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Abstract

The diffusion of a sorbate molecule in a zeolite can be studied using transition-state theory. In this

application, and other applications of transition-state theory, finding all local minima and saddle

points of the potential energy surface is a critical computational step. A new strategy is described

here for locating stationary points on a potential energy surface. The methodology is based on

interval analysis, and provides a mathematical and computational guarantee that all stationary

points will be found. The technique is demonstrated using potential energy surfaces arising in the

use of transition-state theory to study the diffusion of three sorbates, xenon, methylene, and sulfur

hexafluoride, at infinite dilution in silicalite.
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I. INTRODUCTION

Transition-state theory1 is a well-established methodology which, by providing an ap-

proach for computing the kinetics of infrequent events, is useful in the study of numer-

ous physical systems. Classically, it assumes that there exists a hypersurface in phase

space which divides the space into a reactant region and a product region.2 Although the

theory was originally for interpretation of chemical reaction rates, it can be amended for

non-reacting systems, including desorption/adsorption and diffusion processes in which no

chemical bonds are broken or made. For a detailed background in transition-state theory,

the reader is referred to the excellent reviews of Truhlar et al.3,4

Of particular interest here is the problem of computing the diffusivity of a sorbate

molecule in a zeolite. This can be done using the methodology of transition-state the-

ory, as described by June et al.5 It is assumed that diffusive motion of the sorbate molecules

through the zeolite occurs by a series of uncorrelated hops between potential minima in

the zeolite lattice. A sorption state or site is constructed around each minimum of the

potential energy hypersurface. A first order rate constant, kij, is then associated with the

rate of transition between a given pair of neighboring sites, i and j. Any such pair of sites

is then assumed to be separated by a dividing surface on which a saddle point of the po-

tential energy hypersurface is located. The saddle point can be viewed as the transition

state between sites, and a couple of steepest decent paths from the saddle point connect the

minima associated with the i and j sites. After rate constants have been determined for

all possible transitions between the sorption sites, a continuous-time/discrete-space Monte

Carlo calculation can then be used to determine the self-diffusivity of the sorbate molecules.

Obviously, in this application, and in other applications of transition-state theory, finding
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all local minima and saddle points of the potential energy surface, V, is critical. We describe

here a new approach, based on interval mathematics, for finding all stationary points of a

potential energy surface, and apply it to three sorbate-zeolite systems.

Stationary points satisfy the condition g = ∇V = 0; that is, at a stationary point

the gradient of the potential energy surface is zero. Using the eigenvalues of H = ∇2V,

the Hessian of the potential energy surface, stationary points can be classified into local

minima, local maxima, and saddle points (of order determined by the number of negative

eigenvalues). There are a number of methods for locating stationary points. A Newton or

quasi-Newton method, applied to solve the nonlinear equation system ∇V = 0, will yield a

solution whenever the initial guess is sufficiently close to a stationary point. This method can

be used in an exhaustive search, using many different initial guesses, to locate stationary

points. The set of initial guesses to use might be determined by the user (intuitively or

arbitrarily) or by some type of stochastic multistart approach. Another popular approach is

the use of eigenmode-following methods, as done, for example, by Tsai and Jordan.6 These

methods can be regarded as variations of Newton’s method. In an eigenmode-following

algorithm, the Newton step is modified by shifting some of the eigenvalues of the Hessian

(from positive to negative or vice versa). By selection of the shift parameters, one can

effectively find the desired type of stationary points. There are also a number of other

approaches, many involving some stochastic component, for finding stationary points.

In the context of sorbate-zeolite systems, June et al.5 use an approach in which minima

and saddle points are located separately. A three step process is employed in an exhaustive

search for minima. First, the volume of the search space (one asymmetric unit) is discretized

by a grid with a spacing of approximately 0.2Å, and the potential and gradient vector are

tabulated on the grid. Second, each cube formed by a set of nearest-neighbor grid nodes
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is scanned, and the three components of the gradient vector on the eight vertices of the

cube checked for changes in sign. Finally, if all three components are found to change sign

on two or more vertices of the cube, a BFGS quasi-Newton minimization search algorithm

is initiated to locate a local minimum, using the coordinates of the center of the cube as

the initial guess. Two different algorithms are tried for determining the location of saddle

points. One searches for global minimum points in the function gTg, i.e. the sum of the

squares of the components of the gradient vector. The other algorithm, due to Baker,7

searches for saddle points directly from an initial point by maximizing the potential energy

along the eigenvector direction associated with the smallest eigenvalue and by minimizing

along directions associated with all other eigenvalues of the Hessian.

