Third International Symposium on
Process Systems Engineering
Sydney, 28 Aug - 2 Sept 1988

A Frontal Algorithm for Equation-Based Chemical
Process Flowsheeting on Vector Computers

S.E. ZITNEY
Graduate Student, Chemical Engineering, University of lllinois
M.A. STADTHERR
Associate Professor, Chemical Engineering, University of Illinois

1 INTRODUCTION

The periodic solution of a large sparse system of
linear equations is a key step in the equation—
based (EB) approach to chemical process
flowsheeting. The sparse linear matrices that
arise in EB problems do not have highly regular
structures such as tridiagonal or banded forms,
nor do they have desirable numerical properties
such as ~ diagonal dominance or positive
definiteness. For this reason, most EB programs
make use of general-purpose sparse matrix methods.

Unfortunately, general—-purpose sparse matrix
solvers appear to be incompatible with most vector
computers because of indirect addressing in inner
loops.
address data in contiguously or regularly indexed
vectors. This may be done in a sparse matrix
algorithm by treating parts of the sparse matrix
as full. '

The frontal approach alternates between assembly
and elimination so that operations are confined to
a relatively small submatrix (frontal matrix) that
can be regarded as full. The front advances down
the diagonal of the sparse matrix as the solution
proceeds. Operating on full matrices in this way
eliminates indiréct addressing, and so facilitates
vectorization on advanced computer architectures.

Based. on Gaussian elimination, the frontal
approach originated as a banded matrix solver for
finite element applications (Irons, 1970; Hood,
1976). Each element is assembled into the frontal
matrix in an order dictated by element
numbering. Equations and variables enter the
front as their elements are processed. A variable
can be selected as a pivot only after its row and
column is fully summed; that is, whenever all the
elements containing the variable are in the
frontal matrix. After an elimination step, the
pivot row 1is temporarily stored out of core for
the purpose of ‘
interleaved assembly-elimination process continues
until ail - the elements are assembled and the
elimination is completed. Finally, the previously
eliminated rows are retrieved from auxiliary
storage in reverse order so that the solution can
be found by back-substitution.

Most of the recent research on the frontal
approach has concentrated on solving large sparse
matrices on sequential computers with limited
central memory. Thompson and Shimazaki (1980)
developed a frontal procedure which uses a compact
skyline storage scheme to reduce data transfer
between disk and core. Beer and Haas (1982)
developed a frontal solver which allows for
partitioning of the frontal matrix and improves

On vector computers, it is desirable to

back-substitution. This |

disk 1/0. Ida and Lord (1984) devised a frontal
routine to accommodate medium to large-sized
problems on minicomputers. 'Gloos et al. (1986)
used controlled block paging and special disk file
management for computers with physical memories
not large enough to store the frontal matrix.

The potential for using the frontal approach on
vector computers was apparently first ‘recognized
by Duff (1979). Duff (1984) and Duff and Reid
(1982) have since implemented a frontal code
(MA32) on the Cray-1 at Harwell., The MA32 routine
is designed for the out-of-core solution of sparse
unsymmetric matric&s, and allows for input by
equation as an option. However, the code is
generally structured for input by finite element.

More recently, Dave and Duff (1987) modified the
MA32 routine to take better advantage of the Cray-
2 architecture. Since chaining cannot be used on
the Cray-2, they implemented a two-pivot version
of the frontal approach which overlaps both
floating—~point pipes with the load/store pipe.
The two-pivot kernel is coded 1in assembler, and
combines the use of 1local memory and vector
registers.)

As mentioned above, the frontal approach was
developed to accommodate large matrices on
computers with small central memories. This
approach makes use of ‘auxiliary 'storage (slow-
access) and is I/0 intensive. An alternative
approach is to make use of the large central
memories (rapid-access) available on today's
supercomputers. A frontal solver that functions
entirely in central memory requires considerably
less solution time than a frontal code that uses
auxiliary storage. However, when working with
very large problems, it may still be necessary to
use auxiliary storage even on systems such as the
Cray-2 with-.its very large central memory of 256
Megawords (Dave and Duff, 1987).

