
Parallel Branch-and-Bound
for Chemical Engineering Applications:
Load Balancing and Scheduling Issues

Chao-Yang Gau and Mark A. Stadtherr�

Department of Chemical Engineering
University of Notre Dame

Notre Dame, IN 46556 USA

VECPAR 2000
Porto, Portugal

June 21–23, 2000

�Fax: (219)631-8366; E-mail: markst@nd.edu

Outline

� Motivation: Reliability in Computing

� Methodologies: Interval Analysis,
Branch-and-Prune, Branch-and-Bound

� Examples (Serial Implementation)

– Phase Stability Analysis
– Parameter Estimation for Vapor-Liquid

Equilibrium (VLE) Models

� Parallel Implementation on a Cluster of
Workstations

� Some Performance Results

VECPAR 2000 2

High Performance Computing

In chemical engineering and other areas of
engineering and science, high performance
computing is providing the capability to:

� Solve problems faster.

� Solve larger problems.

� Solve more complex problems.

) Solve problems more reliably.

VECPAR 2000 3

Motivation

� In process modeling and other applications,
chemical engineers frequently need to solve
nonlinear equation systems in which the
variables are constrained physically within upper
and lower bounds; that is, to solve:

f(x) = 0

xL � x � xU

� These problems may:

– Have multiple solutions
– Have no solution
– Be difficult to converge to any solution

VECPAR 2000 4

Motivation (continued)

� There is also frequent interest in globally
minimizing a nonlinear function subject to
nonlinear equality and/or inequality constraints;
that is, to solve (globally):

min
x

�(x)

subject to
h(x) = 0

g(x) � 0

xL � x � xU

� These problems may:

– Have multiple local minima (in some cases, it
may be desirable to find them all)

– Have no solution (infeasible NLP)
– Be difficult to converge to any local minima

VECPAR 2000 5

Motivation (continued)

� Floating point arithmetic difficulties may occur

� Example: Rump’s problem (1988):

f(x; y) = 333:75y6

+x2(11x2y2 � y6 � 121y4 � 2)

+5:5y8 + x=2y

� Evaluate f(x; y) for x = 77617 and y = 33096
using a FORTRAN program.

� All inputs are machine numbers (representable
exactly in floating point arithmetic), so errors in
function evaluation are due to problems with
floating point arithmetic.

VECPAR 2000 6

Rump’s Problem

� Evaluation on an IBM S/370 using a FORTRAN
program

� Single precision

f = 1:172603 : : :

VECPAR 2000 7

Rump’s Problem

� Evaluation on an IBM S/370 using a FORTRAN
program

� Single precision

f = 1:172603 : : :

� Double precision

f = 1:1726039400531 : : :

VECPAR 2000 7

Rump’s Problem

� Evaluation on an IBM S/370 using a FORTRAN
program

� Single precision

f = 1:172603 : : :

� Double precision

f = 1:1726039400531 : : :

� Extended precision

f = 1:172603940053178 : : :

VECPAR 2000 7

Rump’s Problem

� Evaluation on an IBM S/370 using a FORTRAN
program

� Single precision

f = 1:172603 : : :

� Double precision

f = 1:1726039400531 : : :

� Extended precision

f = 1:172603940053178 : : :

� The correct answer is

f = �0:827396059946 : : :

VECPAR 2000 7

Rounding Error and the Patriot Missile

� After the Gulf War, it was determined that
(despite contrary publicity during the War) ”the
Patriot’s intercept rate [of Scud missiles] could
be much lower than ten percent, perhaps even
zero.”

� Rounding error in the tracking calculations (due
to repeated multiplications by 0.1) was found to
be the key problem.

VECPAR 2000 8

High Performance Computing:

Are We Just Getting the

Wrong Answer Faster?

