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Abstract

The search for the global minimum of a molecular potential energy surface is a challenging

problem. The molecular structure corresponding to the global minimum is of particular importance

since it usually dictates both the physical and chemical properties of the molecule. The existence of

an extremely large number of local minima, the number of which may increase exponentially with

the size of the molecule, makes this global minimization problem extremely difficult. A new strategy

is described here for solving such global minimization problems deterministically. The methodology

is based on interval analysis, and provides a mathematical and computational guarantee that the

molecular structure with the global minimum potential energy will be found. The technique is

demonstrated using two sets of example problems. The first set involves a relatively simple potential

model, and problems with up to 40 atoms. The second set involves a more realistic potential energy

function, representative of those in current use, and problems with up to eleven atoms.
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1 Introduction

The search for the global minimum of a molecular potential energy surface (PES) is one of

the most challenging problems in computational chemistry and applied mathematics. For a given

molecule, there are typically many possible conformational geometries (structures). The conforma-

tion corresponding to the global minimum of the PES is of particular importance since it dictates

both the physical and chemical properties of the molecule in the great majority of cases. The ex-

istence of a very large number of local minima, the number of which often increases exponentially

with the size of the molecule, makes the global minimization problem extremely difficult.

Traditional local optimization methods, such as gradient-based search algorithms, will converge

only to local minima. While brute force multistart approaches using local methods may be used,

this is often impractical due to the large number of local minima that exist, and, moreover, there is

no guarantee that the global minimum will be found. Thus, a large number of alternative methods

have been proposed for finding the global minimum of the PES. Most of these methods can be

categorized as stochastic methods. Stochastic approaches rely on probabilistic methods to find the

global optimum. Since random elements are involved, there are no theoretical guarantees that these

methods will always find the global solution. Methods in this category include genetic algorithms,1

simulated annealing,2 Monte Carlo approaches,3 etc. Another main category of methods are the

smoothing or deformation methods. Here the shape of the PES is altered in an attempt to reduce

the number of local minima and make the problem easier. Methods in this category include the

diffusion equation method4 and distance scaling methods.5 Because of the difficulties involved in

reversing the deformation to recapture the true global minimum, these methods also provide no

guarantee that the global minimum of the original PES will be found. A final main category of
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methods are those that are truly deterministic. Unlike other methods, the deterministic methods6

can offer some level of guarantee that the global minimum will be found. In this category are the

α-BB algorithm7,8 and the interval approach recently given by Lavor.9 Both of these techniques

employ a branch-and-bound strategy that effectively searches the entire conformational space in

order to find the global solution. For a survey of these and other approaches, a number of good

reviews are available.10–14

The key step in each iteration of a branch-and-bound method is to determine a lower bound on

the potential energy over some subdomain of the search space. This lower bound is then compared

to a known upper bound on the global minimum of the PES, a bound that can be obtained and

updated simply by function evaluations or by the use of local minimization techniques. If the

lower bound on the potential energy over the current subdomain is greater than the known upper

bound on the global minimum, this proves that the global minimum cannot be in the current

subdomain and so it need not be further searched. Otherwise, if the lower bound on the current

subdomain is less than the known upper bound, then the current subdomain is partitioned into

smaller subdomains over which tighter lower bounds can be generated. The efficiency of a branch-

and-bound method depends on a number of factors, including how quickly a good upper bound can

be identified and how tight the lower bounds are. In the α-BB algorithm, convex underestimating

functions are used to obtain the lower bounds on the potential energy. However, whether or not

these are valid bounds depends on the proper choice of a parameter (α). Methods exist,15,16 based

on an interval representation of the Hessian matrix, that can be used to guarantee a proper value of

α. However, these methods are computationally expensive and typically have not been used in the

context of optimizing a PES. The recent method of Lavor9 uses interval arithmetic to obtain the

lower bounds on the potential energy. This approach provides a mathematical and computational
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guarantee that the lower bounds are valid, but is still quite expensive computationally.

We describe here a new methodology for the deterministic global minimization of a potential

energy surface. Like Lavor’s method,9 it is based on interval mathematics. However, the use of

an interval-Newton/generalized-bisection (IN/GB) strategy for pruning subdomains, and of Taylor

models for bounding the potential energy, makes this new method orders of magnitude more efficient

than the method of Lavor.9 This is demonstrated using the molecular structure problems considered

by Lavor,9 as well as with an additional group of problems. The second group of problems involves

a more realistic potential energy function, representative of those in current use, and demonstrates

the direct applicability of the new methodology in computational chemistry.

