RECENT PROGRESS IN
EQUATION-BASED
PROCESS FLOWSHEETING

Mark A. Stadtherr and James A. Vegeais
University of Illinois
Chemical Engineering Department
Urbana, IL 61801

ABSTRACT

The equation-based approach 1is an attractive
alternative to the usual sequential-modular approach
to process flowsheeting. In this paper we discuss the
current status of equation-based flowsheeting and
discuss recent progress in numerical methods for its
implementation. We also discuss the development of
techniques for {mplementing the equation-based
approach in connection with advanced computer
architectures, in particular vector machines such as
the Cray-l1 or Cray X-MP supercomputers.

BACKGROUND

In this section, we discuss the relationships
between the different approaches to process
flowsheeting, as well as some of their perceived
advantages and disadvantages.

It should be noted at the outset that two
comprehensive reviews of equation-based process
flowsheeting [1,2] have appeared in recent years. The
review by Perkins [2] is particularly valuable and
covers many aspects of equation-based flowsheeting in
more detail than possible here.

In 1its most fundamental form, the process
flowsheeting problem can be regarded as one of solving
a large system of nonlinear equations. The different
approaches to process flowsheeting differ most
fundamentally in their approach to solving this set of
simultaneous equations. The equation system can
generally be thought of as consisting of three types
of equations: l. model equations, including process
unit models and physical property models; 2. flowsheet
connection equations that indicate how the units are
connected together 1in the flowsheet; and 3.
specifications.

In the sequential-modular (SeqM) approach the
model equations are handled using a library of
“modules”, or subroutines (procedures), each of which
performs computations for one of the models used. The
connection equations are handled implicitly, the
executive routine passing output values from one unit
module to other unit modules as inputs, as called for
by the specified flowsheet topology. Specifications
such as input stream data and equipment parameters are
easily handled by passing the specified values
directly to the proper unit modules. However other
specifications, on output streams for instance, may
not be nearly so easy to handle, since the unit
modules may not accept the specified values as
inputs. We refer here to specifications that can be
passed directly to the modules as inputs as "simple”
specifications. Other specifications that cannot be
input directly to a module are referred to as “design”
specifications. Problems for which all specifications
are simple are usually called “simulation” problems.
Problems. that involve one or more design

specifications are generally called “controlled
simulation” problems, or simply design problems.

For a simulation problem involving one or more
recycle streams, values for one or more Streams must
be guessed, or torn. The modules are then called in
the sequence indicated by the connection equations
until new values for one of the tear streams are
generated. This amounts to using the model equations,
connection equations, and simple specifications to
generate a set of equations of the form x = f(x) for
the tear stream values, which 1s then” Solved
iteratively, usually by the method of substitution,
elther directly, or most often in coanection with some
sort of acceleration scheme. Thus we egsentially have
two levels of computation: a module level, in which
the module computations are performed, and a flowsheet
level, in which direct or accelerated substitution is
used to converge the tear streams. (As used here we
restrict the term SeqM to this traditional type of
iteration scheme. Other types of flowsheet-level
iteration achemes are available, but we prefer to
categorize their use uonder the term “"simultaneous-
modular” as discussed in more detail below.)

When one or more design gpecifications are
involved, a difficulty arises. Theae equations cannot
be handled on the module level because the specified
values cannot be passed directly to the modules as
inputs, nor can they be handled directly on the
flowsheet level, since specifications are not
naturally in the form x = f(x). In the SeqM approach
this sort of problem must be handled by an iterative
simulation in which the process is repeatedly
simulated until the design specifications are met.
The iteration loops so generated are often referred to
as “"control” loops.

The SeqM approach has been and still is by far
the most common approach to process flowsheeting,
particularly in Industrial use. From a computational
standpoint, perhaps its most important strong points
are: l. On the module level, one or more specialized
algorithms can be used to solve the model equations
within each module; thus the module calculations can
be very efficient and robust. 2. On the flowsheet
level, substitution 1s generally a very reliable
solution method, though it is also generally quite
slow. Many other strong points commonly cited can be
attributed to the highly structured information flow
in the SeqM approach. For instance, because the
information flow in the program closely resembles the
material flow in the process, SeqM programs are easily
understood by the engineer. The information flow
structure also makes error checking fairly easy and
allows for generally easy tracebacks in the case of
program failure.