VECPAR 2000 9

Motivation: Reliability in Computing

� Finding multiple solutions in nonlinear equation
solving

� Existence and uniqueness of solutions

� Global vs. local optimization

� Feasibility of NLPs

� Floating point arithmetic problems

VECPAR 2000 10

Methodologies

� For dealing with these issues there exist
methods, based on interval analysis, that, given
initial bounds on each variable, can:

– Find (enclose) any and all solutions to a
nonlinear equation system to a desired
tolerance

– Determine that there is no solution of a
nonlinear equation system

– Find the global optimum of a nonlinear
objective function

� These methods:

– Provide a mathematical guarantee of reliability
– Deal automatically with rounding error, and so

also provide a computational guarantee of
reliability

– Represent a particular type of
branch-and-prune algorithm (or
branch-and-bound for optimization)

VECPAR 2000 11

Background—Interval Analysis

� A real interval X = [a; b] = fx 2 < j a � x � bg is
a segment on the real number line

� An interval vector X = (X1;X2; :::;Xn)
T is an

n-dimensional rectangle or “box”.

� Basic interval arithmetic for X = [a; b] and
Y = [c; d] is X op Y = fx op y j x 2 X; y 2 Y g

X + Y = [a+ c; b+ d]

X � Y = [a� d; b� c]

X � Y = [min(ac; ad; bc; bd);max(ac; ad; bc; bd)]

X � Y = [a; b]� [1=d; 1=c]; 0 =2 Y

� For X � Y when 0 2 Y , an extended interval
arithmetic is available.

� Computed endpoints are rounded out to
guarantee the enclosure.

VECPAR 2000 12

Interval Analysis (continued)

� Interval elementary functions (e.g. exp(X),
log(X), etc.) are also available.

� The interval extension F (X) encloses all values
of f(x) for x 2 X. That is,
F (X) � ff(x) j x 2 Xg.

� Interval extensions can be computed using
interval arithmetic (the “natural” interval
extension), or with other techniques

� If a variable occurs more than once in an
expression, the natural interval extension may
not tightly bound the true range

VECPAR 2000 13

Interval Analysis (continued)

� Example: f(x) = x=(x� 1) evaluated for the
interval X = [2; 3]

� The natural interval extension is

F ([2; 3]) = [2; 3]=([2; 3]� 1)

= [2; 3]=[1; 2] = [1; 3]

� Rearranged f(x) = x=(x� 1) = 1 + 1=(x� 1),
the natural interval extension is

F ([2; 3]) = 1 + 1=([2; 3]� 1)

= 1 + 1=[1; 2]

= 1 + [0:5; 1] = [1:5; 2]

which is the true range.

� This is the “dependency” problem. In the first
case, each occurrence of x was treated as a
independent interval in performing interval
arithmetic.

VECPAR 2000 14

Interval Methodology for Problem
Solving

� Interval Newton/Generalized Bisection (IN/GB)

– Given a system of equations to solve and an
initial interval (bounds on all variables):

– IN/GB can find (enclose) with mathematical
and computational certainty either all
solutions or determine that no solutions exist.
(e.g., Kearfott, 1996; Neumaier, 1990)

� A general purpose approach : requires no
simplifying assumptions or problem
reformulations

� Why enclose solutions?: Even for a simple
problem like 10x = 1, the exact solution
(x = 1=10) is not a machine-representable
number. The best one can do is enclose the
solution with a very small interval with
machine-representable bounds.

VECPAR 2000 15

Interval Approach (Cont’d)

Problem: Solve f(x) = 0 for all roots in initial
interval X(0).

Basic iteration scheme: For a particular subinterval
(box), X(k), arising from some branching
(bisection) scheme, perform root inclusion test:

� Compute the interval extension (range) of each
function in the system.

� If 0 is not an element of each range, delete
(prune) the box.

� If 0 is an element of each range, then compute
the image, N(k), of the box by solving the
interval Newton equation

F 0(X(k))(N(k) � x(k)) = �f(x(k))

� x(k) is some point in the interior of X(k).