The idea of applying the frontal approach to
process flowsheeting matrices was first proposed
in the papers by Stadtherr and Vegeais (1985) and
Vegeais and Stadtherr (1988). However, they did
not implement a complete frontal code or provide a
complete ‘algorithm = for their approach. The
frontal approach as implemented here in SEQUEL-II
(Zitney and Stadtherr, 1988) is used to solve
several EB flowsheeting problems on the Cray X=~
MP/48 supercomputer. We also make comparisons to
a general-purpose sparse matrix solver, namely
LUISOL, a very reliable and efficient routine

described elsewhere (Chen and Stadtherr; 1984;

Stadtherr and Wood, 1984b).

2 DESCRIPTION OF FRONTAL ALGORITHM FOR EB
FLOWSHEETING PROBLEMS

The frontal approach for finite element problems
was detailed in the original papers of Irons
(1970) and Hood (1976). We . present here an
adaptation of this approach to the more general
process flowsheeting matrix. We first briefly
outline our algorithm, and then demonstrate it by
means of a simple example. Finally, we discuss
the most important aspects of its implementation.

Prefront process
(1) Reorder the process
using the ‘P4
Rarick, 1972).
(2) Reverse the row (equation) order. v
(3) Perform a pass through the matrix to
determine the - last .occurrence of each
variable. This information is stored, so
that the fully-summed variables = can be
detected in Step (6). ' :
(4) Initialize the frontal matrix.

flowsheeting matrix
algorithm (Hellerman and

" Frontal process

(5) Assemble a flowsheet
frontal matrix.
assembled, go to Step
continue to Step (6).

(6) Determine whether any variables are fully
summed ' by using the information stored in
Step (3). If there are fully-summed
variables, go to Step (7); otherwise return
to Step (5). ;

(7 Search for pivot row by partial pivoting in
the fully-summed column.

(8) Normalize pivot row. S

9) Eliminate and delete pivot row and column.

(10) Store pivot row in central memory.

(11) Return to Step (6).

(12) Compute the solution. vector
substitution.

equation into the

(12); otherwise

by back-

It should be emphasized that the frontal matrix is
assembled. by equation, rather than by finite
element. The assembled equations (rows) are
always fully summed since variables enter the
frontal matrix the first time they are encountered
in an equation. An elimination step is performed
whenever any variable (column) becomes fully
summed; that is, whenever the equation containing
the last occurrence of the variable is reached.

As an example, consider the following 6x6 matrix:

1 2 3.4 5 6
1X X X
2 X XX
3 X X
4 X X X
5X . X X
6 X X X X X

In the prefront process, the matrix is ordered by
taking an a priori reordering method intended to
reduce fill-in in general sparse matrix solvers
and reversing the order of the rows (Stadtherr and
Vegeais, 1985; Vegeais and Stadtherr, 1988). The
a_priori reordering method used here is the
partitioned preassigned pivot -procedure, P4,
devised by Hellerman and Rarick (1972). A
detailed description of . the method and a
discussion of its computational efficiency are

If all equations have been

given by Stadtherr and Wood (1984a). The P4
method generates a lower triangular matrix with
spike columns (columns 4 and 6, below). For our
example problem, the P4 ordering that results is:

3 2 5 6 1 4
3X X
2X X X
& X X X
6 X X X X X
1 X X X
5 X X X

Reversing the order of the rows produces an upper
triangular matrix with spike columns. For
convenience, we renumber the rows and columns in
ascending order:

1.2 3 4 5 6
1X X X
2 X X X
3X X X X X
4 X X X
5 X X X
6 X X
The ordering of the flowsheet equations 1is

critical since it determines the maximum size of
the frontal matrix during elimination. The
reordering of flowsheeting matrices into a
desirable form for the frontal approach will be
discussed in more detail below.

The prefront routine then makes a pass through the
matrix to determine when each variable appears for
the last time. This information is stored, so
that during the subsequent assembly-elimination
process the completion of a column can be
detected. In our example, variables 1-6 make
their last appearance in equations 6,2,4,4,5, and
6, respectively.)