All the methods discussed above, however, have a major shortcoming, namely that they

provide no guarantee that all local minima and first order saddle points will actually be

found. One approach to resolving this difficulty is given by Westerberg and Floudas,8 who

transform the equation-solving problem ∇V = 0 into an equivalent optimization prob-

lem that has global minimizers corresponding to the solutions of the equation system (i.e.,

the stationary points of V). A deterministic global optimization algorithm, based on a

branch-and-bound strategy with convex underestimators, is then used to find these global

minimizers. Whether or not all stationary points are actually found depends on proper

choice of a parameter (alpha) used in obtaining the convex underestimators, and Wester-

berg and Floudas do not use a method that guarantees a proper choice. However, there

do exist techniques,9,10 based on an interval representation of the Hessian, that in principle

could be used to guarantee a proper value of alpha, though likely at considerable expense

computationally.

We describe here a new approach in which interval analysis is applied directly to the
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solution of ∇V = 0. This approach, based on an interval-Newton methodology, provides a

mathematical and computational guarantee that all stationary points of the potential energy

surface will be found (or, more precisely, enclosed within an arbitrarily small interval). In

the next section we provide a brief background in interval analysis and give details of the

interval-Newton methodology and some recent improvements in it. The potential energy

model for the sorbate-zeolite systems studied is described in Section III. Section IV then

presents the results of computational studies for three sorbates, xenon, methylene, and SF6,

in silicalite.

II. INTERVAL ANALYSIS

A real interval X is defined as the set of real numbers lying between (and including) given

upper and lower bounds; that is, X = [X, X] = {x ∈ < | X ≤ x ≤ X}. Here an underline is

used to indicate the lower bound of an interval and an overline is used to indicate the upper

bound. A real interval vector X = (X1, X2, . . . , Xn)T has n real interval components and

can be interpreted geometrically as an n-dimensional rectangle or box. Note that in this

context uppercase quantities are intervals, and lowercase quantities or uppercase quantities

with underline or overline are real numbers.

Basic arithmetic operations with intervals are defined by X op Y = {x op y | x ∈

X, y ∈ Y }, where op = {+,−,×,÷}. Interval versions of the elementary functions can

be similarly defined. It should be emphasized that, when machine computations with in-

terval arithmetic operations are done, as in the procedures outlined below, the endpoints

of an interval are computed with a directed (outward) rounding. That is, the lower end-

point is rounded down to the next machine-representable number and the upper endpoint

is rounded up to the next machine-representable number. In this way, through the use of
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interval, as opposed to floating-point arithmetic, any potential rounding error problems are

avoided. Several good introductions to interval analysis, as well as interval arithmetic and

other aspects of computing with intervals, are available.11–14 Implementations of interval

arithmetic and elementary functions are also readily available, and recent compilers from

Sun Microsystems directly support interval arithmetic and an interval data type.

For an arbitrary function f(x), the interval extension, F (X), encloses all values of f(x)

for x ∈ X; that is, it encloses the range of f(x) over X. It is often computed by substituting

the given interval X into the function f(x) and then evaluating the function using interval

arithmetic. This so-called “natural” interval extension is often wider than the actual range of

function values, though it always includes the actual range. For example, the natural interval

extension of f(x) = x/(x − 1) over the interval X = [2, 3] is F ([2, 3]) = [2, 3]/([2, 3] −

1) = [2, 3]/[1, 2] = [1, 3], while the true function range over this interval is [1.5, 2]. This

overestimation of the function range is due to the “dependency” problem, which may arise

when a variable occurs more than once in a function expression. While a variable may take

on any value within its interval, it must take on the same value each time it occurs in an

expression. However, this type of dependency is not recognized when the natural interval

extension is computed. In effect, when the natural interval extension is used, the range

computed for the function is the range that would occur if each instance of a particular

variable were allowed to take on a different value in its interval range. For the case in which

f(x) is a single-use expression, that is, an expression in which each variable occurs only

once, natural interval arithmetic will always yield the true function range. For example,

rearrangement of the function expression used above gives f(x) = x/(x−1) = 1+1/(x−1),

and now F ([2, 3]) = 1+1/([2, 3]−1) = 1+1/[1, 2] = 1+[0.5, 1] = [1.5, 2], the true range. For

cases in which such rearrangements are not possible, there are a variety of other approaches
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that can be used to try to tighten interval extensions.11–14