� F 0
�
X(k)

�
is an interval extension of the

Jacobian of f(x) over the box X(k).

VECPAR 2000 16

Interval Newton Method

� There is no solution in X(k).

VECPAR 2000 17

Interval Newton Method

� There is a unique solution in X(k).

� This solution is in N(k).

� Point Newton method will converge to solution.

VECPAR 2000 18

Interval Newton Method

� Any solutions in X(k) are in intersection of X(k)

and N(k).

� If intersection is sufficiently small, repeat root
inclusion test.

� Otherwise, bisect the intersection and apply root
inclusion test to each resulting subinterval.

VECPAR 2000 19

Interval Approach (Cont’d)

� This is a branch-and-prune scheme on a binary
tree.

� No strong assumptions about the function f(x)
need be made.

� The problem f(x) = 0 must have a finite number
of real roots in the given initial interval.

� The method is not suitable if f(x) is a
“black-box” function.

� If there is a solution at a singular point, then
existence and uniqueness cannot be confirmed.
The eventual result of the IN/GB approach will
be a very narrow enclosure that may contain
one or more solutions.

VECPAR 2000 20

Interval Approach (Cont’d)

� Can be extended to global optimization
problems.

� For unconstrained problems, solve for stationary
points

� For constrained problems, solve for KKT points
(or more generally for Fritz-John points)

� Add an additional pruning condition:

– Compute interval extension (range) of
objective function.

– If its lower bound is greater than a known
upper bound on the global minimum, prune
this subinterval since it cannot contain the
global minimum.

� This is a branch-and-bound scheme on a binary
tree.

VECPAR 2000 21

Phase Stability Analysis

� Will a mixture (feed) at a given T , P , and
composition z split into multiple phases?

� A key subproblem in determination of phase
equilibrium, and thus in the design and analysis
of separation operations.

� Using tangent plane analysis, can be formulated
as a minimization problem, or as an equivalent
nonlinear equation solving problem.

� Equation system to be solved may have trivial
and/or multiple roots (optimization problem has
multiple local optima).

� Conventional techniques may fail to converge, or
converge to false or trivial solutions.

VECPAR 2000 22

Tangent Plane Analysis

� A phase at given T , P , and feed composition z
is not stable (and may split) if the Gibbs energy
of mixing vs. composition surface

m(x; v) = �gmix = �Ĝmix=RT

ever falls below a plane tangent to the surface at
z

mtan(x) = m(z; vz) +

nX
i=1

�
@m

@xi

�����
z

(xi � zi)

� That is, if the tangent plane distance

D(x; v) = m(x; v)�mtan(x)

is negative for any composition x, the phase is
not stable.

� In this context, “not stable” refers to both the
metastable and classically unstable cases.

VECPAR 2000 23

Example

n-Butyl Acetate—Water, NRTL Model

Gibbs energy of mixing m vs. x1

0.2 0.4 0.6 0.8 1
x1

-0.02

0.02

0.04 m

VECPAR 2000 24

Example (continued)

Feed composition z1 = 0.95

0.2 0.4 0.6 0.8 1
x1

-0.04

0.04

0.08

m

m_tan

D

Phase of this composition is stable (D is never
negative).

VECPAR 2000 25

Example (continued)

Feed composition z1 = 0.62

0.2 0.4 0.6 0.8 1
x1

-0.02

0.02

0.04
m

m_tan

D

Phase of this composition is not stable and can
split (D becomes negative).

VECPAR 2000 26

Optimization Formulation

� To determine if D ever becomes negative,
determine the minimum of D and examine its
sign

min
x;v

D(x; v)

subject to

1�
nX
i=1

xi = 0

EOS(x; v) = 0

� Trivial local optimum (minimum or maximum) at
the feed composition x = z; may be multiple
nontrivial optima. Need technique guaranteed to
find the global minimum.