In the next section we provide a brief background in interval analysis, and in Section 3 we

give details of the new methodology including the interval-Newton technique and some recent

improvements in it, and the use of Taylor models. Examples and performance results are then

presented in Section 4.

2 Interval analysis

A real interval X is defined as the set of real numbers lying between (and including) given

upper and lower bounds; that is, X =
[

X,X
]

=
{

x ∈ < | X ≤ x ≤ X
}

. Here an underline is used

to indicate the lower bound of an interval and an overline is used to indicate the upper bound. A

real interval vector X = (X1, X2, ..., Xn)T has n real interval components and can be interpreted

geometrically as an n-dimensional rectangle or box. Note that in this context uppercase quantities

are intervals, and lowercase quantities or uppercase quantities with underline or overline are real

numbers.

Basic arithmetic operations with intervals are defined by X op Y = {x op y | x ∈ X, y ∈ Y },
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where op = {+,−,×,÷}. Interval versions of the elementary functions can be similarly defined.

It should be emphasized that, when machine computations with interval arithmetic operations

are done, as in the procedures outlined below, the endpoints of an interval are computed with a

directed (outward) rounding. That is, the lower endpoint is rounded down to the next machine-

representable number and the upper endpoint is rounded up to the next machine-representable

number. In this way, through the use of interval arithmetic, as opposed to floating-point arithmetic,

any potential rounding error problems are avoided. Several good introductions to interval analysis,

as well as interval arithmetic and other aspects of computing with intervals, are available.17–20

Implementations of interval arithmetic and elementary functions are also readily available, and

recent compilers from Sun Microsystems directly support interval arithmetic and an interval data

type.

For an arbitrary function f(x), the interval extension F (X) encloses all possible values of f(x)

for x ∈ X ; that is, it encloses the range of f(x) over X. It is often computed by substituting the

given interval X into the function f(x) and then evaluating the function using interval arithmetic.

This so-called “natural” interval extension is often wider than the actual range of function values,

though it always includes the actual range. For example, the natural interval extension of f(x) =

x/(x − 1) over the interval X = [2, 3] is F ([2, 3]) = [2, 3]/([2, 3] − 1) = [2, 3]/[1, 2] = [1, 3], while

the true function range over this interval is [1.5, 2]. This overestimation of the function range

is due to the “dependency” problem, which may arise when a variable occurs more than once

in a function expression. While a variable may take on any value within its interval, it must

take on the same value each time it occurs in an expression. However, this type of dependency

is not recognized when the natural interval extension is computed. In effect, when the natural

interval extension is used, the range computed for the function is the range that would occur if
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each instance of a particular variable were allowed to take on a different value in its interval range.

For the case in which f(x) is a single-use expression, that is, an expression in which each variable

occurs only once, natural interval arithmetic will always yield the true function range. For example,

rearrangement of the function expression used above gives f(x) = x/(x − 1) = 1 + 1/(x − 1), and

now F ([2, 3]) = 1 + 1/([2, 3] − 1) = 1 + 1/[1, 2] = 1 + [0.5, 1] = [1.5, 2], the true range. For cases

in which such rearrangements are not possible, there are a variety of other approaches that can be

used to try to tighten interval extensions,17–20 including the use of Taylor models, as described as

part of the next section.

3 Methodology

Of particular interest here is the interval-Newton method. For the unconstrained minimization

of φ(x), this technique provides the capability to find tight enclosures of all global minimizers in

some specified initial interval X (0), and to do so with mathematical and computational certainty. An

outline of the interval-Newton methodology is given here. More details are available elsewhere.18,19

It should be emphasized that this technique is not equivalent to simply implementing the routine

“point” Newton method in interval arithmetic.

The interval-Newton method is basically an equation-solving method. In the context of uncon-

strained minimization, it is used to seek solutions of f(x) = ∇φ(x) = 0, where ∇φ(x) indicates

the gradient of the objective function φ(x). Given some initial interval, sufficiently large that the

global minimum sought is in its interior, the interval-Newton algorithm is applied to a sequence

of subintervals. For a subinterval X (k) in the sequence, the first step is the function (gradient)

range test. An interval extension F (X (k)) of the function f(x) = ∇φ(x) is calculated. If there is

any component of the interval extension F (X (k)) that does not include zero, then no solution of

5



f(x) = 0, that is, no stationary point of φ(x), can exist in this interval. This interval can then

be discarded since the global minimum must be one of the stationary points. The next subinterval

in the sequence may then be considered. Otherwise, testing of X (k) continues. During this step,

other interval-based techniques (e.g., constraint propagation) may also be applied to try to shrink

X(k) before proceeding. Note that we have assumed that the initial interval X (0) is sufficiently

large that the global minimum will not be on its boundary, since an extremum on the boundary is

in general not a stationary point. For situations in which such an assumption cannot be made, the

“peeling” process described by Kearfott,19 in which interval-Newton is applied to each of the lower

dimensional subspaces that constitute the boundary of X (0), can be used.