The assembly-elimination process starts by
assembling the first equation into the frontal
matrix. In order to do this, variables 1,2, and 3
must be entered into the front. The initial

ﬁrontal matrix looks like:

1 2 3

1X X X
Note here that the assembled equation (row) is
fully summed, but that none of the variables
(columns) are fully summed because each is
contained in at least one future equation. Thus
we proceed to the second equation with variables
2, 3, and 5. This equation introduces a new
active variable (variable 5), and it must. enter
the frontal matrix. The set of active variables

becomes (1,2,3,5), and the frontal matrix. now
looks like: :

1 5
X

LR
MW

1 :
2 X -

The second variable is now fully summed. The
frontal solver determines this by using the array
of last occurrences stored during the prefront
process. A nonzero element in the second column
is now chosen as a pivot. After eliminating the
other nonzero elements in the column, the pivot
row and column are removed. The deleted pivot row
is stored for use in back-substitution. If the
second equation is chosen as the pivot row the
following frontal matrix is obtained:

1 3 5
1X X F
The F . here represents a zero element that has
become a nonzero element during elimination (a
fill-in). Note here that the first equation could
also have been chosen as the pivot row. Numerical
pivoting considerations will be discussed in more
detail below. Now the third row is entered into
the frontal matrix. Since the third equation
contains the new active variables 4 and 6, they
must enter the frontal matrix. All six of ‘the
variables have now entered the frontal matrix,
which looks like:

1 3 5 4 6
1X X F
3X X X X X
None of the variables are fully summed. Thus we
proceed to the fourth equation after whose
assembly the frontal matrix reaches its maximum

size (3x5):

=

6

L Y

X

DD PR e
oKW

1
3 X
4 X
It should be noted here that there is a maximum
front size for any ordering of the equations, and
the front dimensions must be large enough to
accommodate this maximum. Variables 3 and 4 are
now both fully summed. Using equation 1 to
eliminate variable 3 leaves the frontal matrix:

6

X

15
X X
X F

Ea iR IR

3
4
If equation 3 is then used to eliminate variable
4, we have:

1 5 6
4X F F

The fifth equation is now entered, and the frontal
matrix is:

1 5 6

4X F F

5X X X
Variable 5 is now fully summed and may be
eliminated. Pivoting on the fifth equation and
entering the final equation into the frontal
matrix results in:

1. 6

4 X F

6 X X
which is now solved by simple Gaussian
elimination. After the assembly-elimination

process is completed, the pivot rows are retrieved
from central memory in reverse order, ‘and the
- solution vector is computed by back-substitution.

3 IMPLEMENTATION DETAILS

3.1 Numerical Pivoting

We discuss here the problem of pivoting for
numerical stability during the elmination phase of
the frontal approach. A typical frontal code for

‘the front.

finite element problems makes use of a scheme
found 1in most = general-purpose sparse matrix
solvers, namely threshold pivoting. In this case

each pivot a;) has to meet the following threshold

tolerance: v
lagel > ¢ ‘“;‘x|aik|

where t is a preset fraction in the range 0<t<l.
The pivots must be chosen from amongst the fully-
summed rows and columns, but the maximum is taKen
over all rows (fully and partly summed) in the
frontal matrix. If the pivotal search does not
find an entry that satisfies the threshold
criterion, the fully-assembled variables remain in
This has the effect of increasing the
size of the frontal matrix and the number of
arithmetic operations.

In our frontal algorithm for ‘flowsheeting
matrices, the assembly proceeds equation by
equation so that the rows of the frontal matrix
are always fully summed. In this case, any
nonzero. element in a fully-summed column may be
chosen as a pivet and it is not necessary to limit
pivoting to threshold pivoting. Instead, partial
pivoting (t=1) may be performed in the column with
no penalty of additional storage or elimination
operations. .

3.2 Storage of Normalized Pivot Rows

After an elimination step in the frontal approach,
the normalized pivot row must be temporarily
stored for the purpose of back-substitution. . The
method of storage depends on the central memory
size and disk capabilities of the computer, as
well as on the size of the problem. In a typical

" . frontal code -developed for computers with limited

central memory, the pivot row is transferred to a
slow auxiliary storage media such as magnetic tape
or disk, and its space in- céntral memory is
reused.)