VECPAR 2000 27

Equation Solving Formulation

� Stationary points of the optimization problem
can be found be solving the nonlinear equation
system

��
@m

@xi

�
�

�
@m

@xn

��
�

��
@m

@xi

�
�

�
@m

@xn

��
z

= 0;

i = 1; : : : ; n� 1

1�

nX
i=1

xi = 0

EOS(x; v) = 0

� Trivial root at the feed composition x = z; may
be multiple nontrivial roots. Need technique
guaranteed to find all the roots.

VECPAR 2000 28

Example – Phase Stability

CH4, H2S, T = 190 K, P = 40 atm, z1 = 0.0187,
SRK EOS model. Tangent plane distance D vs. x1

0.2 0.4 0.6 0.8 1
x1

0.02

0.04

0.06

0.08

0.1
D

� Five stationary points (four minima, one
maximum).

� Standard local methods (e.g. Michelsen, 1982)
known to fail (predict stability when system is
actually not stable).

VECPAR 2000 29

Example (continued)

CH4, H2S, T = 190 K, P = 40 atm, z1 = 0.0187,
SRK EOS model. Tangent plane distance D vs. x1
(region near origin)

0.05 0.1 0.15 0.2
x1

0.005

0.01

0.015

0.02

D

VECPAR 2000 30

Example (continued)

� Use interval method to solve the NLE system,
finding all the stationary points (Hua et al., 1995)

� Initial interval includes all physically feasible
values of mole fraction and molar volume

Feed (z1; z2) Stationary Points (roots)

and CPU time (x1; x2; v [cm3/mol]) D

(0.0187, 0.9813) (0.885, 0.115, 36.6) 0.011

0.20 sec (0.0187, 0.9813, 207.3) 0.0

(0.031, 0.969, 115.4) 0.008

(0.077, 0.923, 64.1) -0.004

(0.491, 0.509, 41.5) 0.073

� CPU time on Sun Ultra 2/1300.

� All stationary points easily found, showing the
feed to be not stable.

� Presence of multiple real volume roots causes
no difficulties.

VECPAR 2000 31

Parameter Estimation in VLE Modeling

� Goal: Determine parameter values in liquid
phase activity coefficient models (e.g. Wilson,
van Laar, NRTL, UNIQUAC):

�i;calc = fi(x�;�)

� The relative least squares objective is:

�(�) =

nX
i=1

pX
�=1

�
�i;calc(�)� �i;exp

�i;exp

�2
:

� Experimental values �i;exp of the activity
coefficients are obtained from VLE
measurements at compositions x�; � = 1; : : : ; p.

� This problem has been solved for many models,
systems, and data sets in the DECHEMA VLE
Data Collection (Gmehling et al., 1977-1990).

VECPAR 2000 32

Parameter Estimation (Cont’d)

� A common approach for solving this problem is
to use the gradient of �(�) and to seek the
stationary points of �(�) by solving
g(�) � r�(�) = 0.

� This system may have many roots, including
local minima, local maxima and saddle points.

� To insure that the global minimum of �(�) is
found, the capability to find all the roots of
g(�) = 0 is needed. This is provided by the
interval technique (IN/GB).

� Interval Newton can be combined with
branch-and-bound so that roots of g(�) = 0 that
cannot be the global minimum need not be
found.

VECPAR 2000 33

Example – Parameter Estimation

� The binary system benzene (1) and
hexafluorobenzene (2) was studied.

� Ten problems, each a different data set from the
DECHEMA VLE Data Collection were
considered.

� The model used was the Wilson equation. This
has binary interaction parameters

�12 = (v2=v1) exp(��1=RT) and
�21 = (v1=v2) exp(��2=RT)

where v1 and v2 are pure component molar
volumes.

� The energy parameters �1 and �2 must be
estimated.

� Parameter estimation results for �1 and �2 are
given in the DECHEMA Collection for all ten
problems.

VECPAR 2000 34

Results

� Each problem was solved using the IN/GB
approach to determine the globally optimal
values of the �1 and �2 parameters (Gau et al.,
2000).