The next step is the objective range test. An interval extension Φ(X (k)), containing the range

of φ(x) over X(k) is computed. If the lower bound of Φ(X (k)) is greater than a known upper bound

φ̂ on the global minimum (the initialization of this upper bound is discussed below), then X (k) can

be discarded since it cannot contain the global minimum and need not be further tested. To obtain

Φ(X(k)), the natural interval extension can be used, as done by Lavor,9 but other techniques can

also be employed. We will also compute Φ(X (k)) by the first order Taylor expansion of φ(x),18

Φ(X(k)) = φ(x
(k)
0 ) + (X (k) − x

(k)
0 )T F (X(k)), (1)

where x
(k)
0 is a real point inside the interval X (k). This often provides tighter bounds than the

natural interval extension, especially when X (k) is small, and can also be used in other ways to

reduce or eliminate the current interval, as explained below. The final determination of Φ(X (k))

is then done by taking the intersection of the natural interval extension and the interval extension

computed from the Taylor expansion.

The tightness of the bounds provided by the interval extension in Eq. (1) depends on the choice
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of the real point x
(k)
0 . Thus it is possible to manipulate x

(k)
0 such that the lower bound of Φ(X (k))

is maximized. To determine exactly the optimal x
(k)
0 point would require optimizing an expression

involving the function φ(x). Since this is impractical in this context, we will neglect the variation

of φ(x) in Eq. (1), and thus seek a point for x
(k)
0 such that the lower bound on just the second

term on the right hand side of Eq. (1) is maximized. That is, to choose x
(k)
0 we will solve

max
x

(k)
0 ∈X

(k)

(X (k) − x
(k)
0 )T F (X (k)). (2)

The objective function in Eq. (2) is a sum in which each term depends on only one component of

x
(k)
0 . Thus, the problem in Eq. (2) is equivalent to the series of single-variable problems

max
x
(k)
0i

∈X
(k)
i

(X
(k)
i − x

(k)
0i )Fi , i = 1, 2, . . . , n. (3)

The point x
(k)
0 can be now determined by solving the optimization problem (3), the solution to

which is

x
(k)
0i =

FiX
(k)
i − FiX

(k)
i

Fi − Fi

. (4)

While a point x
(k)
0 chosen this way will not be optimal, we expect that in general it will be an

improvement over just choosing x
(k)
0 arbitrarily.

If at this point, Φ(X (k)) < φ̂, and thus it has not been possible to discard X (k), there may

be a point x in X (k) for which φ(x) < φ̂, allowing us to update (reduce) φ̂, the upper bound on

the global minimum of φ. However, this is not known for certain (since it is likely that Φ(X (k))

overestimates the true range of φ over X (k)), and thus, to reduce computational overhead, we only

attempt an update of φ̂ if φ(x
(k)
0 ) < φ̂, which indicates with certainty that there is a point in X (k)

that can be used to update φ̂. So, if φ(x
(k)
0 ) < φ̂, a local optimization routine starting at x

(k)
0 is used

to find a local minimum, which then provides an updated (smaller) φ̂, i.e., a better upper bound
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on the global minimum. For this purpose, we use the bound-constrained quasi-Newton method

L-BFGS-B.21

The updated value of φ̂ can then be used, together with the Taylor model for the interval

extension of φ, to delete part of the current subinterval, or even eliminate it entirely, since only the

part of X(k) (if any) for which the condition Φ(X (k)) − φ̂ ≤ 0 is satisfied can contain the global

minimum and thus needs to be kept.

