (Prausnitz,
et. al., 1986). Several other values ofT, P, andz1 have also been tried and correct results obtained.

Problem 3. This is a mixture of nitrogen (1) and ethane (2) at 270 K and 76 bar. The PR model was used
with parameters calculated fromTc1 = 126.2 K,Pc1 = 33.9 bar,ω1 = 0.04 ,Tc2 = 305.4 K,Pc2 = 48.8 bar,ω2 = 0.098,
and a binary interaction parameterk12 = 0.08. Feeds ofz1 = 0.1, 0.3, and 0.65 were considered, with results shown
in Table 1. The second feed is unstable and the others stable, which is consistent with known phase behavior
(Prausnitz,et. al., 1986). Several other valuesz1 have also been tried and correct results obtained.

While the results presented here are for binary mixtures only, the method is applicable to problems with a
larger number of components, and tests involving ternary and larger systems are currently under way.



______________________________________________________________________________________________________________________________________

Table 1. Roots (stationary points) found and performance

Root Level CPU Time
inclusion reached in HP 9000/

Feed (z1, z2) Roots (x1, x2, v [cm3/mol]) D tests binary tree 735 (sec)
______________________________________________________________________________________________________________________________________

Problem 1:

0.5, 0.5 0.5, 0.5, 41.32 0.0 4778 30 2.39
0.8819, 0.1181, 36.60 -0.0569
0.0746, 0.9254, 64.44 -0.0825
0.0184, 0.9816, 207.5 -0.0793
0.0311, 0.9689, 114.9 -0.0721

0.0185, 0.9815 0.0185, 0.9815, 207.48 0.0 4764 30 2.40
0.8826, 0.1174, 36.59 0.0197
0.0751, 0.9249, 64.36 -0.0034
0.0311, 0.9689, 115.0 0.0081
0.4978, 0.5022, 41.36 0.0778

Problem 2:

0.1, 0.9 0.1, 0.9, 86.71 0.0 2029 19 1.01

0.4, 0.6 0.4, 0.6, 89.46 0.0 4459 24 2.24
0.8654, 0.1346, 378.4 -0.153
0.5516, 0.4484, 115.3 0.0106

0.6, 0.4 0.7058, 0.2942, 313.0 -0.0065 3948 20 1.98
0.1928, 0.8072, 86.07 -0.223
0.6, 0.4, 216.5 0.0

Problem 3:

0.1, 0.9 0.1, 0.9, 71.11 0.0 1932 18 0.88

0.3, 0.7 0.3, 0.7, 112.3 0.0 4813 23 2.24
0.4893, 0.5107, 198.3 -0.0138
0.1767, 0.8233, 78.18 -0.0069

0.65, 0.35 0.65, 0.35, 238.4 0.0 2828 20 1.21
______________________________________________________________________________________________________________________________________

CONCLUSIONS AND SIGNIFICANCE

Results demonstrate that the interval Newton/generalized bisection algorithm can solve phase stability
problems for a generalized cubic equation of state model efficiently and withcomplete reliability. This work
represents an entirely new method for solving these problems, a method that can guaranteewith mathematical
certaintythat the correct solutions are found, thus eliminating computational problems that are frequently encountered
with currently available techniques. The method is initialization independent; it is also model independent and can
be applied in connection with other equations of state or with activity coefficient models.
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