� These results were compared to those
presented in the DECHEMA Collection.

� For each problem, the number of local minima in
�(�) was also determined (branch and bound
steps were turned off).

� Table 1 compares parameter estimation results
for �1 and �2 with those given in the DECHEMA
Collection. New globally optimal parameter
values are found in five cases.

VECPAR 2000 35

Table 1: IN/GB results vs. DECHEMA values

Data Data T DECHEMA IN/GB No. of CPU
Set points (oC) �1 �2 �(�) �1 �2 �(�) Minima time(s)
1* 10 30 437 -437 0.0382 -468 1314 0.0118 2 15.1
2* 10 40 405 -405 0.0327 -459 1227 0.0079 2 13.7
3* 10 50 374 -374 0.0289 -449 1157 0.0058 2 12.3
4* 11 50 342 -342 0.0428 -424 984 0.0089 2 10.9
5 10 60 -439 1096 0.0047 -439 1094 0.0047 2 9.7
6 9 70 -424 1035 0.0032 -425 1036 0.0032 2 7.9

Data Data P DECHEMA IN/GB No. of CPU
Set points (mmHg) �1 �2 �(�) �1 �2 �(�) Minima time(s)
7* 17 300 344 -347 0.0566 -432 993 0.0149 2 17.4
8 16 500 -405 906 0.0083 -407 912 0.0083 2 14.3
9 17 760 -407 923 0.0057 -399 908 0.0053 1 13.9

10 17 760 -333 702 0.0146 -335 705 0.0146 2 20.5

*:New globally optimal parameters found.

VECPAR 2000 36

Discussion

� Does the use of the globally optimal parameters
make a significant difference when the Wilson
model is used to predict vapor-liquid equilibrium
(VLE)?

� A common test of the predictive power of a
model for VLE is its ability to predict azeotropes.

� Experimentally this system has two
homogeneous azeotropes.

� Table 2 shows comparison of homogeneous
azeotrope prediction when the locally optimal
DECHEMA parameters are used, and when the
global optimal parameters are used.

VECPAR 2000 37

Table 2: Homogeneous azeotrope prediction

Data T(oC)or DECHEMA IN/GB
Set P (mmHg) x1 x2 P or T x1 x2 P or T

1 T=30 0.0660 0.9340 P=107 0.0541 0.9459 P=107
0.9342 0.0658 121

2 40 0.0315 0.9685 168 0.0761 0.9239 168
0.9244 0.0756 185

3 50 NONE 0.0988 0.9012 255
0.9114 0.0886 275

4 50 NONE 0.0588 0.9412 256
0.9113 0.0887 274

7 P=300 NONE 0.1612 0.8388 T=54.13
0.9315 0.0685 52.49

� Based on DECHEMA results, one would conclude Wilson is a poor
model for this system. But actually Wilson is a reasonable model if
the parameter estimation problem is solved correctly.

VECPAR 2000 38

Other Types of Problems Solved

� Location of azeotropes (Maier et al., 1998, 1999,
2000)

– Homogeneous
– Heterogeneous
– Reactive

� Location of mixture critical points (Stradi et al.,
1999)

� Solid-fluid equilibrium (Xu et al., 2000)

� General process modeling problems – up to 163
equations (Schnepper and Stadtherr, 1996)

VECPAR 2000 39

Parallel Branch-and-Bound Techniques

� Branch-and-Bound (BB) and branch-and-prune
(BP) have important applications in engineering
and science, especially when a global solution is
sought

– analysis of phase behavior
– process synthesis
– molecular modeling
– etc.

� BB and BP involve successive subdivision of the
problem domain to create subproblems, thus
requiring a tree search process

– Applications are often computationally intense
– Subproblems (tree nodes) are independent
– A natural opportunity for use of parallel computing

� There are various BB and BP schemes; we use
an interval Newton/generalized bisection
(IN/GB) method.

