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Abstract

The calculation of solid-fluid equilibrium at high pressure is important in the modeling and design of pro-

cesses that use supercritical fluids to selectively extract solid solutes. We describe here a new method for

reliably computing solid-fluid equilibrium at constant temperature and pressure, or for verifying the nonex-

istence of a solid-fluid equilibrium state at the given conditions. Difficulties that must be considered include

the possibility of multiple roots to the equifugacity conditions, and multiple stationary points in the tangent

plane distance analysis done for purposes of determining global phase stability. Somewhat surprisingly,

these issues are often not dealt with by those who measure, model and compute high pressure solid-fluid

equilibria, leading in some cases to incorrect or misinterpreted results. It is shown here how these difficul-

ties can be addressed by using a methodology based on interval analysis, which can provide a mathematical

and computational guarantee that the solid-fluid equilibrium problem is correctly solved. The technique

is illustrated with several example problems in which the Peng-Robinson equation of state model is used.

However, the methodology is general purpose and can be applied in connection with any model of the fluid

phase.

Keywords: Phase Equilibrium, Phase Stability, Solid-Fluid Equilibrium, Supercritical Fluid Extraction, In-

terval Analysis



1 Introduction

In this paper we present a completely reliable technique, based on interval analysis, to compute solid-

fluid equilibrium. The calculation of solid-fluid equilibrium is important in the modeling and design of

processes that use supercritical fluids (SCFs) to selectively extract solid solutes, as, for example, in the de-

caffeination of coffee with supercritical CO2.1 The tunable solvent properties of SCFs, achieved with simple

variations of temperature or pressure, make them attractive for extractions. Other commercial and research

applications of SCF extraction include the ROSE process for the upgrading of petroleum residuals, the ex-

traction of a variety of natural products, and the removal of radioactive and heavy metals from contaminated

solid matrices.1–3 Of increasing importance is the use of supercritical CO2 as a replacement solvent for haz-

ardous organic solvents in a variety of reaction systems, in which some of the components may be solids.4

Supercritical CO2, in particular, has been identified as an attractive environmentally benign solvent since it

is non-toxic, non-flammable and inexpensive, and it has easily accessible critical properties (Tc = 304.2 K,

Pc = 73:76 bar). Primarily over the last four decades, there have been extensive measurements of solid-fluid

equilibria, so substantial data are available.1,5 Nevertheless, to take advantage of the attractive attributes of

SCFs in any type of process design, the physical properties and phase behavior of these solutions need to be

modeled and computed accurately.

For process design calculations, supercritical fluid solutions are modeled almost exclusively with equa-

tion of state (EOS) models due to their simplicity, flexibility and ability to capture the correct temperature

and pressure dependence of the density and all density-dependent properties, such as solubility.1,6,7 Even

the simple van der Waals equation can, at least qualitatively, describe most of the types of binary fluid

behavior, as classified by von Konynenburg and Scott.8 Probably the two most popular models are the Peng-

Robinson equation9 and the Soave-Redlich-Kwong equation.10 These models generally require at least one

binary interaction parameter,kij , that must be regressed from experimental data, to provide quantitative

representation of the solubilities. More complicated EOS models (e.g., SAFT11,12) and mixing rules (e.g.,

Wong-Sandler13 and Huran-Vidal14) with a stronger theoretical basis have been developed that, in many

cases, do a better job than the simple cubic EOS models with standard mixing rules, but may require the use

of more adjustable parameters.

Whether determining the best-fitkij from experimental data, or calculating the solubility of a solid at

new conditions using a particular EOS model, there are two computational pitfalls that can be encountered

in the calculation of solid-fluid equilibrium:
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1. Solid solubilities in SCFs are usually computed by locating a mole fraction which satisfies the equifu-

gacity equation relating the solute fugacity in the supercritical fluid, as predicted by the EOS, and the

fugacity of the pure solid (see section 3.1 for further details). However, at certain values of temper-

ature, pressure, andkij , there can exist multiple solutions to the equifugacity condition. A common

method for solving the equifugacity equation is successive substitution or some similar approach,1

using some small value of the solid solubility in the fluid phase as the initial guess. In general, this

strategy will only find the smallest solubility root and may miss any larger values, if present, that

satisfy the equifugacity equation. Thus, what is needed is a completely reliable method to determine

all the roots to the equifugacity equation.

2. Equifugacity is a necessary but not sufficient condition for stable solid-fluid equilibrium. Solutions

to the equifugacity equation must be tested for global thermodynamic phase stability. There are two

widely used techniques to determine phase stability. One method is to examine the magnitude and

sign of the appropriate determinants of partial derivatives;15 this method can distinguish the unstable

case from the stable or metastable cases, but cannot distinguish stable from metastable. The other

method is based on tangent plane analysis;16 this method can distinguish the stable case from the

metastable or unstable cases, but cannot distinguish metastable from unstable. Since we are inter-

ested in determining the thermodynamically stable solutions to the equifugacity equations, we use

tangent plane analysis here (see section 3.2 for further details). Tangent plane analysis itself, how-

ever, presents a difficult computational problem, which again can be addressed by using a completely

reliable equation solving technique.

In this paper we address both of these computational issues, presenting a completely reliable method for

determining all the solutions to the equifugacity equation, and then using a method that can test those

solutions for stability with complete certainty. Thus, we present a methodology that is guaranteed to identify

the correct, thermodynamically stable composition of a fluid phase in equilibrium with a pure solute.

2 Background

In order to understand the situations in which multiple solubility roots to the equifugacity equation

are likely to exist, and for which stability analysis is particularly important, as well as to facilitate later

discussion of results, it is useful to review the typical phase behavior of solvent-solute systems at high

pressure.
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The pressure-temperature projection of a typical binary solvent-solute system is shown in Fig. 1. This

diagram shows a projection of all the salient features in the P-T-composition diagram. The solid line at

low temperatures is the vapor pressure curve of the pure solvent, ending with a circle at the critical point

(c.p.) of the pure fluid (e.g., CO2). The solid lines at higher temperatures represent the sublimation curve,

the vapor pressure curve (and critical point), and melting curve of the pure solute (e.g., naphthalene). In

the presence of the solvent, the melting curve of the solute can be depressed, which is represented by the

dashed-dotted SLV curve (solid, liquid and vapor in equilibrium) emanating from the triple point of the

solute. This depression occurs because, for example, CO2 that can dissolve in liquid naphthalene acts as an

impurity, lowering the melting point of the naphthalene. This SLV line terminates in an upper critical end

point (UCEP), indicated by a triangle, where the vapor and liquid phases become identical in the presence

of the solid phase. The UCEP and the c.p. of the solute are connected by a dotted vapor-liquid critical

line. Each point along that curve represents the temperature and pressure at which vapor and liquid phases

become identical at different overall compositions ranging from pure naphthalene to the UCEP composition.

Solid-liquid-vapor equilibrium can also occur at lower temperatures, as shown in the figure. This SLV line

terminates at the lower critical end point (LCEP), where again the vapor and liquid phases become identical

in the presence of the solid phase. The c.p. of the fluid and the LCEP are also connected by a vapor-liquid

critical line.