Of particular interest here is the interval-Newton method. Given an n × n nonlinear

equation system f(x) = 0 with a finite number of real roots in some initial interval, this

technique provides the capability to find tight enclosures of all the roots of the system

that lie within the given initial interval. An outline of the interval-Newton methodology is

given here. More details are available elsewhere.12,13,15 It should be emphasized that this

technique is not equivalent to simply implementing the routine “point” Newton method in

interval arithmetic.

Given some initial interval X (0), the interval-Newton algorithm is applied to a sequence

of subintervals. For a subinterval X (k) in the sequence, the first step is the function range

test. An interval extension F (X (k)) of the function f(x) is calculated. If there is any

component of the interval extension F (X (k)) that does not include zero, then the interval can

be discarded, since no solution of f(x) = 0 can exist in this interval. The next subinterval

in the sequence may then be considered. Otherwise, testing of X (k) continues. During this

step, other interval-based techniques (e.g., constraint propagation) may also be applied to

try to shrink X (k) before proceeding.

The next step is the interval-Newton test. The linear interval equation system

F ′(X (k))(N (k) − x(k)) = −f(x(k)), (1)

is solved for a new interval N (k), where F ′(X (k)) is an interval extension of the Jacobian of

f(x), and x(k) is an arbitrary point in X (k). It has been shown12–14 that any root contained

in X(k) is also contained in the image N (k). This implies that if the intersection between

X(k) and N (k) is empty, then no root exists in X (k), and also suggests the iteration scheme

X(k+1) = X (k) ∩ N (k). In addition, it has also been shown12–14 that, if N (k) ⊂ X (k), then

there is a unique root contained in X (k) and thus in N (k). Thus, after computation of N (k)
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from Eq. (1), there are three possibilities: (1) X (k) ∩ N (k) = ∅, meaning there is no root

in the current interval X (k) and it can be discarded; (2) N (k) ⊂ X (k), meaning that there

is exactly one root in the current interval X (k); (3) neither of the above, meaning that no

conclusion can be drawn. In the last case, if X (k)∩N (k) is sufficiently smaller than X (k), then

the interval-Newton test can be reapplied to the resulting intersection, X (k+1) = X (k)∩N (k).

Otherwise, the intersection X (k) ∩ N (k) is bisected, and the resulting two subintervals are

added to the sequence (stack) of subintervals to be tested. If an interval containing a unique

root has been identified, then this root can be tightly enclosed by continuing the interval-

Newton iteration, which will converge quadratically to a desired tolerance (on the enclosure

diameter).

This approach is referred to as an interval-Newton/generalized-bisection (IN/GB)

method. At termination, when the subintervals in the sequence have all been tested, ei-

ther all the real roots of f(x) = 0 have been tightly enclosed, or it is determined that no

root exists. Applied to nonlinear equation solving problems, this can be regarded as a type

of branch-and-prune scheme on a binary tree. It should be emphasized that the enclosure,

existence, and uniqueness properties discussed above, which are the basis of the IN/GB

method, can be derived without making any strong assumptions about the function f(x)

for which roots are sought. The function must have a finite number of roots over the search

interval of interest; however, no special properties such as convexity or monotonicity are

required, and f(x) may have transcendental terms.

Clearly, the solution of the linear interval system given by Eq. (1) is essential to this

approach. To see the issues involved in solving such a system, consider the general linear

interval system Az = B, where the matrix A and the right-hand-side vector B are interval-

valued. The solution set S of this system is defined by S =
{

z

∣

∣

∣
Ãz = b, Ã ∈ A, b ∈ B

}

.
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However, in general this set is not an interval and may have a very complex, polygonal

geometry. Thus to “solve” the linear interval system, one instead seeks an interval Z con-

taining S. Computing the interval hull (the tightest interval containing S) is NP-hard,16 but

there are several methods for determining an interval Z that contains but overestimates S.