Unfortunately, the SeqM approach also has a
reputation for being very slow and costly, for two
fundamental reasons. The first of these is the need

to handle design specifications, typically equations
of the form x = constant, by introducing additional
iteration loops; this 1is obviously an exceedingly
inefficient way to handle such simple equations. The
second reason can be explained by noting that the
control loops needed to handle any design
specifications may represent the outermost loops in a
hierarchy of nested 1iteration loops. Immediately
inside the control loops are the substitution loops
used to converge the tear streams. Within these loops
are any iteration loops that may be needed within the
process unit modules, and at the innermost level any
loops that may exist within the physical property
subroutines called by the unit modules. Such systems
of nested iteration loops can be very expensive and
time consuming to solve. Finally, it is important to
note that the SeqM approach 1is not well suited to
process optimization, since this adds yet another
outer level of iteration.

Because of the fundamental problems described
above, there has been considerable recent interest in
alternative approaches to proceas flowsheeting, namely
the equation-based (EB) approach and the simultaneous-
modular (SimM) approach. As discussed in more detail
below, 1t 1s {interesting to note that these two
approaches can be regarded as two extremes of the same
basic idea.

In the EB cage, the process unit model equations,
connection equations, and specifications are treated
as conatituting one very large system of nonlinear
equations to be solved simultaneously. Though there
are different ways of formulating the equations, the
central problem is still the solution of a very large
and sparse system of nonlinear equations.

By solving most or all of the -equations
describing a process simultaneously, one can avoid the
drawbacks associated with the SeqM approach. When all
equations are solved simultaneously there need be no
nested iteration loops. Design specifications are now
Just very simple equations within the large system,
and are almost trivial to handle. And since the
simultaneous equations can be used as constraints in a
generalized nonlinear programming problem, this
approach has great potential for process optimization.

Today at least six EB flowsheeting systems in
various stages of development exist. Two, SPEEDUP
(Imperial College) [e.g., 3] and TISFLO II (Dutch
Mines) {e.g., 4] have received considerable commercial
use or testing., The others, ASCEND II (Carnegie-
Mellon) [e.g., 5], QUASILIN (University of Cambridge)
[e.g., 6], FLOWSIM (University of Connecticut/Control
Data) [1], and SEQUEL (Univeraity of Illinois) [7] are
perhaps best regarded as experimental prototype
systems.

As in the EB approach, in the SimM approach the
equations describing the entire process are solved
simultaneously. In this sense the EB approach and the
SimM approach can be thought of as two extremes of the
same basic idea. In the EB approach the actual
rigorous model equations for each unit are uged, while
in the SimM approach simple, usually linear, models of
the units are used, the coefficients in which are
generated by perturbation of the same unit modules
used in the conventional SeqM approach. Thus there
are two levels of computation, a module level in which
the modules are used, perhaps together with some
connection equations, to generate an approximate
Jacoblan for the process, and a flowsheet level in
which these equations are solved simultaneously
together with the spacification equations and some or

all of the connection equations. The various tech-
niques proposed for the SimM approach differ {in how
the approximate Jacobian is generated on the module
level, in which numerical method 1s used to solve the
nonlinear equations on the flowsheet level, and 1in
whether all connecting streams are iterated on or only
an appropriate set of tear streams. One can include
in this category the methods sometimes referred to as
SeqM but which do not wuse the usual accelerated

‘substitution scheme on the flowsheet level (there is a

nomenclature problem here--such methods are sometimes
referred to as SeqM and sometimes as SimM). For
instance one can regard the use of Broyden convergence
blocks 1in programs such as ASPEN, as being a
rudimentary SimM feature in a basically SeqM program.

To some extent the SimM approach can be regarded
as an attempt to combine some of the good features of
both the SeqM approach and the EB approach. Since
design specification equations can be handled directly
on the flowsheet level, there i{s no need for costly
"control"” loops to converge the design specifications
as required in the SeqM approach. And although there
is still some nesting of iteration loops, the problem
of slow convergence can be greatly reduced provided an
efficient and reliable method {3 used to solve the
flowsheet-level equations. Since the approximate
Jacobian generated on the module level is smaller than
that required by the EB approach, gtorage requirements
are less, though, depending on the details of the
approach used, sparse matrix methods may s8till be
needed. :