At temperatures and pressures on the SLV lines, there are necessarily multiple solubility roots to the

equifugacity equation, indicating equilibrium between the solid and a vapor at one solubility root, and be-

tween the solid and a liquid at another solubility root. In general, there is a significant range of temperatures

and pressures around the SLV conditions for which there are also multiple solubility roots, only one of which

is stable. Supercritical fluid extraction processes are usually operated at temperatures within about 50ÆC of

the pure fluid c.p., so that the separation can take advantage of the high compressibility of the fluid this close

to the c.p. If the UCEP is within this range of investigation for operating conditions, then the possibility of

solid-liquid-vapor equilibria exists, and we are in a range of temperature and pressure for which multiple

roots are likely. Thus, the difficulty of multiple roots to the equifugacity equations is especially a problem

when the melting point of the solid is not significantly greater than the c.p. of the fluid. Moreover, if one

operates too close to the c.p. of the pure fluid, going below the LCEP, one may also observe solid-liquid-

vapor equilibrium, and again be in a range of temperature and pressure for which multiple solubility roots

are likely.

The detailed phase behavior at five different temperatures is shown in Figs. 2–6. Fig. 2 shows schemat-
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ically a pressure-composition diagram atTA, a temperature below the c.p. of the solvent. At very low

pressures, one would have just vapor mixtures across the entire overall composition range. At higher pres-

sures and at feed compositions of the solute greater than its solubility limit in the vapor phase, one would

observe solid-vapor equilibrium. At the pressure indicated by the SLV line, all three phases would exist

over a very wide feed composition range: the pure solid at pointa, a liquid with a composition indicated

by pointb, and a vapor with a composition indicated by pointc. At pressures just above the SLV line, the

number of phases present depends on the overall feed composition. Feeds rich in the solute would result

in solid-liquid equilibrium. Feeds that are mostly CO2 would be single-phase vapor. Feeds of intermediate

concentrations could be either a single-phase liquid or vapor-liquid equilibrium. The vapor-liquid envelope

is connected at the pure solvent side of the diagram at its vapor pressure atTA. Above this pressure, one

would observe either solid-liquid equilibrium or a single liquid phase. At this temperature, there is a wide

range of pressure for which multiple solubility roots will be observed, below the SLV line including a stable

solid-vapor root and metastable solid-liquid root, and above the SLV line including a stable solid-liquid root

and a metastable solid-vapor root.

At temperatures between the c.p. of the fluid and the LCEP (e.g.,TB), the pressure-composition diagram

(Fig. 3) looks very similar to that at lower temperatures, except that the vapor-liquid envelope has detached

from the left-hand side of the plot. This is because the temperature is above the c.p. of CO2, so it no

longer has a pure component vapor pressure. Thus, the vapor-liquid dome now comes together at its top

in a mixture critical point, which corresponds to the dotted line between the c.p. of CO2 and the LCEP

in Fig. 1. At the temperature of the LCEP, the solid-vapor, solid-liquid and vapor-liquid regions merge

into a single solid-fluid equilibrium region, as seen in Fig. 4 for temperatureTC. The curve exhibits the

characteristic inflection point at the LCEP, where the solid solubility in the fluid increases dramatically with

a small increase in pressure. At temperatures between the LCEP and the UCEP (Fig. 5, temperatureTD), the

system is either single-phase or exhibits solid-fluid equilibria. The diagram is qualitatively similar to that at

the LCEP, except that the solute solubility increase in the fluid phase as a function of pressure is much more

gradual. At the UCEP, an inflection like at the LCEP reappears, signaling the reformation of a liquid phase.

Multiple solubility roots over some pressure interval are possible for some range of temperature above the

LCEP, and for some range below the UCEP; however, for systems with a wide temperature gap between the

LCEP and UCEP, there will also be a wide range of temperatures in this gap for which there is only a single

solubility root to the equifugacity condition at all pressures of interest. At temperatures above the UCEP

(Fig. 6, temperatureTE), the diagram is qualitatively similar to temperatures between the c.p. of CO2 and
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the LCEP (Fig. 3).

In the design of a supercritical extraction process in which the solute melting point is close to the c.p.

of the solvent, there will not be a large gap between the LCEP and UCEP. In this case, the range of op-

erating temperatures that should be considered range from temperatures likeTB to those likeTE, and thus

will include a significant range for which there are multiple solubility roots. In some cases, the low sol-

ubility (solid-vapor) root will be the correct one, but in other cases solid-liquid or even solid-liquid-vapor

equilibrium may exist. Although many such systems exist, the most frequently studied system that exhibits

solid-liquid and solid-liquid-vapor equilibria at normal operating conditions is the one already mentioned,

namely CO2 and naphthalene (melting temperature of 80.5ÆC).17 There are significant amounts of experi-

mental data available for this system.18–22 A dynamic flow apparatus, where the fluid flows slowly over a bed

packed with the solid, and then is analyzed, is commonly used for these measurements. However, as noted

by McHugh and Yogan,21 and later reconfirmed by Chung and Shing,22 these measurements may actually

yield the composition of the vapor in equilibrium with a liquid phase, not the composition of the fluid phase

in equilibrium with a pure solid. As explained in Example 3 below, failure to correctly determine the stable

solid-fluid root to the equifugacity condition may make it difficult to detect when this occurs, thus leading to

the misinterpretation of vapor-liquid data as solid-fluid data, as happened to McHugh and Paulaitis.20 Thus,

care in measurement, modeling and computation is vitally important for these types of systems.

Somewhat surprisingly, the practice of searching for all roots to the equifugacity condition and testing for

phase stability appears not to be widespread among those who measure, model and compute high pressure

solid-fluid equilibria. However, the need to test for stability and its influence on phase diagrams has been

an area of interest to some researchers. For example, Hong et al.23 mapped out the phase diagrams for a

variety of binary systems, including CO2/naphthalene, using the Peng-Robinson EOS with standard (van der

Waals) mixing rules. They apparently identified the equifugacity roots graphically, using plots of fugacity

vs. composition. Nitta et al.24 mapped out phase diagrams using the Soave-Redlich-Kwong EOS. They

did phase stability analysis using the tangent plane approach, and employed the algorithm developed by

Michelsen.25 While this is generally a very reliable algorithm, it is a local, initialization-dependent method,

and is known to yield incorrect results in some situations.26 More recently, Wisniak et al.27 used a modified

van der Waals EOS and standard mixing rules to predict gas-solid phase behavior including both the solvent-

rich LCEP and solute-rich UCEP. They used a successive substitution technique to solve the equifugacity

equation, with a marching-type approach to aid in initializing the calculation. Other work, notably that of

Marcilla et al.,28 has focused on low-pressure solid-liquid equilibrium, and the need for careful stability

5



analysis in that context as well. These researchers23,24,27 were able to carefully map out the full phase

diagrams for their selected systems. However, the computational methods they used are local, initialization-

dependent solvers, which in general provide no guarantee that all equifugacity roots are found, nor that phase

stability analysis is done correctly. In this paper, we present a technique thatdoesprovide these guarantees,

and thus can determinewith certaintythe correct, stable solution to the solid-fluid equilibrium problem. The

technique is based on interval analysis, which has previously been applied to a variety of difficult problems

in the modeling of phase behavior.26,29–31 Here we show how it can be applied to the completely reliable

solution of solid-fluid equilibrium problems.