For some j ∈ {1, 2, . . . , n}, let U = [a, b] = φ(x
(k)
0 ) − φ̂ +

n
∑

i=1,i6=j

(X
(k)
i − x

(k)
0i )Fi(X

(k)), V =

[c, d] = Fj(X
(k)), and T = X

(k)
j − x

(k)
0j . The part of X

(k)
j containing points x

(k)
j such that

U + V T ≤ 0, (5)

needs to be retained. The set T that satisfies Eq. (5), can be determined to be

T =
























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



























































































[−a/d,∞] if a ≤ 0 and d < 0

[−a/c,∞] if a > 0, c < 0, and d ≤ 0

[−∞,∞] if a ≤ 0 and c ≤ d ≤ 0

[−∞,−a/d] ∪ [−a/c,∞] if a > 0 and c < 0 < d

[−∞,−a/c] if a ≤ 0 and c > 0

[∞,−a/d] if a > 0, c ≥ 0, and d > 0

∅ if a > 0 and c = d = 0

. (6)

Thus, beginning with j = 1, T is computed and X
(k)
j is replaced by X

(k)
j ∩ (T +x

(k)
j ). If X

(k)
j is now

empty, the subinterval X (k) can be discarded. Otherwise, the improved X
(k)
j is used in computing

U = [a, b] and V = [c, d] to find improvements of subsequent components of X (k). This procedure

proceeds component by component until all components of X (k) have been updated or X (k) has
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been discarded.

If X (k) has not been eliminated in the objective range test, then the next step is the interval-

Newton test. The linear interval equation system

F ′(X (k))(N (k) − x̃(k)) = −f(x̃(k)), (7)

is solved for a new interval N (k), where F ′(X(k)) is an interval extension of the Jacobian of f(x)

(i.e., an interval extension of the Hessian of φ(x)), and x̃(k) is an arbitrary point in X (k). It has been

shown18–20 that any root (stationary point of φ(x)) contained in X (k) is also contained in the image

N (k). This implies that if the intersection between X (k) and N (k) is empty, then no root exists in

X(k), and also suggests the iteration scheme X (k+1) = X(k) ∩ N (k). In addition, it has also been

shown18–20 that, if N (k) ⊂ X(k), then there is a unique root contained in X (k) and thus in N (k).

Thus, after computation of N (k) from Eq. (7), there are three possibilities: (1) X (k) ∩ N (k) = ∅,

meaning there is no root in the current interval X (k) and it can be discarded; (2) N (k) ⊂ X(k),

meaning that there is exactly one root in the current interval X (k); (3) neither of the above, meaning

that no conclusion can be drawn. In the last case, if X (k) ∩N (k) is sufficiently smaller than X (k),

then the interval-Newton test can be reapplied to the resulting intersection, X (k+1) = X(k)∩N (k).

Otherwise, the intersection X (k) ∩ N (k) is bisected, and the resulting two subintervals are added

to the sequence (stack) of subintervals to be tested. If an interval containing a unique root has

been identified, then this root can be tightly enclosed by continuing the interval-Newton iteration,

which will converge quadratically to a desired tolerance (on the enclosure diameter).

Clearly, the solution of the linear interval system given by Eq. (7) is essential to this approach.

To see the issues involved in solving such a system, consider the general linear interval system

Az = B, where the matrix A and the right-hand-side vector B are interval-valued. The solution
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set S of this system is defined by S =
{

z

∣

∣

∣
Ãz = b, Ã ∈ A, b ∈ B

}

. However, in general this set

is not an interval and may have a very complex, polygonal geometry. Thus to “solve” the linear

interval system, one instead seeks an interval Z containing S. Computing the interval hull (the

tightest interval containing S) is NP-hard,22 but there are several methods for determining an

interval Z that contains but overestimates S. Various interval-Newton methods differ in how they

solve Eq. (7) for N (k) and thus in the tightness with which the solution set is enclosed. By obtaining

bounds that are as tight as possible, the overall performance of the interval-Newton approach can

be improved, since with a smaller N (k) the volume of X (k) ∩ N (k) is reduced, and it is also more

likely that either X (k) ∩ N (k) = ∅ or N (k) ⊂ X (k) will be satisfied. Thus, intervals that may

contain solutions of the nonlinear system are more quickly contracted, and intervals that contain

no solution or that contain a unique solution may be more quickly identified, all of which leads to

a likely reduction in the number of bisections needed.

Frequently, N (k) is computed component-wise using an interval Gauss-Seidel approach, pre-

conditioned with an inverse-midpoint matrix. Though the inverse-midpoint preconditioner is a

good general-purpose preconditioner, it is not always the most effective approach.19 Recently, a

hybrid preconditioning approach (HP/RP), which combines a simple pivoting preconditioner (and

a method for selecting the real point x̃(k)) with the standard inverse-midpoint scheme, has been

described by Gau and Stadtherr23 and shown to achieve substantially more efficient computational

performance than the inverse-midpoint preconditioner alone, in some cases by multiple orders of

magnitude. However, it still cannot yield the tightest enclosure of the solution set, which, as noted

above, is in general an NP-hard problem. Lin and Stadtherr24,25 have recently suggested a strategy

(LISS LP) based on linear programming (LP) for solving the linear interval system, Eq. (7), arising

in the context of interval-Newton methods. Using this approach, exact component-wise bounds on
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the solution set can be calculated, while avoiding exponential time complexity. In numerical exper-

iments,24,25 LISS LP has been shown to achieve further computational performance improvements

compared with HP/RP.