It is perhaps more useful, however, to regard the
SimM approach as a special case of the EB approach
[2], or vice versa, since as mentioned above, the EB
approach and the SimM approach can be thought of as
two extremes of the same basic idea., In each case,
one in effect solves the model equations
simultaneously with the connection and specification
equations. Generally in the fully EB case, each
individual model equation is linearized on one level
of the computation (the “equation level"), and then on
the next level (flowsheet level) all the equations are
solved simultaneously and a correction step
determined. In the SimM case, modules or procedures
for solving the model equations are linearized or
otherwise approximated on one level (module level),
and these approximate models then solved
simultaneously with the other equations on the next
level (flowsheet level) to get a correction step.
Thus the only basic difference between the two
extremes is whether the approximations used on the
flowsheet level are determined from the individual
model equations or from procedures solving sets of
model equations.

RECENT DEVELOPMENTS

In this section, we discuss recent developments
in four areas related to EB flowsheeting.
Developments in other areas have been discussed 1in
more detail by Perkina ([2].

Industrial Experience

In comparison to the SeqM approach, the EB
approach offers much greater speed and flexibility in
making specifications, especially when dealing with
complex processes and controlled simulations. These
potential advantagee are generally recognized today,
and there is increaeing industrial interest in this
approach, as discussed in more detail below. However,
a number of problems have also been cited that have to
date hindered the widespread industrial adoption of

the EB approach.

Perhaps the most serious problem from a
fundamental standpoint is that the EB approach has
acquired a poor reputation for reliability. This is
due in part to the difficulty 4in providing a good
initial guess for all the variables, and also to the
need to use a general-gurgoae equation solver, as
opposed to the special-purpose methods that can be
applied within the computational modules of the SeqM
approach to handle unusually difficult problems.

Some other problems of a less fundamental nature
are also cited in connection with the EB approach.
For instance, the very flexibility of this approach
makes it eassier for the user to make inconsistent
specifications and makes error checking harder. These
and other cited problems that can be categorized as a
lack of friendliness to the user are in general not
fundamental in nature and should disappear as better
"software engineering” is applied to the development
of EB packages. A common misconception regarding the
EB approach is that the programs implementing it are
not modularly organized and thus will be hard to
maintain or to make additions to. This however is not
generally true. The typical EB program comprises a
number of modules, including a library of process unit
modules in much the same fashion as the SeqM
approach, The key difference 1is that in the EB
approach the wunit modules are used to generate
equations while in the SeqM approach the modules are
actually special-purpose equation solvers. This also
means that the addition of new process unit models is
in fact quite easy, since one needs only generate the
model equations, not worry about how they are to be
solved.

It should be noted that at least part of the
reluctance of industry to adopt this approach is that
they have a considerable investment in SeqM software,
and are unwilling to take the risk or expense of
trying something completely different., This situation
seems to be changing somewhat however.

For instance, the EB program TISFLO-II was
developed at Dutch State Mines, and has been used
successfully in industrial applications, including
simulation of an ammonia plant [8], optimization of
utility generation and supply to a echemical complex
[4], and olefin plant optimization [9].

Exxon [10] has recently conducted an evaluation
of the general-purpose EB package SPEEDUP. They found
SPEEDUP to be flexible and easy to use, but that
problems of the sort discussed above were still not
completely resolved. The most fundamental problems
found were that convergence was not always reliable
unless a fairly good initial guess was supplied, and
that the program was inefficient. The latter is
particularly disappointing; however 1t should be
pointed out that the inefficiency seems to be due
primarily to overhead in the input translator, and not
to the basic computational strategies used.

Finally, it should be noted that some special-
purpose EB programs are in industrial use, primarily
for utility system calculation [e.g., 11] and systems
of multistage separation unitas [e.g., 12]. It appears
however that further research in EB flowsheeting is
needed before truly general-purpose EB systems achieve
widespread industrial use.

Inclusion of Procedures

As discussed above, the EB approach and the SimM

approach can be thought of as two extremes of
essentially the same basic 1idea. It 18 easy to
imagine a sort of generalized non-SeqM approach in
which some model equations would be used individually
and others handled using procedures. 1In fact a whole
range of such possibilities exist between the EB and
SimM ends of the scale. Such an approach offers more
speed and flexibility than the SimM approach alone,
and since the equations handled in procedures could be
solved using special-purpose algorithms that permit
the user to tune individual solution algorithms and
handle problem-specific constraints, it also offers
improvements i{n reliablity in comparison to the EB
approach alone.