3 Problem Formulation

Consider a solvent-solute system in which the solute (component 2) may be present in a pure solid phase

in equilibrium with a single fluid phase in which the solvent (components 1,3,...C) is present. It is desired

to compute, from appropriate thermodynamic models, the solubility (mole fraction)y2 of the solute in the

fluid phase at specified temperature, pressure, and overall composition. As discussed above, this problem

presents a number of computational difficulties.

3.1 Equifugacity Condition

The standard formulation of this problem is based on the equifugacity condition for the solute; that is,

assuming an equation-of-state (EOS) model for the fluid phase,

fS2 (T; P ) = f̂F2 (T; P;y; v); (1)

wherefS2 is the fugacity of the solute in the pure solid phase,f̂F2 is fugacity of the solute in the fluid phase

solution,y = (y1; y2; : : : ; yC)
T is the vector of fluid phase mole fractions, andv is the molar volume of the

fluid from the EOS model. Additional relationships that must be satisfied are the summation to one of the

fluid phase mole fractions
CX
i=1

yi = 1 (2)

and the EOS for the fluid phaseP = FP(T;y; v), which here is assumed to be the Peng-Robinson EOS.

P = FP =
RT

v � b �
a(T )

v(v + b) + b(v � b) : (3)
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Standard (van der Waals) mixing rules will be used, namelya =
P

i

P
j yiyjaij andb =

P
i yibi. Here

aii(T ) andbi are pure component parameters computed from the critical temperature, critical pressure, and

acentric factor for pure componenti, andaij =
p
aiiajj(1� kij), with kij representing a binary interaction

parameter. Values ofkij obtained by fit to experimental data frequently vary somewhat withT .

The fugacity of solute in the pure solid phase can be expressed as32

fS2 (T; P ) = P sub
2 (T )�sub2 (T ) exp

"
vS2
RT

(P � P sub
2 (T ))

#

whereP sub
2 (T ) is the sublimation pressure at the system temperatureT , �sub2 (T ) is the fugacity coefficient

of the pure vapor in equilibrium with the solid atT andP sub
2 (T ), andvS2 is the molar volume of the pure

solid. The exponential term on the right hand side is the Poynting correction factor, assuming thatvS2 is

constant. SinceP sub
2 (T ) is likely to be small, it is also assumed that�sub2 (T ) = 1. Note that, at specified

constantT andP , fS2 is a constant. The fugacity of the fluid phase can be written as

f̂F2 (T; P;y; v) = y2P �̂
F
2 (T; P;y; v);

where the fugacity coefficient̂�F2 of the solute in the fluid phase solution can be determined from the EOS.32

There are also material balance considerations. On a solute-free basis, the solvent composition is con-

stant and assumed specified by the given mole fractions�i; i 6= 2. In terms of�i, the independent material

balances on the solvent species are

yi = �i(1� y2); i = 3; : : : ; C: (4)

Eqs. (1–4) form a system ofC + 1 equations in theC + 1 variablesy andv.

A common approach for solving this equation system is to note that from Eq. (4) foryi; i = 3; : : : ; C

and Eq. (2) fory1, it is clear that the composition of the fluid phase, and thus from Eq. (3) its molar volume,

can be treated as a function ofy2 only. Thus, the equifugacity relationship can be stated as

y2 =
P sub
2 (T )

P �̂F2 (T; P; y2)
exp

"
vS2
RT

(P � P sub
2 (T ))

#

and, at specifiedT andP , solved iteratively fory2 by a successive substitution scheme, with a typical initial

guess being some small value of solubility, such asy
(0)
2 = P sub

2 =P .

As discussed above, a major difficulty in solving this problem is that the equation system to be solved,

namely Eqs. (1–4), may have multiple solutions. Furthermore, since the equifugacity equation is a necessary

but not sufficient condition for equilibrium, any solution found must be tested for stability. These issues will

be discussed in more detail in the next section.
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An additional issue is that the solute material balance imposes a constraint ony2. If the specified overall

mole fraction of solute is 2 and the molar solid phase fraction at equilibrium iss, then the solute material

balance is 2 = s + y2(1 � s) or y2 = ( 2 � s)=(1 � s). From this it follows that0 � y2 �  2: If

there is no solution of Eqs. (1–4) that satisfies this constraint, then there is no solid phase at equilibrium.

As emphasized by Bullard and Biegler,33 the presence of such constraints in a nonlinear equation solving

problem can be problematic.

An approach to equation solving that can deal rigorously with all these issues, namely the potential for

multiple solutions, the need for a stability test, and the constraint thaty2 2 [0;  2], is the use of interval

analysis, as demonstrated below.

3.2 Stability Analysis

For a fluid-fluid equilibrium problem at constant temperature and pressure, it is well known that a so-

lution to the equifugacity condition can be interpreted as the tangent points on a plane tangent to the Gibbs

energy surface of the fluid. However, if this plane ever crosses (goes above) the Gibbs energy surface, then

this indicates that the phases represented by the tangent points are not stable, and that this is not the solution

to the phase equilibrium problem.

For a solid-fluid equilibrium problem, the geometric interpretation is similar,28 but there are important

differences:

1. Since only one fluid phase is assumed, there will in general be onlyonepoint of tangency to the Gibbs

energy curve of the fluid.

2. The pure solid phase is represented by a singlepoint, at compositiony2 = 1 and Gibbs energygS2 ,

wheregS2 indicates the (molar) Gibbs energy of the pure solid phase relative to a pure fluid phase at

the given temperature and pressure, and can be determined fromgS2 = RT ln(fS2 =f
F
2 ). Both the solid

phase fugacityfS2 and fluid phase fugacityfF2 , can be determined as described in Section 3.1, and are

constant at constantT andP . Thus, the point representing the solid is fixed by the givenT andP .

3. A solution to the equifugacity equation can be interpretated as a tangent to the curve representing the

fluid phase that goes through the point representing the pure solid phase. As in the fluid-fluid case, if

this tangent ever goes above the Gibbs energy surface, then this solution to the equifugacity condition

does not represent a stable phase equilibrium.
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This is shown schematically for several cases in Figs. 7–10, using a hypothetical plot of the Gibbs energy

of mixing gm for the fluid phase versus solubilityy2. In Fig. 7, there is only one possible tangent to the

Gibbs energy curve that goes through the solid point (1,gS2 ). In this case, there will be only one solution

to Eqs. (1–4). Fig. 8 shows a case in which there will be three solutions, indicated by the three tangent

lines that also pass through the solid point (1,gS2 ). Two of these lines cross the Gibbs energy curve and

represent solutions that are not stable. The line tangent at the lowest value ofy2 gives the stable solution.

Fig. 9 also shows a case with three solutions, except in this case it is the line tangent at the highest value

of y2 that gives the stable solution. Finally, Fig. 10 shows a case in which there again are three solutions,

however two of them lie on the same tangent line. Since this tangent does not cross the Gibbs energy curve,

this indicates that there are two stable solutions, at the tangent points with the highest and lowesty2 values.