For the EB flowsheeting problems in this ‘study,
the use of auxiliary storage is.unnecessary due to

the large central memory of the Cray X-MP/48. The
normalized pivot rows are stored in central
memory, where they can be accessed rapidly. It

should be emphasized that the test problems used
here are not. particularly large by flowsheeting
standards, but they are comparable in size to test
problems used by others. However, = it may be
necessary for larger and/or more complex problems
to transfer the pivot rows .in and out of central
memory. In this case, the main memory of the Cray
X-MP can be augmented with 128 million -words of
fast auxiliary SSD memory. The maximum potential
data transfer rate for this solid-state storage
device is 200 times faster than conventional disk
storage (DD-49 disk drives).

3.3 Vector Processing Considerations
The frontal algorithm is attractive frosm ihe
standpoint of vectorization because all

elimination operations
dense frontal matrix.

occur in the relatively
Thus, we can use full~

matrix code without indirect addressing. The
elimination step in our code looks like:
DO 20 I=1,FE
DO 10 J=l FV
FRONT(J, I)=FRONT(J I)+PCOL(I)*PROW(J)
10 CONTINUE

20 CONTINUE

where the frontal matrix (FRONT) is updated by the
outer product of the pivot column (PCOL) and the
pivot row (PROW), and FE and FV are the number of
equations and variables in the front,
respectively. The innermost loop is a dense SAXPY
and so- can exploit chaining of the add and
multiply functional units on the Cray X-MP. Since
only " the innermost 1loop 1is a
vectorization, it is more efficient to make the
inner loop have the largest range. With our
frontal approach, the number of variables is
always greater than or equal to the number of
equations. Thus, we make the index of the inner
loop correspond to the number of variables in the
frontal matrix. Also, we process the two-~
dimensional frontal array in a column-wise manner
in order to avoid memory bank conflicts, which can
have a pronounced effect on computation time.

Although the amount of vectorization is increased
by treating parts of the sparse matrix as full,
some operations are- done on zero entries. This
disadvantage of the frontal approach is discussed
in more detail below.

3.4 - Reordering

The performance of our frontal algorithm depends
considerably on the row ordering, which determines
the size - of the frontal matrix during
elimination. For the banded matrices arising from
finite element problems, the amount of storage
needed for the front is only B*(2B - 1), where B
is the bandwidth of the matrix. Flowsheeting
matrices are not strictly banded, however. ’

We take advantage here of the fact that a
desirable row-column ordering for the
approach 1is the opposite of the order for a
general-purpose sparse solver, such as LUISOL
(Stadtherr and Vegeais, 1985, Vegeais and
Stadtherr, 1988). With LU1SOL, it is desirable to
process a matrix with small rows first and small
columns last; that is, a lower triangular
matrix. For the frontal approach it is desirable
to treat a matrix with small columns first and
small rows last,
matrix. Thus, we order flowsheeting matrices by
taking an a priori reordering method (P4) intended
to reduce fill-in in general sparse matrix solvers
and reversing the order of the rows. The reverse-
. P4 row ordering results in an upper triangular
matrix with spike columns. If the triangular
portion was full, the amount of array storage
needed for the front would be (MLSPK + 1)*N, where
MLSPK is the maximum number of local spikes - (this
term is defined in Stadtherr and Wood (1984a) and
is related to the proximity to the diagonal of the
nonzeros in a spike). = However, since the
triangular portion of a flowsheeting matrix is
relatively sparse, the storage needed for the
frontal ‘matrix will typically be less than (MLSPK
+ 1)*N,
(MLSPK = 2 and N = 6), where the frontal matrix
requires a 3 x 5 array, instead of the 3 x 6 array
that would have been needed for the full upper
triangular case. !)