Various interval-Newton methods differ in how they solve Eq. (1) for N (k) and thus in the

tightness with which the solution set is enclosed. By obtaining bounds that are as tight as

possible, the overall performance of the interval-Newton approach can be improved, since

with a smaller N (k) the volume of X (k) ∩ N (k) is reduced, and it is also more likely that

either X (k) ∩ N (k) = ∅ or N (k) ⊂ X (k) will be satisfied. Thus, intervals that may contain

solutions of the nonlinear system are more quickly contracted, and intervals that contain no

solution or that contain a unique solution may be more quickly identified, all of which leads

to a likely reduction in the number of bisections needed.

Frequently, N (k) is computed component-wise using an interval Gauss-Seidel approach,

preconditioned with an inverse-midpoint matrix. Though the inverse-midpoint precon-

ditioner is a good general-purpose preconditioner, it is not always the most effective

approach.12 Recently, a hybrid preconditioning approach (HP/RP), which combines a sim-

ple pivoting preconditioner with the standard inverse-midpoint scheme, has been described

by Gau and Stadtherr17 and shown to achieve substantially more efficient computational

performance than the inverse-midpoint preconditioner alone, in some cases by multiple or-

ders of magnitude. However, it still cannot yield the tightest enclosure of the solution set,

which, as noted above, is in general an NP-hard problem. Lin and Stadtherr18,19 have re-

cently suggested a strategy (LISS LP) based on linear programming (LP) for solving the

linear interval system, Eq. (1), arising in the context of interval-Newton methods. Using

this approach, exact component-wise bounds on the solution set can be calculated, while

9



avoiding exponential time complexity. In numerical experiments,18,19 LISS LP has been

shown to achieve further computational performance improvements compared with HP/RP.

The methodology used here is the LISS LP strategy for implementing the interval-Newton

approach.

III. POTENTIAL ENERGY MODEL REPRESENTATION

Zeolites are materials in which AlO4 and SiO4 tetrahedra are the building blocks of a

variety of complex porous structures characterized by interconnected cavities and channels

of molecular dimensions.20 Silicalite contains no aluminum and thus no cations; this has

made it a common and convenient choice as a model zeolite system. The crystal structure

of silicalite, well known from X-ray diffraction studies,21 forms a three-dimensional intercon-

nected pore network through which a sorbate molecule can diffuse. In this work, the phase

with orthorhombic symmetry is considered and a rigid lattice model, in which all silicon and

oxygen atoms in the zeolite framework are occupying fixed positions and there is perfect

crystallinity, is assumed. One spherical sorbate molecule (united atom) will be placed in the

lattice, corresponding to infinitely dilute diffusion. The system is comprised of 27 unit cells,

each of which is 20.07 × 19.92 × 13.42Å with 96 silicon atoms and 192 oxygen atoms.

All interactions between the sorbate and the oxygen atoms of the lattice are treated

atomistically with a truncated Lennard-Jones 6-12 potential. That is, for the interaction

between the sorbate and oxygen atom i the potential is given by

Vi =



















a
r12
i

− b
r6
i

ri < rcut

0 ri ≥ rcut,

(2)

where a is a repulsion parameter, b is an attraction parameter, rcut is the cutoff distance,
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and ri is the distance between the sorbate and oxygen atom i. This distance is given by

r2
i = (x − xi)

2 + (y − yi)
2 + (z − zi)

2, (3)

where (x, y, z) are the Cartesian coordinates of the sorbate, and (xi, yi, zi), i = 1, . . . , N are

the Cartesian coordinates of the N oxygen atoms. The silicon atoms, being recessed within

the SiO4 tetrahedra, are neglected in the potential function.22 Therefore, the total potential

energy, V, of a single sorbate molecule in the absence of neighboring sorbate molecules is

represented by a sum over all lattice oxygens,

V =
N

∑

i=1

Vi. (4)

Interaction parameters for the attraction and repulsion terms of the Lennard-Jones potential,

as well as cutoff distances, are given in Table I for the three sorbate-zeolite systems considered

in the examples below.

The interval-Newton methodology will be applied to determine the sorbate locations

(x, y, z) that are stationary points on the potential energy surface V given by Eq. (4), that

is, to solve the nonlinear equation system ∇V = 0. To achieve tighter interval extensions of

the potential function and its derivatives, and thus improve the performance of the interval-

Newton method, the mathematical properties of the Lennard-Jones potential and its first-

and second-order derivatives are exploited.