This approach, as outlined above, is referred to as an interval-Newton/generalized-bisection

(IN/GB) method. At termination, when the subintervals in the sequence have all been tested,

all global minimizers will have been tightly enclosed. It can be regarded as a type of branch-

and-bound scheme on a binary tree. Although the interval-Newton test is effective in reducing and

eliminating subdomains from the search space, it is also relatively expensive computationally. Thus,

in considering the overall computation time, one must consider the trade-off between the expense

of the interval-Newton step and the reduction of the search space that it provides. That is, in some

problems, use of the interval-Newton step may drastically reduce the overall computation time,

but, in other problems, even though it reduces the number of subdomains that must be considered,

use of the interval-Newton test may actually increase the overall computation time. This trade-off

will be studied in the examples presented below.

As with any type of procedure incorporating branch-and-bound, an important issue in imple-

menting the methodology described above is how to initialize φ̂, the upper bound on the global

minimum. There are many ways in which this can be done, and clearly it is desirable to find a

φ̂ that is as small as possible (i.e., tightest possible upper bound). To initialize φ̂ for the type of

problem studied here, in which there are an extremely large number of local minima, we run n2

local minimizations (n is the number of variables) using a BFGS algorithm from randomly chosen

starting points, and then choose the smallest value of φ found to be the initial φ̂.
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4 Examples: Optimization of molecular structures

4.1 Example 1

This is a simplified molecular model studied by Lavor.9 It was chosen for use as an example here

so that we can make direct comparisons between the performance of the methodology presented

above and the interval-based method given by Lavor.9 Following Lavor, we consider a linear chain

of N “beads” (united atoms) centered at x1,x2, . . . ,xN in a three dimensional space. The total

potential energy can be represented as

V = V1 + V2 + V3 + V4, (8)

where V1 is the contribution due to bond stretching for every pair of consecutive beads,

V1 =
∑

(i,j)∈M1

c
(1)
ij (rij − r0

ij)
2, (9)

with c
(1)
ij the bond stretching force constant and r0

ij the equilibrium bond length; V2 is the contri-

bution due to bond angle bending over every three consecutive beads,

V2 =
∑

(i,j)∈M2

c
(2)
ij (θij − θ0

ij)
2, (10)

with c
(2)
ij the angle bending force constant and θ0

ij the equilibrium bond angle; V3 is the contribution

due to the dihedral angle over every four consecutive beads,

V3 =
∑

(i,j)∈M3

c
(3)
ij (1 + cos(3ωij − ω0

ij)), (11)

with c
(3)
ij the torsion force constant and ω0

ij the equilibrium angle; and V4 is the potential that

characterizes the two-body interactions between every pair of beads separated by more than three

covalent bonds along the chain. Here only interactions between pairs separated by exactly three
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covalent bonds are considered, and the model used is

V4 =
∑

(i,j)∈M3

(−1)i

rij

, (12)

with rij the distance separating beads i and j. In the expressions above, the notation Mi, i = 1, 2, 3,

indicates the sets of pairs of beads separated by i covalent bonds.

In this problem, all covalent bond lengths and bond angles are fixed at the equilibrium values

r0
ij = 1.526Å and θ0

ij = 1.91 (characteristic of a hydrocarbon chain). Also the values c
(3)
ij = 1 and

ω0
ij = 0 are set. The potential energy function then becomes

V = V3 + V4 =
∑

(i,j)∈M3

[1 + cos(3ωij)] +
∑

(i,j)∈M3

(−1)i

rij

, (13)

where rij can be expressed as a function of dihedral angle using9

rij =
√

10.60099896 − 4.14720682 cos(ωij) (i, j) ∈ M3. (14)

The problem is then to find the global minimum of this potential function, which is now a function

only of the dihedral angles ωij, (i, j) ∈ M3. The initial intervals for the search are set as ωij ∈ [0, 5]

for all (i, j) ∈ M3, as Lavor9 also did. The global minimizer of Eq. (13) can be determined

analytically26 for the N -atom case, and is the alternating sequence of dihedral angles ωi,i+3 =

1.039195303 and ωi+1,i+4 = π, i = 1, 3, 5, . . . , N . This simplified molecular model is a very good

test problem thanks to the known global minimum and the huge number (2N−3) of local minima

that are present.