" 4" SEQUEL-II OPTIONS

SEQUEﬁ-II is a prototype flowsheeting system that

provides a means for testing different
computational strategies for the EB approach.
Recent developments regarding the various
numerical solution techniques available in

SEQUEL-I1 can be found in Zitney. and Stadtherr
(1988). Throughout our study of the frontal

candidate for

frontal

that is, an upper. triangular

This can be seen in our example problem:

approach the following options are wused in
SEQUEL~1T: :
1. All thermodynamic properties are calculated
using the Peng-Robinson (1976) equation of state

with all binary parameters set equal to zero.

2. The correction steps are generated by Powell's
dogleg method, as modified by Chen and Stadtherr
(1981).))

3. The initial Jacobian evaluation and subsequent
re-evaluations are performed wusing the sparse

- finite difference scheme of Curtis, Powell, and
Reid (1974).

4, The sparse Jacobian matrices are updated using
the least-relative—change update recently devised
by Bogle and Perkins (1987).

5. The initial guesses for the process variables
are generated using a simplified sequential-
modular scheme (Zitney and Stadtherr, 1988).

6. The relative convergence tolerance 9efined by
Chen and Stadtherr (1981) is 107/, The
discretization parameter for Jacobian evaluation
is 107°x;, where X5 is the variable being
perturbed. -

7. These studies were performed using the CDC
Cyber 175 and one CPU of the Cray X-MP/48 at the
University of Illinois. All runs using the Cyber
175 were done in single precision (60 bits) and

‘under the Fortran Extended (OPT=1) compiler. All

runs using the Cray X-MP were done in single
precision (64 bits) and wunder the CFT 1.14
compiler.

S FLOWSHEETING PROBLEMS

Four . benchmark problems are used in this study.
Problem 1 is a simple equilibrium flash separation
process adapted from exercise 4 in the FLOWTRAN
exercise book (Clark, 1977). Problem 2 is the
well-known four-flash-unit system used by Cavett
(1963). Problem 3 is the ammonia synthesis
process studied by Stadtherr and Hilton (1982).
Problem 4 is a light hydrocarbons recovery process
adapted from exercise 25 in the FLOWTRAN exercise
book (Clark, 1977).

Statistics of problem sizes are given in Table I..

The. table 1lists for each problem the number of
variables, the number of nonzero elements in the
occurrence matrix, the percentage density of the
matrix, and the maximum number of equations and
variables in the frontal matrix. The maximum
front size is for reverse-P4 reordering.

TABLE I

FLOWSHEETING PROBLEM STATISTICS

Problem'ﬂunber of'NumBer of % Maximnn Front..
Number |Variables|Nonzeros |[Density Size

1 80 338 5.3 7°x 42

2 - 288 3332 4.0 . 63 x 221

3 155) 630 2.5 14 x 78

4 350 1634 1.3 21 x 172

NUMALNLGAL KooULlo

We "compare here the performance of our frontal
solver with that of a general sparse matrix solver
(LU1SOL, Chen and Stadtherr (1984)3 Stadtherr and
Wood (1984)) on the four EB flowsheeting problems
listed above. Table II reports the numerical
results: the time required for the solution of a
single linear system, the total solution time for
the flowsheeting problem, and the speedup of the
frontal solver on the Cray over LUlSOL-Cray and
over LU1SOL-Cyber. The = total solution
consists of the linear time and the time spent in
all other routines. Thus, a reduction in linear
solution time usually results in the total speedup
being less than the linear solution speedup.

The flowsheeting matrices were reordered with

reverse-P4 for the frontal solver and with P4 for
LUISOL. All run times in Table II do not include
the time spent in the P4 routine, but the time
required to reverse the row order is included in
the frontal solver run times. The Cray runs with

LUISOL are performed using vectorization and
hardware gather/scatter.
TABLE II

PERFORMANCE COMPARISON OF FRGNTAL SOLVER AND LU1SOL

Frontal-Cray | LU1SOL-Cray LU1SOL-Cyber

Problem| Linear Total |Linear Total hinear Total

Number Time Time | Time Time | Time Time

) 7 (sec) (sec) |(sec) (sec)](sec) (sec)