An important trend in EB programs today is to
provide this capability for including procedures.
Macchietto [13] and Field et al. [6] have recently
discussed several aspects of solving the mixed systems
of equations and procedures that arise when procedures
are included. It seems likely that as work proceeds
on adding procedures to EB programs, and perhaps
adding more EB features to SimM programs, the two
approaches will gradually move closer and perhaps at
some point meet. The question of where along the
scale this meeting should be, 1f indeed there should
be a meeting at all, is unresolved.

Nonlinear Equation Solving

The central computational problem 1in EB
flowsheeting is the solution of a very large nonlinear
equation system. While initial work 4in EB
flowsheeting typically involved solution by tearing to
reduce the number of variables iterated on, the recent
trend is toward solution by simultaneous
linearization. In this case all the equations are
linearized and all the variables iterated on
simultaneously, using Newton-Raphson or some related
technique. We discuss here two current issues,
reliability and Jacobian evaluation.

If Newton-Raphson 1is used, the need at each
iteration to evaluate the Jacobian, either
analytically or by finite difference, may be very time
consuming. In fact, in their evaluation of SPEEDUP,
Gupta et al. [10] found that finite-difference Newton-
Raphson was always quite slow, and thus they used this
method wvery little. So there 1s considerable
motivation for the use of sparse quasi-Newton methods
in which an approximation to the Jacobian is updated
at each iteration. One such method is Schubert's
method; however several authors have found this to be
unreliable. Gupta et al. found that a quasi-Newton
method proposed by Paloschi [14] gave better results
than Schubert's method. However, this may be due
partly to the fact that the 4implementation of
Paloschi's method in SPEEDUP uses partitioning to
reduce the size of the equation systems to be solved,
while the implementation of Schubert's wmethod does
not. In general the quasi-Newton methods appear to
require many more iterations than Newton-Raphson, so
there 1is essentially a trade-off between number of
iterations and time per fteration.

In order to try to combine the good features of
both quasi-Newton methods and Newton-Raphson, Lucia
and Macchietto [15), Lucia and Westman [16], Miller
and Lucia [17), Lucia et al, [18], Westman et al.
[19], Macchietto [13], and Field et al. [6] suggest
the use of hybrid methods in which easily evaluated
partial derivatives, or terms in partial derivatives,
are computed analytically, while those derivatives or
terms that are more difficult to evaluate are
approximated by a quasi-Newton update. It is still

not clear what mix of exact and approximated
derivative information provides the best combination
of overall speed and reliability. Such a mix is
likely to vary, perhaps significantly, from problem to
problem.

The other issue of interest here is
reliability. One approach to improving reliability is
to provide better automatic 1initialization schemes.
These are largely empirical in nature, so a variety of
such schemes are possible. One possibility, suggested
most recently by Gupta et al. [10] is to do a few SeqM
iterations to initialize the variables. This may be
particularly attractive if the trend toward including
more procedures in EB systems continues to develop.

Another approach is to try to improve the global
convergence properties of the nonlinear equation
golver used. For example, Chen and Stadtherr [20]
have shown recently how the use of Powell's dogleg
[21] technique for computing a correction step can be
used to {improve the reliability of Schubert's
update. A class of methods with generally excellent
global convergence properties {3 the class of so-
called homotopy (or continuation) methods. The use of
such methods in EB problems has been discussed
recently by Wayburn and Seader [22], Seader et al.
[23], and Wayburn and Seader [24]. One way of looking
at such methods is to think of them as generating a
sequence of initial guesses until eventually a good
enough one is produced. In this sense the homotopy
methods are similar in principle to the evolutionary
approach for problem initialization suggested by Locke
[5]. The efficiency of the homotopy approach
essentially depends on how long the sequence of
initial guesses needs to be. Hlavacek [25] has
reported that in his experience a relatively small
such sequence is needed in some chemical engineering
applications. There are apparently no published
comparisons of Thomotopy to other initfalization
procedures in EB flowsheeting.

Sparse Matrix Methods

The EB approach requires the periodic solution of
a large, sparse, linear equation system ultimately
involving perhaps tens of thousands of equations. The
large storage required to implement this approach was
once consldered a major problem. However with the
continuing improvements in computer hardware, and the
development of better sparse matrix techniques this
problem has ameliorated considerably, though further
improvements along these lines are still desirable.