VECPAR 2000 40

Parallel BB (cont’d)

� For practical problems, the binary tree that
needs to be searched may be quite large.

� The binary trees may be highly irregular, and
can result in highly uneven distribution of work
among processors and thus poor overall
performance (e.g., idle processors).

� Need an effective work scheduling and load
balancing scheme to do parallel tree search
efficiently.

� Manager-worker schemes (centralized global
stack management) are popular but scale poorly
due to communication expense and bottlenecks.

� Many implementations of parallel BB have been
studied (Kumar et al., 1994; Gendron and
Crainic, 1994) for various target architectures.

VECPAR 2000 41

Work Scheduling and Load Balancing

� Objective: Schedule the workload among
processors to minimize communication delays
and execution time, and maximize computing
resource utilization.

� Use Dynamic Scheduling

– Redistribute workload concurrently at runtime.
– Transfer workload from a heavily loaded

processor to a lightly loaded one (load
balancing).

� Target architecture: Distributed computing on a
networked cluster using message passing.

– Often relatively inexpensive.
– Uses widely available hardware.

� Use distributed (multiple pool) load balancing.

VECPAR 2000 42

Distributed Load Balancing

� Each processor locally makes the workload
placement decision to maintain the local interval
stack and prevent itself from becoming idle.

� Alleviates bottleneck effects from centralized
load balancing policy (manager/worker).

� Reduction of communication overhead could
provide high scalability for the parallel
computation.

� Components of typical schemes

– Workload state measurement
– State information exchange
– Transfer initiation
– Workload placement
– Global termination

VECPAR 2000 43

Components

� Workload state measurement

– Evaluate local workload using some “work
index.”

– Use stack length: number of intervals (boxes)
remaining to be processed.

� State information exchange

– Communicate local workload state to other
“cooperating” processors

– Selection of cooperating processors defines a
virtual network

– Virtual network: Global (all-to-all), 1-D torus,
2-D torus, etc.

� Transfer initiation

– Sender initiate
– Receiver initiate
– Symmetric (sender or receiver initiate)

VECPAR 2000 44

Components (cont’d)

� Workload placement

– Work-adjusting rule: How to distribute work
(boxes) among cooperating processors and
how much to transfer

� Work stealing (e.g., Blumofe and Leiserson, 1994)
� Diffusive propagation (e.g., Heirich and Taylor, 1995)
� Etc.

– Work-selection rule: Which boxes should be
transferred

� Breadth first
� Best first (based on the lower bound value)
� Depth first
� Various heuristics

� Global termination

– Easy to detect with synchronous, all-to-all
communication

– For local and/or asynchronous
communication, use Dijkstra’s token
algorithm.

VECPAR 2000 45

Parallel Implementations

� Three types of strategies were implemented.

– Synchronous Work Stealing (SWS)
– Synchronous Diffusive Load Balancing

(SDLB)
– Asynchronous Diffusive Load Balancing

(ADLB)

� These are listed in order of likely effectiveness.

� All were implemented in Fortran-77 using LAM
(Local Area Multicomputer) MPI (Laboratory for
Scientific Computing, University of Notre Dame).

VECPAR 2000 46

Synchronous Work Stealing

� Periodically exchange workload information
(workflg) and any improved upper bound value
(for optimization) using synchronous global
(all-to-all) blocking communication.

� Once idle, steal one interval (box) from the
processor with the heaviest work load (receiver
initiate)

� Difficulties

– Large network overhead (global, all-to-all)
– Idle time from process synchronism and blocking

communication
P0 P1 P2 P3

After T tests

 MPI_ALLGATHER
workflg = no. of stack boxes

Make placement decision

Transfer workload

Comm.

Comp.

Comp.

box box

VECPAR 2000 47

Synchronous Diffusive Load Balancing

� Use local communication: Processors
periodically exchange work state and units of
work with their immediate neighbors to maintain
their workload.