This represents the special case of solid-liquid-vapor equilibrium.

The determination of phase stability is often done using the concept of tangent plane distance.16,25 The

tangent plane distanceD is simply the distance from the tangent plane to the Gibbs energy of mixing surface.

That is,

D(y; v) = gm(y; v) � gm(y0; v0)�
CX
i=1

�
@gm
@yi

�
0

(yi � yi0)

where the subscript zero indicates evaluation at one of the points of tangencyy0 satisfying the equifugacity

condition. IfD ever becomes negative, then the tangent has crossed the Gibbs energy surface and the phase

being tested is not stable. A common approach for determining ifD is ever negative is to minimizeD and

check the sign of its minimum. This minimization is done subject to the mole fractions summing to one and

subject to the equation of state relatingy andv. Using a Lagrangian approach, it can be easily shown that

the stationary points in this optimization problem must satisfy

��
@gm
@yi

�
�
�
@gm
@yC

��
�
��
@gm
@yi

�
�
�
@gm
@yC

��
0

= 0; i = 1; : : : ; C � 1 (5)

For the Peng-Robinson EOS, expressions forgm and@gm=@yi are given by Hua et al.34 and others.

Eqs. (2), (3) and (5) form a(C +1)� (C +1) system of equations that can be solved for the stationary

points ofD. This equation system has a trivial root aty = y0 andv = v0 and may have multiple nontrivial

roots as well, corresponding to multiple stationary points inD. If any stationary point corresponds to a value

of D less than zero, then the conclusion is that the phase represented byy0 is not stable. Ifall the stationary

points are found andall have a nonnegativeD, meaning that the global minimum ofD is zero (aty = y0),

then the conclusion is that the phase is stable. However, without aguaranteethatall stationary points ofD

have been found, or equivalently that theglobalminimum ofD has been found, incorrect conclusions could
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be drawn. For example, if one stationary point ofD is missed when solving the equation system, and that is

the only stationary point for whichD is negative, then based on the other stationary points found, one would

conclude that the phase was stable, when in fact it is not stable.

In the context of fluid-fluid equilibrium, the problem of reliable phase stability analysis has attracted

much interest.35–37 However, for equation-of-state models, only the approach of Hua et al.,26,34,38 based

on interval analysis, and the more recent work, based on a branch-and-bound global optimization method,

of Harding and Floudas39 provide a guarantee that the correct conclusion is reached. Here we will use the

interval approach to phase stability analysis in the context of solid-fluid equilibrium.

4 Solution Method

4.1 Interval Analysis

We apply here interval mathematics, in particular an interval Newton/generalized bisection (IN/GB)

technique, to find, or, more precisely, to find very narrow enclosures of, all solutions of a nonlinear equation

system, or to demonstrate that there are none. Recent monographs which introduce interval computations

include those of Neumaier,40 Hansen41 and Kearfott.42 The algorithm used here has been described by

Hua et al.,26 and given in more detail by Schnepper and Stadtherr.43 Properly implemented, this technique

provides the power to find,with mathematical and computational certainty, enclosures ofall solutions of a

system of nonlinear equations,40,42 or to determine with certainty that there are none, provided that initial

upper and lower bounds are available for all variables. This is made possible through the use of the powerful

existence and uniqueness test provided by the interval Newton method. The technique can also be used

to determine with certainty theglobal minimum of a nonlinear objective function. Our implementation of

the IN/GB method for solid-fluid equilibrium problem is based on appropriately modified routines from the

FORTRAN-77 packages INTBIS44 and INTLIB.45 The key ideas of the methodology used are summarized

very briefly here.

Consider the solution of a nonlinear equation systemf(z) = 0 wherez 2 Z(0) (interval quantities are

indicated in upper case, point quantities in lower case). The solution algorithm is applied to a sequence of

intervals, beginning with the initial interval vectorZ(0) specified by the user. This initial interval can be

chosen to be sufficiently large to enclose all physically feasible behavior, or to represent some constraint

given in the problem. For an intervalZ(k) in the sequence, the first step in the solution algorithm is the

function range test. Here aninterval extensionF(Z(k)) of the functionf(z) is calculated. An interval
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extension provides upper and lower bounds on the range of values that a function may have in a given

interval. It is often computed by substituting the given interval into the function and then evaluating the

function using interval arithmetic. The interval extension so determined is often wider than the actual

range of function values, but it always includes the actual range. If there is any component of the interval

extensionF(Z(k)) that does not contain zero, then we may discard the current intervalZ(k), since the range

of the function does not include zero anywhere in this interval, and thus no solution off(z) = 0 exists in

this interval. Otherwise, if zero is contained inF(Z(k)), then processing ofZ(k) continues.

The next step is to apply theinterval Newton testto the current intervalZ(k). This involves setting up

and solving a system of linear interval equations for a new interval, theimageN(k). Comparison of the

current interval and the image provides a powerful existence and uniqueness test.40,42 If N(k) andZ(k)

have a null intersection, then this is mathematical proof that there is no solution off(z) = 0 in Z(k). If

N(k) is a proper subset ofZ(k), then this is mathematical proof that there is auniquesolution off(z) = 0

in Z(k). If neither of these two conditions is true, then no conclusions can be made about the number of

solutions in the current interval. However, it is known46 that any solutions that do exist must lie in the

intersection ofN(k) andZ(k). If this intersection is sufficiently smaller than the current interval, one can

proceed by reapplying the interval Newton test to the intersection. Otherwise, the intersection is bisected,

and the resulting two intervals added to the sequence of intervals to be tested. These are the basic ideas of

an interval Newton/generalized bisection (IN/GB) method.

It should be emphasized that, when machine computations with interval arithmetic operations are done,

as in the procedures outlined above, the endpoints of an interval are computed with a directed outward round-

ing. That is, the lower endpoint is rounded down to the next machine-representable number and the upper

endpoint is rounded up to the next machine-representable number. In this way, through the use of interval,

as opposed to floating point, arithmetic any potential rounding error problems are eliminated. Overall, the

IN/GB method described above provides a procedure that is mathematicallyand computationally guaran-

teed to enclose all solutions to the nonlinear equation system or to determine with certainty that there are

none.

4.2 Computing Solid-Fluid Equilibrium

In applying the method outlined above to the solid-fluid equilbrium problem, the first step is to establish

an initial interval in which to search for solutions to the equifugacity condition, Eqs. (1–4). To do this, the

material balance constraint0 � y2 �  2 is used. Thus the initial interval fory2 is Y (0)
2 = [0;  2]. Initial
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intervals for the remaining components ofy can then be determined using Eqs. (2) and (4), using interval

arithmetic. The initial interval forv is taken to have the lower limit ofvmin = mini bi, and the upper limit

of 2RT=P (compressibility factor of 2); that is,V (0) = [mini bi; 2RT=P ].