Each term in the potential function is of the standard Lennard-Jones form

VLJ =
a

r12
−

b

r6
, (5)

in which the distance r appears twice. In this case, when interval arithmetic is applied to

compute the interval extension, overestimation will occur due to the multiple occurrence of
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r. However, a Lennard-Jones term can be rearranged into a single-use expression

VLJ = a

(

1

r6
−

b

2a

)2

−
b2

4a
. (6)

in which distance appears only once. In this way, the exact interval extension VLJ(R) of a

term VLJ(r) can be calculated due to avoidance of the dependency problem.

The simplest expression relating r to (x, y, z) is in terms of r2, as given by Eq. (3). Thus,

for purposes of bounding the derivatives of VLJ , it is covenient to work in terms of r2. The

first-order derivative of a Lennard-Jones term with respect to r2 is given by

V
′

LJ = −
6a

r14
+

3b

r8
. (7)

In this case, no single-use rearrangement is possible. However, it is easily shown that V′

LJ

is concave, and when

r2 =
3

√

7a

2b
= r2

1 (8)

its maximum value

V
′∗

LJ =
9b

7r8
1

(9)

is obtained. Given a distance interval R = [R, R], so that R2 = [R2, R
2
], we can then obtain

the exact interval extension (range) V ′

LJ(R2) of the first-order derivative V′

LJ over R2 from

V ′

LJ =







































[min{V′

LJ(R2), V′

LJ(R
2
)}, V′∗

LJ ] if r2
1 ∈ R2

[V′

LJ(R2), V′

LJ(R
2
)] if r2

1 > R
2

[V′

LJ(R
2
), V′

LJ(R2)] if r2
1 < R2.

(10)

Similarly, it can be shown that the second-order derivative of a Lennard-Jones term with

respect to r2,

V
′′

LJ =
42a

r16
−

12b

r10
, (11)
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is convex, and when

r2 =
3

√

28a

5b
= r2

2 (12)

its minimum value

V
′′
∗

LJ = −
9b

2r10
2

(13)

is obtained. Thus, we can then obtain the exact interval extension (range) V ′′

LJ(R2) of the

second-order derivative V′′

LJ over R2 from

V ′′

LJ =







































[V′′∗

LJ , max{V′′

LJ(R2), V′′

LJ(R
2
)}] if r2

2 ∈ R2

[V′′

LJ(R2), V′′

LJ(R
2
)] if r2

2 < R2

[V′′

LJ(R
2
), V′′

LJ(R2)] if r2
2 > R

2
.

(14)

Note that, when evaluating V′

LJ(R2), V′

LJ(R
2
), and V′∗

LJ in Eq. (10) and V′′

LJ(R2), V′′

LJ(R
2
),

and V′′∗

LJ in Eq. (14), interval arithmetic needs to be used to bound rounding error.

Through the rearrangement of VLJ and the use of the concavity of V′

LJ and the convexity

of V′′

LJ , it is thus possible to determine the interval extensions of a Lennard-Jones term and its

first- and second-order derivatives exactly (within round out). The total potential function V,

however, is a summation over a very large number of such terms, each representing a repeated

occurrence of the independent sorbate position variables (x, y, z). Thus, overestimation in

the interval extensions of V and its derivatives will still occur and may be quite substantial.

Use of the bounding techniques described above for the terms of V and the terms of its

derivatives will only lessen the overestimation not eliminate it.

IV. RESULTS AND DISCUSSION

The interval-Newton methodology described above is now applied to find the stationary

points of the potential energy surface V for three sorbate-silicalite systems. Due to the
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orthorhombic symmetry of the silicalite lattice, the search space is only one asymmetric unit,

[0, 10.035]× [0, 4.98]× [0, 13.42]Å, which is one-eighth of a unit cell. This defines the initial

interval for the interval-Newton method, namely X (0) = [0, 10.035]Å, Y (0) = [0, 4.98]Å, and

Z(0) = [0, 13.42]Å. Following June et al.,5 stationary points with extremely high potential,

such as V > 0, will not be sought. To do this, we calculate the interval extension V = [V , V ]

of V over the interval currently being tested, and if the lower bound V > 0, then the current

interval is discarded. All computations were performed on a Dell workstation running a 1.7

GHz Intel Xeon processor under Linux.