� Typical workload adjusting scheme (symmetric
initiation):

u(j) = 0:5[workflg(i)� workflg(j)]

(i: local processor: j: neighbor processor)

– If u(j) is positive and greater than some tolerance:
send intervals (boxes).

– If u(j) is negative and less than some tolerance:
receive intervals (boxes).

� Messages have higher granularity

� Synchronism and blocking communication still
cause inefficiencies.

VECPAR 2000 48

Synchronous Diffusive Load Balancing

P0 P1 P2 P3

After T tests

Exchange workload
state information

Make placement decision

Workload transfer

Comp.

Comm.

Comp.

box box

Before balancing

After balancing

Concentration

VECPAR 2000 49

Asynchronous Diffusive Load
Balancing

� Use asynchronous nonblocking communication
to send workload information and transfer
workload

� Overlaps communication and computation.

� Receiver-initiated diffusive workload transfer
scheme:

– Send out work state information only if it falls
below some threshold.

– Donor processor follows diffusive scheme to
determine amount of work to send (if any).

– Recognizes that workload balance is less
important than preventing idle states.

� Dijkstra’s token algorithm used to detect global
termination.

VECPAR 2000 50

Asynchronous Diffusive Load
Balancing

Send out workflg(i)

Receive workflg(j)

Send out boxes

 Receive boxes

Pi

Comp.

Comp.

Comp.

Comp.

Comp.

Comm.

Comm.

Comm.

Comm.

(Flexible sequence)

VECPAR 2000 51

Testing Environment

� Physical hardware: Sun Ultra workstations
connected by switched Ethernet (100Mbit)

M
$

M M M

$ $ $P P P P ⋅ ⋅ ⋅⋅ ⋅ ⋅

SWITCHED ETHERNET

� Virtual Network:

P

P

P

P P

P

P P

All-to-All Network 1-D Torus Network

P

P

P

P P

P

P P

Global Communication Local Communication

Used for SWS Used for SDLB and ADLB

VECPAR 2000 52

Test Problem

� Parameter estimation in a vapor-liquid
equilibrium model.

� Use the maximum likelihood estimator as the
objective function to determine model
parameters that give the “best” fit.

� Problem data and characteristics chosen to
make this a particularly difficult problem.

� Can be formulated as a nonlinear equation
solving problem (which has five solutions).

� Or can be formulated as a global optimization
problem.

VECPAR 2000 53

Comparison of Algorithms on
Equation-Solving Problem

Speedup vs. Number of Processors

ADLB vs. SDLB vs. SWS

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Number of Processors

S
pe

ed
up

SWS
SDLB
ADLB
Linear Speedup

VECPAR 2000 54

Comparison of Algorithms on
Equation-Solving Problem

Efficiency vs. Number of Processors

ADLB vs. SDLB vs. SWS

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy

SWS
SDLB
ADLB

VECPAR 2000 55

Using ADLB on Optimization Problem

Speedup vs. Number of Processors
(three different runs of same problem)

0 2 4 6 8 10 12 14 16
0

4

8

12

16

20

24

28

32

36

40

44

48

52

Number of Processors

S
pe

ed
up

VECPAR 2000 56

Using ADLB on Optimization Problem

� Speedups around 50 on 16 processors–
superlinear speedup

� Superlinear speedup is possible because of
broadcast of least upper bounds, causing
intervals to do discarded earlier than in the
serial case. That is, there is less work to do in
the parallel case than in the serial case.

� Results vary from run to run because of different
timing in finding and broadcasting improved
upper bound.

VECPAR 2000 57

Effect of Virtual Network

� We have also considered performance in a 2-D
torus virtual network.

1-D Torus Network

P

P

P

P P

P

P P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

2-D Torus Network

� 1-D vs. 2-D torus

– 2-D has higher communication overhead (more
neighbors)

– 2-D has smaller network diameter (shorter message
diffusion distance): 2bpP=2c vs. bP=2c

– Trade off may favor 2-D for large number of processors.