The IN/GB algorithm is now applied to the simultaneous solution of Eqs. (1–4), thus determining

with certaintyall the roots of the system of equations within the given initial interval, or determining with

certainty that there are none. In the latter case, this is mathematical proof that there is no solid phase present

at equilibrium. Note that if a conventional local solver were used, and it converged, for several initial

guesses, to ay2 >  2, it might be tempting to conclude that there was no solid phase; however, this could

not be done with certainty since there could still be an untried initial guess for which ay2 <  2 might be

found. The IN/GB approach is essentially initialization independent, requiring not an initial point guess, but

an initial interval, which can be chosen to represent all physically feasible behavior, not some guess.

The next step is to begin testing the equifugacity roots, just found, for stability. This requires solving

the system of Eqs. (2), (3) and (5), in whichy0 is one of the equifugacity roots. Again this is done using

the IN/GB algorithm, thus guaranteeing that all the stationary points of the tangent plane distanceD, or

equivalently, the global minimum ofD, are found. It should be noted26 that, in the context of tangent plane

analysis, the IN/GB algorithm can be implemented in combination with a simple branch and bound scheme,

so that intervals containing stationary points that cannot be the global minimum ofD are eliminated and,

thus, all stationary points ofD need not be enclosed. For this problem, each mole fraction has the initial

interval [0,1] and the initial volume interval is the same as used in the equifugacity problem. If the global

minimum ofD is zero, then the equifugacity root being tested represents a stable phase, and the solution to

the solid-fluid equilibrium problem has been found. Otherwise, the phase being tested is not stable, and so

the next equifugacity root is tested. If after all roots are tested for stability, none are stable, this indicates that

the assumption of solid-fluid equilibrium is not correct. For the given solute feed 2 there may be fluid-fluid

equilibrium, or there may be solid-fluid-fluid equilibrium. Note that the conclusion that there is no solid-

fluid equilibrium cannot be made with certainty in this way unless one is certain thatall equifugacity roots

have been found, a guarantee that is provided when the interval method is used.

One special case should be noted, namely the case of abinary system for which 2 ! 1 (this indicates

the assumption of an inexhaustible supply of solute). In this case: 1. If there is a unique solution to the

equifugacity condition then it must be stable (see Fig. 7). 2. If there are multiple equifugacity roots, one of

them must be stable and it corresponds to the one with the lowest tangent (see Figs. 8 and 9); i.e., the one

with the lowestgm at any fixed value ofy2 < 1, say aty2 = 0. Alternatively (and equivalently), this stable
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root can be identified by choosing the one at which the total Gibbs energy of the system (solid and fluid)

is the lowest. Thus, for this special case, the tangent plane distance analysis for stability can be bypassed.

However, in the examples below, since we want to test the performance of the most general form of the

methodology, even in problems for which a large solute loading ( 2 ! 1) is assumed in a binary system,

we will perform the tangent plane analysis rather than bypass it.

5 Results and Discussion

Using the method described in Section 4, and the Peng-Robinson EOS, we have calculated the solubil-

ity of caffeine, anthracene, naphthalene, and biphenyl in CO2, and the solubility of anthracene in a fluid

mixture of ethane and CO2. These example systems are representative of the types of systems that may be

encountered in supercritical fluid extraction. They include cases where there is only one root to the equifu-

gacity equation, as well as where there are multiple roots. We use interval methods to identify all roots to

the equifugacity equation, as well as to test for phase stability, with complete certainty.

The values of the critical properties, acentric factors, and pure solute molar volumes used in each ex-

ample are given in Table 1. Solute sublimation pressuresP sub
i (T ) are computed fromlog10 P

sub
i (T ) =

Ai� (Bi=T ). HereP sub
i has units of Pa andT has units of K. Values of the constantsAi andBi are given in

Table 1. Unless otherwise noted, the entire composition space was searched for equifugacity roots; that is,

we allowed 2 ! 1, which is equivalent to assuming that there is an infinite amount of solid solute available

in the system. Computations were done on a Sun Ultra 10/440 workstation. The CPU time required ranges

from about 0.15 to 0.65 seconds for solving the equifugacity condition, and from about 0.2 to 6 seconds for

the stability analysis, with the larger times on the ternary system in Example 5. These computation times

are much higher than what is required by the local, but possibly unreliable, methods typically used in the

context of solid-fluid equilibrium. Thus, there is a choice between fast methods that may give the wrong

answer, or this slower method that is guaranteed to give the correct answer.

5.1 Example 1: Caffeine/CO2

The solubility of caffeine in supercritical CO2 has been the focus of much research, eventually leading

to the construction of commercial plants to extract caffeine from tea and coffee.1,4 Here we compute the

solubility of caffeine in CO2 at 313.15 K, 333.15 K and 353.15 K and pressures to 350 bar. The binary

interaction parameter,k12, that is needed in the Peng-Robinson EOS was chosen to give the best fit of the
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experimental data,47 at each temperature. The values used werek12 = �0:0675 at 313.15 K,�0:080 at

333.15 K, and�0:095 at 353.15 K.

Using the IN/GB method, we determined that there was only one root to the equifugacity equation at

each of the temperatures and pressures considered. Though the stability analysis could have been safely

bypassed in this case, as described in the discussion of the special case in Section 4.2, we nevertheless,

for the sake of generality, tested the single equifugacity root at eachT andP for phase stability using the

interval tangent plane method described above, and confirmed that the phase was stable.

The results are shown in Fig. 11. Here the open symbols represent computed roots of the equifugacity

equation at each of the three temperatures; for clarity, here and in the subsequent examples, the roots are

plotted only at selected pressures. The solid line indicates the complete set of stable solutions. (Throughout

this section we will use open symbols to indicate roots of the equifugacity condition, in general only some

of which will be stable, and a solid line to indicate those roots that correspond to a stable phase.) There is

only one root to the equifugacity equation at eachT andP considered in this example because the operating

conditions (313.15, 333.15 and 353.15 K) chosen are well below the melting point of caffeine (511.15 K).17

Therefore, all temperatures investigated are well below the UCEP. Moreover, none of the temperatures are

very close to the c.p. of CO2 so it is apparent that all temperatures investigated are between the LCEP and

the UCEP. As a result, we predict solid-fluid equilibria at all conditions investigated. The predicted values

match experimental measurements of solid-fluid equilibria for this system very well but those data are not

included on the graph for the sake of clarity.

5.2 Example 2: Anthracene/CO2

This example involves the binary system of anthracene/CO2 at 308.15 K and 328.15 K. Thek12 value

used at both temperatures wask12 = 0:0675, based on a fit to the experimental solid-fluid equilibria data

of Johnston et al.48 The computed results are shown schematically in Fig. 12. This system is very similar

to the caffeine/CO2 system in that there is only one root to the equifugacity equation at each temperature

and pressure investigated, as shown by the open symbols in Fig. 12. Since the entire composition space was

searched for roots, as was done for caffeine/CO2, these roots are the stable ones, as indicated by the solid

lines on the graph. As a result, this system exhibits simple solid/fluid equilibria at all conditions investigated.