A. Xenon

The first system considered is that of a xenon sorbate in silicalite, as described by June

et al.5 Using the LISS LP strategy for the interval-Newton method, a total of 15 stationary

points were found in a computation time of 724 s, as summarized in Table II. The locations

of the stationary points, their energy value, and their type are listed in Table III. Five

local minima were found, along with 8 first-order saddle points and two second-order saddle

points. June et al.5 also tried to find all saddle points and minima of the potential energy

surface. They report the same five local minima, as well as nine of the ten saddle points.

They do not report finding the lower energy second-order saddle point (saddle point #14 in

Table III).

For each first-order saddle point in Table III, we followed June et al.’s method5 to associate

the saddle point with the transition state between two specific minima. The saddle point

first was perturbed by 10−5Å in either direction along the eigenvector of the Hessian matrix

associated with the negative eigenvalue. A steepest descent method using a step of 0.01Å

was taken in the direction −g. After 500 iterations, the steepest descent calculation was
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terminated and a Newton method was used to locate the minima connected through the

saddle point. The results of these calculations are given in the rightmost column of Table

III. For example, the lowest energy saddle point (#6) can be viewed as connecting minima

#1 and #3. In some cases the descent path from a saddle point led to a state outside the

initial search box. Since the search box is one asymmetric unit, for each state found outside

the search box, we can always find the equivalent state inside the search box through the

symmetry operator and/or the periodic operator. In Table III this is indicated by marking

the state number with a prime. Thus, saddle point #7 connects minimum #2 with an

equivalent point in a neighboring asymmetric unit. As expected, the results found for the

states connected by the first-order saddle points is consistent with the analysis of June et

al.5

A similar procedure was used on the two second-order saddle points, but using both nega-

tive eigenvalues. For example, in the case of saddle point #15, beginning with perturbations

in either direction along the eigenvector associated with the most negative eigenvalue leads

to a connection between minima #2 and #3. Repeating with the least negative eigenvalue

leads to a connection between minima #4 and #5. Thus, this saddle point can be viewed

as providing a crossconnection involving these four points. However, there are lower energy

connections between all except #2 and #3. Though June et al.5 do not identify this point

as a second-order saddle, they do identify it as associating minima #2 and #3. In their

transition state analysis, they use this second-order saddle point, along with five of the eight

first-order saddles. The other three first-order saddles (#6, #7 and #8) are very low-lying

and separate relatively closely spaced minima by only a small energy barrier, across which

rapid thermal equilibrium can be assumed.

The second-order saddle point #14, not reported by June et al.,5 is very close to the
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first-order saddle point #13, and slightly lower in energy. Apparently neither of the two

methods tried by June et al.5 was able to locate this point. The first method they tried

uses the same grid-based optimization scheme used to locate local minima in V, but instead

applied to minimize gTg. However, stationary points #13 and #14 are approximately 0.1Å

apart, while the grid spacing they used was approximately 0.2Å. This illustrates the danger

in using grid-based schemes for finding all solutions to a problem. By using the interval

methodology described here, one never needs to be concerned about whether or not a grid

spacing is fine enough to find all solutions. The second method they tried was Baker’s

algorithm,7 as described briefly above, but it is unclear how they initialized the algorithm.

A key advantage of the interval method is that no point initialization is required. Only

an initial interval must be supplied, here corresponding to one asymmetric unit, and this

is determined by the geometry of the zeolite lattice. Thus, in this context the interval

methodology is initialization independent.

B. Methylene

The second system considered is that of methylene in silicalite, as described by Maginn et

al.23 in the context of a larger study of n-alkanes in silicalite. In order to develop a coarse-

grained picture of the zeolite consistent with the alkane-zeolite potential energy surface,

Maginn et al.23 put a single spherical methylene “test particle” in the silicalite asymmetric

cell and then searched for the local minima in the potential energy surface given by Eq.

(4). Subsequently, they developed a “wire frame” picture of the channels in the zeolite by

considering only the repulsive part of the potential function and searching for local minima

and first-order saddles. We consider here both of these problems, namely methylene-silicalite

with the Lennard-Jones potential and methylene-silicalite with only the repulsive part of the

16



potential.