VECPAR 2000 58

Effect of Virtual Network

� ADLB algorithm was tested using both 1-D and
2-D virtual connectivity.

� The test problem is an equation solving problem:
computation of critical points of mixtures.

� Comparisons made using isoefficiency analysis:
As number of processors is increased,
determine problem size needed to maintain
constant efficiency relative to best sequential
algorithm.

� Isoefficiency curves at 92% were determined up
to 32 processors.

VECPAR 2000 59

Isoefficiency Curves (92%) for
Equation-Solving Problem

2-D Torus vs. 1-D Torus
(Lower is better)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

log
2
 P

lo
g

2 (
P

ro
bl

em
 S

iz
e)

1−D Torus
2−D Torus

VECPAR 2000 60

Stack Management for Workload
Placement

� Especially for optimization problems, the
selection rule for workload transfer can have a
significant effect on performance.

� With the goal of maintaining consistently high
(superlinear) speedups on optimization (BB)
problems, we have used a dual stack
management scheme

� Each processor maintains two workload stacks,
local stack and a global stack.

– The processor draws work from the local stack in the
order in which it is generated (depth-first pattern).

– The global stack provides work for transmission to
other processors.

– The global stack is created by randomly removing
boxes from the local stack, contributing breadth to the
tree search process.

VECPAR 2000 61

Workload Placement (cont’d)

� The dual stack strategy was tested using a 2-D
torus virtual network up to 32 processors.

� The test problem was an optimization problem:
parameter estimation using an error-in-variable
approach.

� For comparisons, an “ultimate speedup” was
determined by initially setting the best upper
bound to the value of the global minimum.

� Results indicate that the dual stack strategy
leads to higher speedups and less variability
from run to run (based on 10 runs of each case).

VECPAR 2000 62

Workload Placement (cont’d)

Speedup vs. Number of Processors

Dual Stack vs. Single Stack vs. Ultimate

0 4 8 12 16 20 24 28 32
0

4

8

12

16

20

24

28

32

36

40

44

P

S
pe

ed
up

Single Stack
Dual Stack
Ultimate Speedup
Linear Speedup

VECPAR 2000 63

Concluding Remarks

� Interval analysis is a powerful general-purpose
and model-independent approach for solving a
variety of process modeling problems, providing
a mathematical and computational guarantee of
reliability.

� Continuing advances in computing hardware
and software (e.g., compiler support for interval
arithmetic, parallel computing) will make this
approach even more attractive.

� The guaranteed reliability of interval methods
comes at the expense of a significant CPU
requirement. Thus, there is a choice between
fast local methods that are not completely
reliable, or a slower method that is guaranteed
to give the complete and correct answer.

� The modeler must make a decision concerning
how important it is to get the correct answer.

VECPAR 2000 64

Concluding Remarks (cont’d)

� With effective load management strategies,
parallel BB and BP problems (using interval
methods or other approaches) can be solved
very efficiently using MPI on a networked cluster
of workstations.

– Good scalability.
– Exploit potential for superlinear speedup in

BB.

� Parallel computing technology can be used not
only to solve problems faster, but to solve
problems more reliably.

� These reliability issues are often overlooked:

Are we just getting the wrong answers faster?

VECPAR 2000 65

Acknowledgments

� American Chemical Society Petroleum
Research Fund (30421-AC9)

� U. S. National Science Foundation
(DMI96-96110 and EEC97-00537-CRCD)

� U.S. Army Research Office
(DAAG55-98-1-0091)

� Sun Microsystems, Inc.

VECPAR 2000 66

University of Notre Dame

VECPAR 2000 67

University of Notre Dame

VECPAR 2000 68

Where is Notre Dame?

VECPAR 2000 69

Where is Notre Dame?

VECPAR 2000 70

Lake Michigan

VECPAR 2000 71

Lake Michigan

VECPAR 2000 72