It is reasonable to expect only solid-fluid equilibria for this system since the melting point of anthracene is

489.15 K,17 well above the temperatures of interest.
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5.3 Example 3: Naphthalene/CO2

As mentioned in Section 2, naphthalene/CO2 is a system that exhibits very rich high pressure phase

behavior. Moreover, it is one of the most widely studied SCF systems and one for which some of the earliest

solid-fluid equilibrium data is available.18 The normal melting point of naphthalene is 80.5ÆC (353.65 K)17

and it exhibits significant melting point depression in the presence of CO2, yielding a UCEP around 60.1ÆC

(333.25 K).21,49

The results of solving the equifugacity condition and performing the phase stability test using the interval

method for naphthalene/CO2 at 308.15 K are shown in Fig. 13. Like in the anthracene/CO2 system, at this

temperature there is only one root to the equifugacity equation at every pressure and that root is the correct,

stable solubility. Based on this information, we can conclude that 308.15 K is between the LCEP and the

UCEP of this system. Thek12 used at this temperature wask12 = 0:095, based on a fit to the solid-fluid

equilibrium data of McHugh and Paulaitis.20

Fig. 14 shows the computed results at 328.15 K. Here, unlike in the anthracene/CO2 case at thisT , for

a range of pressures up to about 310 bar, multiple roots to the equifugacity condition were found using the

interval approach, as indicated by the open circles on the plot. Using the interval tangent plane analysis

to test phase stability at these roots, we found that the lowest solubility roots were always the stable ones.

Thus, the solid line in Fig. 14, indicating stable solid-fluid equilibrium, is very similar to that in Fig. 13

for the 308.15 K case. It can be concluded that this temperature is still below the UCEP, as has been

shown experimentally.21,49 At this temperature, we usedk12 = 0:0974, again based on fit to the solid-fluid

equilibrium data of McHugh and Paulaitis,20 which is shown on the plot by solid triangles.

At 338.05 K, with the samek12 used at 328.15 K (k12 = 0:0974), multiple roots to the equifugacity

equation are also obtained over a wide range of pressures, as shown in Fig. 15. Using the interval phase

stability test, we were able to identify the correct, stable solutions. At this temperature, however, the lowest

solubility root does not always correspond to a stable phase. At low pressure, the low solubility root is the

correct result, indicating solid-vapor or solid-fluid equilibrium. However, at about 73.60 bar, both the lowest

solubility root and the highest solubility root are stable, indicating solid-liquid-vapor equilibrium; that is, a

pure solid phase in equilibrium with a vapor phase containing less than a tenth of a percent of naphthalene

and a liquid phase containing more than 60 mol% naphthalene. This pressure is reasonably close to the

experimentally observed SLV line, which is found at about 80 bar.49 At pressures above this three phase

line, the naphthalene-rich liquid phase is the stable root, and so solid-liquid equilibrium will exist, as long

as the initial loading 2 of naphthalene is sufficiently high. At even higher pressures, there is only one (high
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solubility) root to the equifugacity equation, representing the liquid phase in equilibrium with the solid. The

set of stable roots is shown by the solid curve in Fig. 15. Clearly, 338.05 K is above the UCEP for the

naphthalene/CO2 system and the phase diagram resembles that shown schematically in Figure 6.

Also shown in Fig. 15 are the experimental data of McHugh and Paulaitis20 at this temperature. They

originally reported these data as representing solid-fluid equilibrium. Clearly, however, according to the

Peng-Robinson model, the values that they reported do not correspond to the stable phase in equilibrium

with the solid, which would be required to have a composition of greater than 50 mol% naphthalene. As ac-

knowledged later,21 these measurements were actually the composition of a vapor phase in equilibrium with

a liquid—there was no solid present. However, since there was no visual observation of the sample, the re-

searchers did not realize that they were operating at a temperature above the UCEP, which was not measured

until later.21,49 To replicate computationally the experiments of McHugh and Paulaitis, we performed a cal-

culation at 338.05 K and 150 bar, in which we specified 2 = 0:05 instead of 2 ! 1; that is, a relatively

small initial loading of solute. In this case, because of the solute material balance constrainty2 2 [0;  2],

when we solve the equifugacity condition we only find one root (aty2 = 0:0182), and when that root is

tested for stability, we find that it does not correspond to a stable phase. This indicates, with certainty, that

the model does not predict solid-fluid equilibrium. In modeling this system, we would have to now discard

the assumption that a solid phase is present, and instead look for stable vapor-liquid equilibrium. This was

done using an interval-based, completely reliable flash routine that has been discussed previously.50 The

results of these vapor-liquid equilibrium calculations at a variety of pressures are shown by the dashed curve

in Fig. 15. The data of McHugh and Paulaitis that was thought to be solid-fluid, but which actually is not,

matches the composition of a vapor phase (predicted from the Peng-Robinson equation) in equilibrium with

a naphthalene-rich liquid phase relatively well. This was confirmed with the experimental data of Chung

and Shing,22 who measured the vapor-liquid equilibrium of this system at this temperature using a visual

cell. This vapor-liquid equilibria corresponds to the VLE envelope shown schematically in Fig. 6.

As one additional computational experiment at this temperature, we considered the the specification of

150 bar and 2 = 0:0001, an extremely small solute loading. In this case, using the interval approach to

solve the equifugacity condition, we found, that there were no roots, thus indicating with certainty that there

was no solid phase present at equilibrium. At these conditions, this mixture is stable as a single fluid phase,

corresponding to a point in the vapor phase region to the left of the VLE envelope in Fig. 6.

There are two very important points to be made from this example. First, experimentalists must be very

careful to look for the presence of liquid phases when attempting to measure solid-fluid equilibria. If optical
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cells are not available, they should model the phase behavior at higher temperatures, perhaps using the best-

fit k12 at a lower temperature where they are sure they are safely in the solid-fluid equilibrium region. Then,

in computing the phase behavior at the higher temperature, they must be careful to findall roots (not just

the lowest solubility root) to the equifugacity equation and to use a completely reliable method, such as the

one presented here, to test for phase stability. Second, modelers must be very careful to ascertain that their

model actually predicts the correct phase behavior for the system of interest. For instance, at 328.15 K, and

usingk12 = 0:095, instead of the valuek12 = 0:0974 used to compute Fig. 15, an SLV line is predicted at

about 153 bar, but only solid-fluid equilibria is observed experimentally. In this case, the lowest solubility

root might match the experimental solid-fluid data quite well, but this model would be incorrect because the

lowest solubility root is not stable at pressures above the SLV line. Thus if one looks only for one solubility

root and fails to do phase stability analysis, one might incorrectly assume that he or she had established a

good model of the system.

The last temperature that we examine for this system is at 304.25 K, just above the c.p. of pure CO2,

where we usek12 = 0:095. This is the value that fit the experimental data at 308.15 K, which, as shown

above, is safely in the solid-fluid region. The roots to the equifugacity equation at this temperature are shown

by the open circles in Fig. 16, where the region between about 72.2 and 73.2 bar is enlarged in the inset.

For a very small pressure range there are three roots to the equifugacity equation, as shown in the inset.

At pressures below about 72.825 bar, the lowest solubility root is stable, indicating solid-fluid equilibria.

At about 72.825 bar, both the lowest and highest solubility roots are stable, indicating solid-liquid-vapor

equilibria. As is the case at 338.05 K, at higher pressures, the highest solubility root is the stable one,

indicating solid-liquid equilibria. Thus, this is a temperature between the c.p. of the CO2 and the LCEP.