For the case of the Lennard-Jones potential, a total of 21 stationary points are found

using the LISS LP strategy for the interval-Newton method, in a computation time of 870

s. The locations of the stationary points, as well as their type and energy value, are given

in Table IV. Five local minima are found, along with 9 first-order saddle points, 6 second-

order saddle points, and one local maximum, are found. The results for the positions of

the minima agree with those given by Maginn et al.,23 which were obtained using a local

solver with a multiple start scheme.24 The energy values reported by Maginn et al.23 are

all slightly lower than those in Table IV, apparently because they reflect the untruncated

Lennard-Jones potential (summation over all oxygen atoms in a unit cell and its neighboring

unit cells). Maginn et al.23 did not search for saddle points for the case of the Lennard-Jones

potential.

For the first-order saddle points, the connectivity to local minima was again found using

the procedure of June et al.,5 and the results listed in Table IV. Note that in the case of

stationary point #7, which lies near a corner of the initial search space (asymmetric unit),

both connected states lie in neighboring asymmetric units.

For the case in which only the repulsive part of the potential was used, seven stationary

points were found using the interval-Newton methodology, in a computation time of 265

s. These stationary points are listed in Table V; there are three local minima and four

first-order saddle points. The locations of these points correspond to the results given by

Maginn et al.23
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C. Sulfur hexafluoride

The final system considered is that of SF6 in silicalite, another system studied by June et

al.5 Using the LISS LP strategy for the interval-Newton method, 9 stationary points were

found in a computation time of 270 s. As shown in Table VI, four local minima and five

first-order saddle points were found. No second-order saddle points or local maxima were

found. June et al.5 do not report values for the stationary points that they found; however,

the results given in Table VI are consistent with their discussion of this problem.

V. CONCLUDING REMARKS

We have demonstrated a new methodology for reliably locating stationary points of

sorbate-zeolite potential energy surfaces. The technique is based on interval analysis, in

particular an interval-Newton/generalized-bisection algorithm in which a strategy18,19 based

on linear programming is used to solve the linear interval subproblems. The approach pro-

vides a mathematical and computational guarantee that all stationary points of potential

energy surface will be found. As can be seen from the computational performance results

summarized in Table II, the interval-Newton methodology used is also quite efficient in solv-

ing these problems. While we have concentrated here on problems involving transition-state

analysis of diffusion in zeolites, we anticipate that the methodology will be useful in many

other types of problems in which transition-state theory is applied.

For the problems studied here, the search space was three-dimensional and described by

Cartesian coordinates. The interval-Newton methodology can also be applied to problems

involving non-Cartesian coordinates, as well as to problems in which intramolecular coor-

dinates are used. In the later case, the dimensionality of the search space may become

18



increasingly large. Because the underlying problem of finding all stationary points deter-

ministically is NP-hard, we would expect that, as dimensionality increases, the methodology

will eventually become ineffective due to excessive computation time requirements. The

point at which this occurs will vary from problem to problem; however, it should be noted

that, in other types of applications, this methodology has been used to solve problems with

over 200 degrees of freedom.25
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TABLE I: Interaction parameters and cutoff distance for the truncated Lennard-Jones potential

for oxygen with methylene23, xenon5 and sulfur hexafluoride.5

Interacting Pair a (kcal Å12/mol) b (kcal Å6/mol) rcut (Å)

O – CH2 0.1399 × 107 965.3 13

O – Xe 0.3113 × 107 1836 15

O – SF6 1.7776 × 107 4560 15
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TABLE II: Summary of performance of LISS LP on sorbate-silicalite problems

Sorbate Stationary Points Found CPU Time (s)

Xenon 15 724

Methylene (LJ) 21 870

Methylene (repulsive) 7 265

SF6 9 270
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TABLE III: Stationary points of the potential energy surface of xenon in silicalite

No. Type Energy(kcal/mol) x(Å) y(Å) z(Å) Connects

1 minimum -5.9560 3.9956 4.9800 12.1340

2 minimum -5.8763 0.3613 0.9260 6.1112

3 minimum -5.8422 5.8529 4.9800 10.8790

4 minimum -5.7455 1.4356 4.9800 11.5540

5 minimum -5.1109 0.4642 4.9800 6.0635

6 1st order -5.7738 5.0486 4.9800 11.3210 (1, 3)