The interval-Newton methodology described above was successfully applied to solve a set of

problems with different chain length N , with the correct global minimizer found in each case.

Table 1 shows the global minimum energy value found, along with computational performance

results on an Intel Pentium 4 3.2Ghz machine. In order to study the trade-offs involved in using
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the interval-Newton (I-N) test, results are shown both with the I-N test and with the I-N test

turned off. Clearly, use of the interval-Newton test results in a dramatic improvement in overall

computation time for this problem. The largest problem tested was N = 40, for which it took

about 3499 seconds to find the global minimum. In Lavor’s study,9 in which the methodology

used incorporated only the function (gradient) range test and the objective range test with natural

interval extension, the largest problem solved was N = 25, which required 34657 seconds CPU

time on a Pentium III 700MHz machine. Using our methodology, with the interval-Newton test,

8.3 seconds was required to solve this problem on a Intel Pentium 4 3.2GHz machine. Based on

SPEC benchmark results,27 a Pentium 4 3.2GHz machine is about 6 times faster than a Pentium

III 700Mhz machine. Thus, the new methodology described here appears to be multiple orders of

magnitude more efficient than the method of Lavor.9 The greatly improved performance can be

attributed to the use of the interval-Newton procedure, together with the use of a Taylor model for

bounding the objective function.

4.2 Example 2

This second set of example problems involves a much more complex and realistic model28 of

n-alkanes than considered by Lavor.9 The model employs potential functions commonly used in

computational chemistry today, and thus allows us to explore the applicability of the interval

methodology in this context. The n-alkane molecule is assumed to consist of the appropriate

number of united atoms, representing both the methyl and methylene groups along the backbone

of the alkane molecule. Following Maginn et al.,28 bond lengths are assumed rigid and fixed at the

equilibrium value r0
ij = 1.53Å, and bond angles between three adjacent united atoms are fixed to

the equilibrium value, θ0 = 112◦.
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For alkanes, the torsion (dihedral) potential, which governs rotation around nonterminal carbon-

carbon bonds, is often described29 using the Ryckaert-Bellemans (RB) potential,30 a six-term ex-

pansion vt(ωi) in the cosine of each dihedral angle,

V3 =

N
∑

i=4

vt(ωi) =

N
∑

i=4

5
∑

j=0

Cj(cos ωi)
j , (15)

where N is the number of atoms. Here, the notation used is ωi = ωi−3,i−2,i−1,i, the dihedral

angle involving atoms i − 3, i − 2, i − 1, and i. The RB potential includes, as a special case

(C4 = C5 = 0), the popular OPLS dihedral potential,29,31 which is often expressed in terms of a

Fourier series equivalent to Eq. (15). In other popular force fields,32 a less complex expression for

the torsion potential, involving perhaps only a single cosine term, such as Eq. (11), may be used.

For this example, we will use the full RB potential as given in Eq. (15).

For n-alkane molecules longer than butane, additional intramolecular potential terms are nec-

essary to represent the van der Waals interactions of atoms separated by more than three carbon-

carbon bonds. For these nonpolar molecules, Coulombic interactions are treated as negligible. For

the van der Waals interactions, a standard Lennard-Jones 6-12 potential is used. This is given by

V4 =
N−4
∑

i=1

N
∑

j=i+4

vLJ(rij) =
N−4
∑

i=1

N
∑

j=i+4

4εij

[

(

σij

rij

)12

−

(

σij

rij

)6
]

, (16)

where rij is the distance between two interacting atoms i and j, and is a function of the Cartesian

coordinates of the atoms in the molecule,

r2
ij = (xj − xi)

2 + (yj − yi)
2 + (zj − zi)

2. (17)

Thompson33 has provided an expression for the Cartesian coordinates of an atom as functions of

bond lengths, covalent bond angles and dihedral angles. If the first three atoms in the chain are rep-

resented by the coordinates, (0, 0, 0)T , (−r2, 0, 0)
T , and (r3 cos(θ3)− r2, r3 sin(θ3), 0)

T , respectively,
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then, for 4 ≤ k ≤ N , the coordinates of atom k in an N -atom acyclic chain are
























xk

yk

zk

1

























= B2B3 · · ·Bk

























0

0

0

1

























, (18)

where B2, B3, and Bk are the 4 × 4 transformation matrices

B2 =

























−1 0 0 −r2

0 1 0 0

0 0 −1 0

0 0 0 1

























, (19)