1 .002 . 099 .006 .122 .030 .856

2 .051 2.486 .120 4.274 .542 24.437

3 .006 .658 .009 .762 .048 4.316,

4 .021 .502 .022 .519 .114 3,042
Speedup of Frontal-Cray over LU1SOL

Frontal-Cray LU1SOL-Cray LUlSOL—Cyber

1 1 1 3.00 1.23 |15.00 6.63

2 1 1 2.35 1.72 110.63 9.83

3 1 1 1.50 1.16 8.00 6.56

4 1 1 1.05 1.03 | 5.43 6.06

For problems 1 and 2, the frontal solver on
Cray is several times faster than LUISOL on
Cray and 1is between one and two orders
magnitude faster than LUISOL on the Cyber.
frontal solver did not perform very well on
problem 4, however. It is important to point out
here that there is an inverse relationship between
the speedup of the frontal solver over LULISOL and
the percentage density of the occurrence matrix.
This happens because many more operations are
wasted on zero entries when the occurrence matrix
is more sparse. Any zeros in the frontal matrix
are stored explicitly, and such operations cannot
be made conditional without adversely affecting
the amount of vectorization. Thus, by treating
parts of the sparse matrix as full submatrices,
the vector operations are performed at a much
faster rate, but some of these are wasted on
unnecessary operations, We could try to exploit
the sparsity of the frontal matrix, but we would
have to be careful not to destroy the desirable
characteristics (simplicity and vectorizability)
of the innermost loops of the frontal solver.

the
the.

of
The

time -

292

'BEER, G. and HKHAAS, W. (1982).

The success of the frontal approach depends
largely on the front remaining small since this
will tend to lower the number of overall
arithmetic operations as well as reduce the number
of wasted operations on zeros. Thus, it is very
important to find a reordering scheme that keeps
the size of the frontal matrix small. The
reverse-P4 scheme used here gives a desirable
ordering, but it is not an attempt to provide an
optimum ordering. It should be emphasized that
any number of matrix orderings can be used, and in
practice an optimum ordering cannot be determined
in a feasible amount of time. Recently, Vegeais
and Stadtherr (1988) found' that the - BLOKS
reordering scheme (Stadtherr and Wood, 1984a)
performs very well in connection with the frontal
approach. '~ This - reordering scheme attempts to
identify and maintain the inherent block structure
associated with process flowsheeting matrices.

7 CONCLUSIONS

A frontal algorithm for the solution of large
sparse systems of linear equations arising in EB
flowsheeting .is presented. The frontal solver is
designed specifically for input by equation and
functions entirely in core.

"Results on four flowsheeting pioblems indicate

that the frontal solver on the Cray X-MP/48
outperforms the general sparse solver, LUISOL, on’
the Cray and on the CDC Cyber 175. However, there
appears to be an inverse relationship between the
speedup of the frontal solver over LUISOL and the
percentage density of the occurrence matrix. A
more detailed appraisal of the effects of sparsity
and matrix structure on the performance of the’
frontal approach is still needed.

The reverse-P4 scheme used here gives a desirable
ordering, but the performance of the frontal
approach- could be further enhanced . by the
development of a reordering scheme that is
designed to produce an ordering tailored
specifically: to the frontal approach. Thus the
frontal approach shows considerable promise for
the solution of EB process flowsheeting matrices
on vector computers.

8 - ACKNOWLEDGEMENT

Thié work was supported in part by the National
Science’ Foundation under Grant number DMC-8520663,

9 REFERENCES

A partitioned
frontal solver for finite element analysis. Int.
J. Num. Meth. Fngng., Vol. 18, pp 1623-1654,

BOGLE, I.D.L. and PERKINS, J.D. (1987).
Improvements to sparse quasi-Newton methods for
algebraic systems. Proceedings of Chemical
Engineering Fundamentals 87, XVIII Congress: The
Use of Computers in Chemical Engineering, European
Federation of Chemical Engineering, Giardind
Naxos, Italy April 26-30, pp 47-51,

CAVETT, R.H. (1963). Application of numerical
methods to the convergence of simulated processes
involving recycle loops. Proc. Am. Petrol. Inst,,
Vol. 43, pp 57-75.

CHEN, H.S, and STADTHERR, M.A, - (1981). A
modification of Powell's dogleg method for. solving
systems of nonlinear equations. Comput. Chem,
Engng., Vol. 5, No. 3, pp 143-150.