7 1st order -5.6955 0.0000 0.0000 6.7100 (2′, 2)

8 1st order -5.6060 2.3433 4.9800 11.4980 (1, 4)

9 1st order -4.7494 0.1454 3.7957 6.4452 (2, 5)

10 1st order -4.3057 9.2165 4.9800 11.0110 (3, 4)

11 1st order -4.2380 0.0477 3.9147 8.3865 (2, 4)

12 1st order -4.2261 8.6361 4.9800 12.8560 (3, 5′)

13 1st order -4.1405 0.5925 4.9800 8.0122 (4, 5)

14 2nd order -4.1404 0.5883 4.8777 8.0138 (4,5),(4,4′)

15 2nd order -4.1027 9.1881 4.1629 11.8720 (2,3),(4,5)
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TABLE IV: Stationary points of the potential energy surface of methylene in silicalite (Lennard-

Jones potential)

No. Type Energy(kcal/mol) x(Å) y(Å) z(Å) Connects

1 minimum -3.2899 3.9646 4.9800 12.3390

2 minimum -3.2584 0.4698 0.9394 5.9826

3 minimum -3.2442 5.9467 4.9800 10.7240

4 minimum -3.2040 1.3411 4.9800 11.6990

5 minimum -2.8766 0.5876 4.9800 5.9724

6 1st order -3.1502 4.9528 4.6283 11.2790 (1, 3)

7 1st order -3.1052 9.6439 0.1264 0.1205 (2′, 2′′)

8 1st order -3.0811 2.3978 4.9800 11.6240 (1, 4)

9 1st order -2.6233 0.2187 3.7405 6.3635 (2, 5)

10 1st order -2.3674 9.2169 4.9800 10.8810 (3, 4′)

11 1st order -2.3264 0.0743 3.7977 8.4413 (2, 4)

12 1st order -2.3151 8.5300 4.9800 12.9170 (3, 5′)

13 1st order -2.2739 8.7862 4.0664 12.5150 (2′, 3)

14 1st order -2.2618 0.7135 4.9800 8.0321 (4, 5)

15 2nd order -3.1384 4.8522 4.9800 11.3950

16 2nd order -3.0892 10.0350 0.0000 13.4200

17 2nd order -3.0892 10.0350 0.0000 0.0000

18 2nd order -3.0892 0.0000 0.0000 6.7100

19 2nd order -2.2724 8.7828 4.1858 12.6960

20 2nd order -2.2301 9.1246 4.0744 11.8350

21 maximum -2.0354 9.6221 4.9800 12.2630
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TABLE V: Stationary points of the potential energy surface of methylene in silicalite (repulsive

potential only)

No. Type Energy(kcal/mol) x(Å) y(Å) z(Å) Connects

1 minimum 0.1559 9.6357 4.9800 12.3614

2 minimum 0.6451 4.1318 4.9800 11.6298

3 minimum 0.6705 0.0491 0.6783 6.5541

4 1st order 0.6786 0.0000 0.0000 6.7100 (3, 3′)

5 1st order 0.7508 10.0334 1.9828 0.0086 (1′, 3′)

6 1st order 0.7844 2.6474 4.9800 11.3282 (1′, 2)

7 1st order 0.8721 6.7084 4.9800 11.3923 (1, 2)

25



TABLE VI: Stationary points of the potential energy surface of SF6 in silicalite

No. Type Energy(kcal/mol) x(Å) y(Å) z(Å) Connects

1 minimum -9.8923 4.1159 4.9800 11.6820

2 minimum -9.4079 0.0773 0.7267 6.4898

3 minimum -8.8814 9.9462 4.9800 13.3750

4 minimum -8.6880 1.6351 4.9800 11.0670

5 1st order -9.2736 0.0000 0.0000 6.7100 (2, 2′)

6 1st order -8.2341 2.5043 4.9800 11.3270 (1, 4)

7 1st order -7.7591 0.8381 4.9800 9.9748 (3′, 4)

8 1st order -7.5698 10.0040 2.4616 13.3320 (2′, 3)

9 1st order -6.6658 7.1559 4.9800 11.4830 (1, 3)
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