B3 =

























− cos(θ3) − sin(θ3) 0 −r3 cos(θ3)

sin(θ3) − cos(θ3) 0 −r3 sin(θ3)

0 0 1 0

0 0 0 1

























, (20)

Bk =

























− cos(θk) − sin(θk) 0 −rk cos(θk)

sin(θk) cos(ωk) − cos(θk) cos(ωk) − sin(ωk) −rk sin(θk) cos(ωk)

sin(θk) sin(ωk) − cos(θk) sin(ωk) cos(ωk) −rk sin(θk) sin(ωk)

0 0 0 1

























. (21)

Here the notation used for the bond lengths is rk = rk−1,k, the bond length involving atoms k − 1

and k, and for the bond angles, θk = θk−2,k−1,k, the bond angle involving atoms k − 2, k − 1, and

k. As noted above, these bond lengths and angles have been fixed to equilibrium values. Thus, the

total potential

V = V3 + V4, (22)
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is a function only of the dihedral angles, ωi, i = 4, . . . , N . The problem is then to find the global

minimum of Eq. (22) with respect to these dihedral angles. The potential energy function used in

this problem is a Class I additive function, in a form that is commonly in use today.32

All parameters in the potential function are taken from Maginn et al.28 and are summarized

in Table 2. Note that, in order to conform to the common convention that the dihedral angle is π

in the trans configuration, the signs of some parameters in the torsion energy function, namely C1,

C3, and C5, have been changed (Maginn et al.28 took the dihedral angle to be zero in the trans

configuration). Methyl and methylene groups are modeled with identical parameters.

The interval methodology will be applied to determine the global minimum in the potential

energy function described above. To achieve tighter interval extensions of the potential function and

its derivatives, and thus improve the performance of the methodology, the mathematical properties

of the potential function are exploited. Consider first the torsion potential V3, as given by Eq.

(15). Each term is given by an expression of the form

vt(ω) =

5
∑

j=0

Cj(cos ω)j , (23)

in which the dihedral angle ω appears five times. In this case, when interval arithmetic is applied

to compute the interval extension, overestimation of the range will occur due to the multiple

occurrence of ω. However, the properties of the torsion potential can be exploited to avoid this

problem, and to compute exact (within roundout) bounds on the range of the torsion potential.

Figure 1 shows the torsion potential vt(ω) between ω = 0 and ω = 2π. There exist four maxima,

at 0, max1 ≈ 2π/3, max2 ≈ 4π/3 and 2π, and three minima at min1 ≈ π/3, π and min2 ≈ 5π/3.

Note that these local minima and maxima are intended30 to be exactly π/3, 2π/3, etc. However,

the actual locations of these stationary points are slightly different since the model parameters

17



represent roundings; for example, min1 ≈ 1.04704374 but π/3 ≈ 1.04719755. In this work, the

exact values (very narrow interval enclosures) of the extrema can be easily obtained by the IN/GB

method to locate all stationary points of the torsion potential.

For a given dihedral angle interval Ω = [Ω,Ω], the potentials at the end points, vt(Ω) and vt(Ω)

are first computed. Then the interval extension of the potential vt(ω), namely Vt(Ω) = [Vt, Vt], can

be obtained from

Vt =































































vt(π) Ω ≤ π ≤ Ω

min(vt(min1), vt(Ω), vt(Ω)) Ω ≤ min1 ≤ Ω < π

min(vt(min2), vt(Ω), vt(Ω)) π < Ω ≤ min2 ≤ Ω

min(vt(Ω), vt(Ω)) otherwise

, (24)

and

Vt =











































max(vt(max1), vt(Ω), vt(Ω)) Ω ≤ max1 ≤ Ω

max(vt(max2), vt(Ω), vt(Ω)) Ω ≤ max2 ≤ Ω

max(vt(Ω), vt(Ω)) otherwise

. (25)

Note that in implementing Eqs. (24) and (25) interval arithmetic is used to guarantee computa-

tionally rigorous bounds. For example, vt(Ω) and vt(Ω) are computed using interval arithmetic.

Each term vt(ωi) in the total torsion potential V3 can be bounded in this way, resulting in the exact

(within the roundout of interval arithmetic) interval extension of the torsion potential. A similar

procedure has also been used to calculate the exact interval extensions of the first and second order

derivatives of vt(ω).