Most EB programs make use of some general-purpose
sparse matrix method, such as Harwell's MA28. These
routines take little advantage of the natural block-
stream structure of the flowsheeting problem, and in
fact tend to destroy what desirable structure might
have originally been present in the matrix. Stadtherr
and Wood {26,27] have recently described sparse matrix
methods that do take advantage of the inherent
structure in flowsheeting matrices, and maintain that
desirable structure throughout the solutfon of the
sparse matrix. Comparisons indicate that these sparse
matrix methods significantly outperform the wusual
general-purpose approach, It appears however that
some significant changes in the sparse matrix
techniques currently used will be needed if one 1s to
take best advantage of the latest computing
technology, as discussed in the next section.

IMPACT OF NEW COMPUTING TECHNOLOGY

A new challenge and opportunity for those working

in the area of process simulation, design, and
optimization 1s the 1increasing availability of
supercomputers. These machines differ architecturally
from today's “conventional” large mainframe computers,
and have the potential to provide very large increases
in computational speed relative to the conventional
machine. However the amount by which speed can be
increased depends on the problem to be solved, on how
that problem is formulated, and on what strategies are
used to solve the problem. If its architecture is not
well exploited, a doubling of speed is all that might
be expected; 1if fully exploited, speed may be
increased by a factor of twenty or more. This level
of performance comes at a price upwards of $10
million, however.

While recent years have seen an explosion in
microcomputer technology, with constant improvements
in speed and memory, this has generally not been seen
on the other end of the computer size spectrum.
Machines ranging from superminis (e.g., the VAX
11/780), through fast mainframes (e.g., the CDC CYBER
serles, or array processors combined with a VAX), to
supercomputers (e.g., —~the Cray-1) have been on a
relatively constant plateau of speed and memory size
for several years, despite advances 1in chip
technology. Indications are that this 1s soon to
change, at least with respect to supercomputing.
Supercomputers two orders of magnitude faster than
current supercomputers seem likely by the end of the
decade. Perhaps of even more impact 18 that the
technology now exists to mass-produce supercomputers
comparable to the current Cray-1 for under $1 million
each. Nobel laureate Kenneth Wilson of Cornell
University [28] expects that competition will cause
prices for these mass-produced machines to eventually
drop to not much more than the pricea of the
widespread superminis. An explosion in supercomputing
technology seems to be on the horizon.

The ready availability of relatively cheap
supercomputing power will have a major impact in the
areas of process flowsheeting and process control,
provided that practitioners are able to take advantage
of the different architecture of these machines. From
the standpoint of steady-state process flowsheeting
and optimization, the use of supercomputing will
provide truly interactive design capabilities, most
likely 1involving powerful local workstations, and
sophisticated graphics interfaces for input and
output. The engineer will be able to make a design
change 1in a complex process and will almost
lmmediately be able to see the simulated result. In
terms of actual wall-clock time, such simulations
today too often require several minutes even on a
relatively fast conventional machine, and perhaps
several hours on an engineer's personal wmicro.
Supercomputing will thus mean tremendous increases in
the productivity of the design engineer. The
supercomputer will also have a wmajor impact on the
ability to do realistic dynamic process simulations
and to design control systems. While such off-line
simulations can be used to improve control system
design and plant operability, realistic on-line
simulations wusing supercomputera may provide a
capability for on-line optimization of complete plant
operations.

It 1s important to emphasize that computational
strategles that work well on the conventional machines
may not be the best on a supercomputer. For instance,
when Duerre and Bumb [29] implemented the ASPEN
flowsheeting system on a Cray-1, they found that it
ran only two to three times faster than on an IBM 370,
which indicates that little advantage was taken of the

supercomputer architecture. Of the different
approaches to process flowsheeting it 1s not clear
which 1is 1ikely to be best suited to use on
supercomputers. We discuse here one issue involved in
implementing the EB approach on supercomputers.