Qualitatively, the phase diagram for this system corresponds to that shown in Fig. 3 (temperatureTB in

Figure 1).

5.4 Example 4: Biphenyl/CO2

The melting point of biphenyl is 344.15 K,17 again close to the c.p. of CO2, and this is another system

for which experimental data has been mistakenly reported as solid-fluid equilibrium,20 but later identified as

actually vapor-liquid equilibrium.21

The results for this system at 308.15 K are shown in Fig. 17. At this temperature, there is only one

equifugacity root (open circle) at each pressure, and these are stable (solid line). This indicates solid-fluid

equilibrium only, so this temperature is between the LCEP and the UCEP, just as is the case for naphthalene

17



at this same temperature. Here we usedk12 = 0:08, based on a fit to data of Chung and Shing.22

Using the samek12 = 0:08 determined at 308.15 K, the Peng-Robinson equation predicts that this

system can form a liquid phase at 333.15 K. As shown in Fig. 18, at this temperature there are three roots to

the equifugacity equation over a wide range of pressures (assuming 2 ! 1 ). At low pressures the interval

tangent plane analysis correctly identifies the lowest solubility root as stable. At about 45.19 bar, both the

lowest and highest roots are stable, indicating solid-liquid-vapor equilibrium, and at higher pressures the

high solubility root is the stable one, indicating solid-liquid equilibrium. This is entirely equivalent to the

naphthalene/CO2 system at 338.05K. The model shows that this temperature must be above the UCEP and,

indeed, visual observations of this system indicate the UCEP is at 328.25 K.21

5.5 Example 5: Anthracene/CO2/Ethane

The interval techniques for solving the equifugacity condition and testing for phase stability are also

applicable to multicomponent systems. Here we provide an example in which we compute the solubility of

anthracene in a mixture of CO2 and ethane at 308.15 K. The composition of the solvent on a solute-free basis

was taken to be�1 = 5=6 for CO2, and�3 = 1=6 for ethane. The binary interaction parameters used were

determined from binary data:k12 = 0:0675 (anthracene/CO2),48 k23 = 0:0225 (anthracene/ethane),48 and

k13 = 0:1322 (ethane/CO2 from the AspenPlus database). Since the melting point of anthracene (489.15

K)17 is well above the operating temperature, we anticipate only solid-fluid equilibrium and this is what

we observe, as shown in Figure 19 (at the system temperature, the phase diagram will be similar to that

shown schematically in Figure 5, and there will be no vapor-liquid equilibrium). There is only one root to

the equifugacity equation at each pressure investigated (again assuming 2 ! 1). Moreover, the root at

each pressure is stable, as determined from the interval tangent plane analysis for the ternary system. As

discussed above in Section 4.2, if, in a binary system, there is only one equifugacity root across the whole

composition range ( 2 ! 1), then testing for stability could be bypassed. However, with a mixed solvent,

the phase stability test must be performed. This is because the original fluid mixture might be two phase

(usually vapor-liquid) or the dissolution of the solute in the fluid mixture may induce a vapor-liquid phase

split. This cannot be determined from the solid-fluid equifugacity equation, but would be identified during

the tangent plane phase stability test, which would identify the solid/fluid equifugacity root as not stable. In

such a case, the assumption of solid-fluid equilibrium would have to abandoned, and instead vapor-liquid,

or solid-vapor-liquid equilibrium considered. However, in this example, the single root to the equifugacity

equation at each pressure is indeed stable, as indicated on Fig. 19.
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6 Concluding Remarks

We have described here a new method for reliably computing solid-fluid equilibrium at constant temper-

ature and pressure, or for verifying the nonexistence of a solid-fluid equilibrium state at the given conditions.

The method is based on interval analysis, in particular an interval Newton/generalized bisection algorithm,

which provides amathematical and computational guaranteethat all roots to the equifugacity equation are

enclosed, and that phase stability analysis is performed correctly. The guarantee of reliability comes at some

cost in terms of computation time. Thus, one has a choice between fast methods that may give the wrong

answer, or a slower method that is guaranteed to give the correct answer. In the work presented here, the

fluid phase was modeled using a cubic EOS model, in particular the Peng-Robinson equation. However,

the technique is general purpose and can be applied in connection with any model of the fluid phase. In

addition to the solution of solid-fluid equilibrium problems, the methodology used here can also be applied

to a wide variety of other problems in the modeling of phase behavior,26,30,31,34,51and in the solution of

process modeling problems.43
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Table 1: Physical properties used in example problems.

compound Tc (K) Pc (bar) ! vS (cc/mol) A B (K)

�Caffeine52,53 855.62 41.46 0.555 145.68 15.031 5781

Anthracene54 869.3 31.24 0.353 142.6 14.755 5313.7

Naphthalene54 748.4 40.5 0.302 111.4 13.583 3733.9

Biphenyl54 789.0 38.5 0.372 132.0 14.804 4367.4

Carbon Dioxide54 304.2 73.76 0.225

Ethane54 305.4 48.8 0.098

�For caffeine, the critical properties and acentric factor were estimated by the Joback group contribution
approach, using parameters from Reid et al.55
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Figure Captions

Figure 1. The pressure-temperature projection of a typical binary solvent-solute system. See text for discus-
sion.

Figure 2. Pressure-composition diagram at temperatureTA in Figure 1. See text for discussion.

Figure 3. Pressure-composition diagram at temperatureTB in Figure 1. See text for discussion.

Figure 4. Pressure-composition diagram at temperatureTC in Figure 1. See text for discussion.

Figure 5. Pressure-composition diagram at temperatureTD in Figure 1. See text for discussion.

Figure 6. Pressure-composition diagram at temperatureTE in Figure 1. See text for discussion.

Figure 7. Hypothetical plot of Gibbs energy of mixinggm vs. solubilityy2, showing a situation in which
there is only one root to the equifugacity condition.gS2 indicates the Gibbs energy of pure solid solute
relative to pure fluid solute at the system temperature and pressure.

Figure 8. Hypothetical plot of Gibbs energy of mixinggm vs. solubilityy2, showing a situation in which
there are three roots to the equifugacity condition. Only the lowest solubility root represents a stable phase.
gS2 indicates the Gibbs energy of pure solid solute relative to pure fluid solute at the system temperature and
pressure.

Figure 9. Hypothetical plot of Gibbs energy of mixinggm vs. solubilityy2, showing a situation in which
there are three roots to the equifugacity condition. Only the highest solubility root represents a stable phase.
gS2 indicates the Gibbs energy of pure solid solute relative to pure fluid solute at the system temperature and
pressure.

Figure 10. Hypothetical plot of Gibbs energy of mixinggm vs. solubilityy2, showing a situation in which
there are three roots to the equifugacity condition. Here both the lowest and highest solubility roots repre-
sents stable phases, indicating solid-liquid-vapor equilibrium.gS2 indicates the Gibbs energy of pure solid
solute relative to pure fluid solute at the system temperature and pressure.

Figure 11. Computed equifugacity roots for Example 1, showing the solubility of caffeine in CO2. There is
only one equifugacity root at each temperature and pressure considered, and that root corresponds to stable
solid-fluid equilibrium.