The dependency problem of interval arithmetic can also be avoided in computing the interval

extension of the Lennard-Jones terms in the expression for V4, as given by Eq. (16). This is done34
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by rearranging vLJ(rij) into a single-use expression:

vLJ(rij) = 4εij

[

(

σij

rij

)12

−

(

σij

rij

)6
]

= 4εij

[

(

σij

rij

)6

−
1

2

]2

− εij. (26)

For a single-use expression, the natural interval extension computed using interval arithmetic

will provide exact bounds. Exact interval extensions of the first and second order derivatives

of the Lennard-Jones potential vLJ(rij) can also be determined, as explained in detail by Lin and

Stadtherr.34

Two versions of the interval methodology were applied to determine the global minimum in

the potential energy function described above, using initial intervals of [0, 2π] for each dihedral

angle. In the first version, all test steps, including the function (gradient) range test, the objective

range test with Taylor model, and the interval-Newton test, were used. In the second version,

the interval-Newton test is turned off. Using these two different versions allows us to study the

trade-offs involved in the use of the interval-Newton step, as described above.

A set of global optimization problems with different numbers of carbon atoms, from N = 4

(butane) to N = 11 (undecane), was used. In each case, and with both versions of the methodology,

the global optimally dihedral angles were found to be ωi = π, i = 4, . . . , N . This is consistent with

known results for n-alkanes, obtained using various other potential models and nondeterministic

optimization methods (only for longer chains will the molecule fold back).

Computational performance results on an Intel Pentium 4 3.2GHz machine are summarized in

Table 3, which gives both the CPU time and the number of subintervals that needed to be tested.

As can be seen, the number of subintervals is reduced when the interval-Newton test is turned

on, but only by a relatively small amount, and with the percent reduction becoming smaller with

increasing number of atoms. Thus, on these problems, unlike the case of Example 1, the interval-
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Newton test provides little benefit, and the overhead in implementing it drags down the overall

performance (CPU time) for N ≥ 7.

The increase in CPU time with problem size seen in Table 3, as well as in Table 1, clearly

reflects the NP-hard character of deterministic global optimization. Nevertheless, even for the

realistically complex potential function considered here, there are a large number of interesting

molecular structure problems that fall within the size range of the problems solved deterministically.

It should also be noted that the point at which the methodology will become ineffective due to

excessive computation time requirements will vary from problem to problem. In other types of

applications, this methodology has been used to solve problems with over 200 degrees of freedom.35

5 Concluding Remarks

We have demonstrated here a new methodology for reliably predicting molecular structures from

a potential energy model. The technique is based on interval analysis, in particular an interval-

Newton/generalized-bisection algorithm. The approach provides a mathematical and computational

guarantee that the molecular conformation with the global minimum potential energy will be found.

Using the relatively simple potential model employed by Lavor,9 problems with up to 40 atoms

were efficiently solved. This represents an improvement of multiple orders of magnitude over the

interval-based method of Lavor.9 Using a more complex model of n-alkanes, representative of

potential functions commonly used in computational chemistry today, problems with up to 11

atoms were solved deterministically, demonstrating the applicability of the interval methodology in

this context.
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Table 1: Computational results for Example 1

CPU time (s)

N Global Minimum with I-N test without I-N test

5 -0.08224 0.0009 0.003

10 -0.58939 0.02 0.05

15 -0.49342 0.16 0.55

20 -1.00057 1.53 9.89

25 -0.90460 8.31 168.5

30 -1.41175 76.02 > 3600

35 -1.31579 396.2 -

40 -1.82294 3499.5 -

25



Table 2: Potential energy model parameters for Example 2

Parameter Value

εij 72.0 K

σij 3.923 Å

C0 1116 K

C1 -1462 K

C2 -1578 K

C3 368 K

C4 3156 K

C5 3788 K
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Table 3: Computational results for Example 2

CPU time (s) Subintervals tested

N Global Minimum (K) with I-N test without I-N test with I-N test without I-N test

4 0.000000 0.0004 0.0004 4 10

5 -48.38994 0.004 0.004 19 29

6 -111.25148 0.02 0.02 58 80

7 -179.41429 0.13 0.08 164 204

8 -249.64596 1.82 0.79 1426 1508

9 -320.83597 20.7 8.11 10502 10626

10 -392.49163 517.0 182.6 173287 173492

11 -464.39913 - 6104.3 - 4285802
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Figure 1: The torsion potential function vt(ω) used in Example 2 (six-term expansion in the cosine

of the dihedral angle ω)
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