CHEN, H.S. and STADTHERR, M.A. (1984). On solving

_large sparse nonlinear equation systems. Comput.
Chem. Engng., Vol. 8, No. 1. pp 1-7.

CLARK, J.P. (1977). Exercises in__ process
simulation _ using FLOWIRAN. CACHE Corp.,:

Cambridge, MA.

CURT1IS, A.R., POWELL, M.J.D., and REID, J.K.

(1974). On the estimation of sparse Jacobian
matrices. J. Inst. Math. Appl., Vol. 13, pp 117~
119,

DAVE, A.K. and DUFF, I.S. (1987). Sparse matrix
calculations on the Cray-2. Parallel Comput.,
Vol. 5, pp 55-64.

DUFF, 1.8. (1979). Recent developments in the
solution of large sparse linear equations.
Presented at IRIA Fourth International Symposium
on Computing Methods
Engineering, December 10-14, Versailles.

DUFF, I.S. (1984). Design features of a frontal
code for solving sparse unsymmetric linear systems
out-of-core. SIAM J. Sei. Stat. Comput., Vol. 5,

No. 2, pp 270-280.

DUFF, 1.S. and REID, J.K. (1982). Experience of
" sparse matrix codes on the Cray-l. Computer
Physics Communications, Vol. 26, pp 293-302.

GLOOS, D., HOEHN, W., and SPELLUCCI, P. (1986).
Improvement of the runtime behaviour of a frontal
solution code. Communications in Applied
Numerical Methods, Vol. 2, pp 489-498. :

HELLERMAN, E. and RARICK, D. (1972). The
partitioned preassigned pivot procedure (P4). In

Sparse matrices and their applications (Edited by .

D.J. Rose and R.A. Willoughby). New York, Plenum
Press. : .

HOOD, P. (1976). Frontal solution program for
unsymmetric matrices. Int. J. Num. Meth. Engng.,
Vol. 10, pp 379-399. -

IRONS, B.M. (1970).

in Applied Sciences and

IDA, N. and LORD, W. (1984). Solution of linear
equations for small computer systems. Int. J.
Num. Meth. Engng., Vol. 20, pp 625-641.

A frontal solution program
for finite element analysis. Int. J. Num. Meth.

Engng., Vol. 2, pp 5-32.

PENG, D.Y. and ROBINSON, D,.B. (1976). A new two-
constant equation of state. Ind. Eng. Chem.
Fund., Vol. 15, No. 1, pp 59-64.

STADTHERR, M.A. and
Development of a new equation-based process
flowsheeting system: numerical studies. In
Selected Topics on Computer—Aided Process Design
and Analysis (Edited by R.S.H. Mah and G.V.
Reklaitis), AIChE Symposium Series, Vol. 78, No.

HILTON, C.M. (1982).

214, pp 12-28.

Process

IChemE Symp.

STADTHERR, M.A. and VEGEAIS, J.A. (1985).
flowsheeting on supercomputers.
Ser., Vol. 92, pp 67-77.

STADTHERR, M.A. and WOOD, FE.S. (1984a). Sparse
matrix methods for equation-based chemical process
flowsheeting: I. Reordering phase. Comput. Chem.
Engng., Vol. 8, No. 1, pp 9-18.

STADTHERR, M.A. and WOOD, E.S. (1984b). Sparse
matrix methods for equation-based chemical process
flowsheeting: II, Numerical phase. Comput. Chem.
Engng., Vol. 8, No. 1, pp 19-33. ’

THOMPSON, E. and SHIMAZAKI, Y. (1980). A frontal
procedure using skyline storage. Int. J. Num.
Meth. Engng,;, Vol. 15, pp 889-910.

VEGEAIS, J.A. and STADTHERR, M.A. (1988). Vector
processing strategies for sparse matrix problems
in equation-based flowsheeting. Submitted for
publication.)

ZITNEY, S.E. and STADTHERR, M.A,
Computational = experiments in
chemical process flowsheeting.
publication.

(1988).
equation-based
Accepted for