Figure 12. Computed equifugacity roots for Example 2, showing the solubility of anthracene in CO2. There
is only one equifugacity root at each temperature and pressure considered, and that root corresponds to
stable solid-fluid equilibrium.

Figure 13. Computed equifugacity roots for Example 3, showing the solubility of naphthalene in CO2 at
308.15 K. At this temperature, there is only one equifugacity root at each pressure considered, and that root
corresponds to stable solid-fluid equilibrium.
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Figure 14. Computed equifugacity roots for Example 3, showing the solubility of naphthalene in CO2 at
328.15 K. At this temperature, there are multiple equifugacity roots for pressures below about 310 bar.
The lowest solubility root always corresponds to stable solid-fluid equilibrium. Experimental data is from
McHugh and Paulaitis.20

Figure 15. Computed equifugacity roots for Example 3, showing the solubility of naphthalene in CO2 at
338.05 K. At this temperature, there are multiple equifugacity roots for pressures below about 170 bar. At
low pressure the lowest solubility root corresponds to stable solid-fluid equilibrium, but at higher pressure
it is the highest solubility root that is stable. A three-phase line (SLV) occurs at about 73.60 bar. The
experimental data of McHugh and Paulaitis20 was originally reported as solid-fluid, but clearly is not. See
text for further discussion.

Figure 16. Computed equifugacity roots for Example 3, showing the solubility of naphthalene in CO2 at
304.25 K. The portion of the curve enclosed in the box is enlarged in the inset to its right. At this temperature,
there are multiple equifugacity roots for a small range of pressures between about 72.2 and 73.2 bar, with a
three-phase line (SLV) at about 72.825 bar.

Figure 17. Computed equifugacity roots for Example 4, showing the solubility of biphenyl in CO2 at
308.15 K. At this temperature, there is only one equifugacity root at each pressure considered, and that
root corresponds to stable solid-fluid equilibrium.

Figure 18. Computed equifugacity roots for Example 4, showing the solubility of biphenyl in CO2 at 333.15
K. At this temperature, there are multiple equifugacity roots for pressures below about 160 bar. At low
pressure the lowest solubility root corresponds to stable solid-fluid equilibrium, but at higher pressure it is
the highest solubility root that is stable. A three-phase line (SLV) occurs at about 45.19 bar.

Figure 19. Computed equifugacity roots for Example 5, showing the solubility of anthracene in a mixed
solvent of 5:1 (molar) CO2 and ethane at 308.15 K. At this temperature, there is only one equifugacity root
at each pressure considered, and that root corresponds to stable solid-fluid equilibrium.
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Figure 1: The pressure-temperature projection of a typical binary solvent-solute system. See text for discus-
sion.
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Figure 2: Pressure-composition diagram at temperatureTA in Figure 1. See text for discussion.
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Figure 3: Pressure-composition diagram at temperatureTB in Figure 1. See text for discussion.
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Figure 4: Pressure-composition diagram at temperatureTC in Figure 1. See text for discussion.
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Figure 5: Pressure-composition diagram at temperatureTD in Figure 1. See text for discussion.
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Figure 6: Pressure-composition diagram at temperatureTE in Figure 1. See text for discussion.
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Figure 7: Hypothetical plot of Gibbs energy of mixinggm vs. solubility y2, showing a situation in which
there is only one root to the equifugacity condition.gS2 indicates the Gibbs energy of pure solid solute
relative to pure fluid solute at the system temperature and pressure.
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Figure 8: Hypothetical plot of Gibbs energy of mixinggm vs. solubility y2, showing a situation in which
there are three roots to the equifugacity condition. Only the lowest solubility root represents a stable phase.
gS2 indicates the Gibbs energy of pure solid solute relative to pure fluid solute at the system temperature and
pressure.
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Figure 9: Hypothetical plot of Gibbs energy of mixinggm vs. solubility y2, showing a situation in which
there are three roots to the equifugacity condition. Only the highest solubility root represents a stable phase.
gS2 indicates the Gibbs energy of pure solid solute relative to pure fluid solute at the system temperature and
pressure.
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Figure 10: Hypothetical plot of Gibbs energy of mixinggm vs. solubilityy2, showing a situation in which
there are three roots to the equifugacity condition. Here both the lowest and highest solubility roots repre-
sents stable phases, indicating solid-liquid-vapor equilibrium.gS2 indicates the Gibbs energy of pure solid
solute relative to pure fluid solute at the system temperature and pressure.
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Figure 11: Computed equifugacity roots for Example 1, showing the solubility of caffeine in CO2. There is
only one equifugacity root at each temperature and pressure considered, and that root corresponds to stable
solid-fluid equilibrium.
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Figure 12: Computed equifugacity roots for Example 2, showing the solubility of anthracene in CO2. There
is only one equifugacity root at each temperature and pressure considered, and that root corresponds to
stable solid-fluid equilibrium.
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Figure 13: Computed equifugacity roots for Example 3, showing the solubility of naphthalene in CO2 at
308.15 K. At this temperature, there is only one equifugacity root at each pressure considered, and that root
corresponds to stable solid-fluid equilibrium.
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Figure 14: Computed equifugacity roots for Example 3, showing the solubility of naphthalene in CO2 at
328.15 K. At this temperature, there are multiple equifugacity roots for pressures below about 310 bar.
The lowest solubility root always corresponds to stable solid-fluid equilibrium. Experimental data is from
McHugh and Paulaitis.20
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Figure 15: Computed equifugacity roots for Example 3, showing the solubility of naphthalene in CO2 at
338.05 K. At this temperature, there are multiple equifugacity roots for pressures below about 170 bar. At
low pressure the lowest solubility root corresponds to stable solid-fluid equilibrium, but at higher pressure
it is the highest solubility root that is stable. A three-phase line (SLV) occurs at about 73.60 bar. The
experimental data of McHugh and Paulaitis20 was originally reported as solid-fluid, but clearly is not. See
text for further discussion.
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Figure 16: Computed equifugacity roots for Example 3, showing the solubility of naphthalene in CO2 at
304.25 K. The portion of the curve enclosed in the box is enlarged in the inset to its right. At this temperature,
there are multiple equifugacity roots for a small range of pressures between about 72.2 and 73.2 bar, with a
three-phase line (SLV) at about 72.825 bar.
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Figure 17: Computed equifugacity roots for Example 4, showing the solubility of biphenyl in CO2 at 308.15
K. At this temperature, there is only one equifugacity root at each pressure considered, and that root corre-
sponds to stable solid-fluid equilibrium.
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Figure 18: Computed equifugacity roots for Example 4, showing the solubility of biphenyl in CO2 at 333.15
K. At this temperature, there are multiple equifugacity roots for pressures below about 160 bar. At low
pressure the lowest solubility root corresponds to stable solid-fluid equilibrium, but at higher pressure it is
the highest solubility root that is stable. A three-phase line (SLV) occurs at about 45.19 bar.
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Figure 19: Computed equifugacity roots for Example 5, showing the solubility of anthracene in a mixed
solvent of 5:1 (molar) CO2 and ethane at 308.15 K. At this temperature, there is only one equifugacity root
at each pressure considered, and that root corresponds to stable solid-fluid equilibrium.