As noted above, the solution of a large sparse
linear equation system is a key step in EB
flowsheeting, and we consider here how this step
should be carried out on supercomputers. Research
dealing with the direct solution of sparse linear
equation systems on supercomputers has dealt both with
general systems of equations having no regular
structure, and with highly structured systems such as
those with a tridiagonal, banded, or block-diagonal
form. Process flowsheeting matrices do not have such
8 highly structured form, and in general require the
use of more general-purpose linear equation solvers,
though as Stadtherr and Wood [26,27] have pointed out,
there 1s some problem structure that can be
exploited. General-purpose routines however are not
easily "vectorizable”, i.e., they are not able to take
much advantage of the vector processing capability of
the supercomputer. This 1s clearly seen in some
comparisons conducted by Duff and Reid [30]. A
general-purpose full matrix routine, compiled and
executed on a Cray-1, was found to be roughly 20 to 30
times faster than the same routine compiled and
executed on an IBM 3033. On the other hand, when the
same comparison was made using a general-purpose
sparse matrix routine, it was found to be only about
two times faster on the Cray-l, which appears to be
due simply to the fact that the scalar speed of the
Cray-1 is roughly twice that of the IBM 3033. Clearly
very little vectorization of the sparse matrix routine
was possible, largely, it appears, because of the
amount of indirect addressing 1in sparse matrix
codes. Quoting from [30], "This is very disappointing
since there is no easy fix which can give us better
vectorization. We are therefore forced to rethink our
eparse matrix algorithms with the Cray architecture in
mind.” Similarly if we are to make the most effective
use of supercomputers in equation-based flowsheeting,
we must rethink the sparse matrix strategies used.

A variety of ideas [e.g., 31-34] have been
suggested for more effectively using supercomputers in
general-purpose sparse linear equation solving. In
the context of equation-based flowsheeting and
optimization, there are three such ideas that appear
to be of some promise, namely the use of a frontal
approach [e.g., 35], the use of block-oriented methods
[e.g+, 36], and use of methods involving a search for
contiguous nonzero elements [e.g., 37]. 1In each case
the basic idea is to treat parts of the sparse matrix
as full to increase the amount of vectorization. This
will mean the storage of some zeros, and thus some
wasted storage. It also means some wasted operations
due to multiplications by zero. The goal is to use
the structure of the process flowsheeting problem to
keep the percentage of wasted storage and wasted
operations relatively low. Stadtherr and Vegeais [38]
have recently discussed some of the advantages and
disadvantages 1in this regard of the three methods
mentioned above.

Another area in which new computing technology
will have an important impact is in use of powerful
personal computers or local workstations. One can
envision such workstations being used both for
communicating with supercomputers on which rigorous
simulations might be run, or for local use in running
simulations wusing relatively simple models. Such
local wuse should be particularly useful 4in the
preliminary screening of process alternatives, or in

taking a close look at individusl units or groups of
units in a larger process. Ideally for use in
screening, the local program should have an
optimization capability so that process alternatives
can be compared on a roughly optimal basis. Again 1t
is not clear which of the approaches to process
flowsheeting is best suited for this type of computing
technology. Some SeqM software has already been
converted for use on PC's, and this approach might be
best for those machines with rather limited central
memory (RAM). On the other hand, the SeqM approach 1is
not well suited to optimization, so one might expect a
SimM or EB approach, or combination thereof, to also
have some advantages, especially for machines equipped
with plenty of RAM.

REFERENCES

1. M. Shacham, S. Macchietto, L. F. Stutzman & P.
Babcock, Equation oriented approach to process
flowsheeting. Comput. Chem., Eng. 6, 79 (1982).

2, J. D. Perkins, Equationoriented flowsheeting.
In Proceedings of the Second International

Conference on Foundations of Conputer-Aided
Process Design (eds. A, W. Westerberg and H. H.

Chien), CACHE (1984).

3. J. D. Perkins and R. W. H, Sargent, SPEEDUP: A
computer program for steady-state and dynamic
simulation of chemical processes. 1In Selected
Topics on Computer-Aided Process Design and
Analysis (eds. R. S. H. Mah and G, V. Reklaitis),
AIChE Symposium Series (1982).

4. M. G. G. Van Meulebrouk, A. G. Swenker & J. A. de
Leeuw den Bouter, Using TISFLO-II for the
optimization of utility generation and supply for
a chemical complex. IChemE Symp. Ser. 74, 7
(1982).

5. M. H. locke, A CAD tool which accomodates an
evolutionary strategy in engineering design
calculations. Ph. D. Thesis, Carnegie-Mellon
University (1981).

6. A. J. Field, R. P. Maddams & W. Morton, The
incorporation of procedures in an equation—
oriented flowsheeting environment. IChemE Symp.
Ser. 92, 341 (1985).

7. M. A. Stadtherr & C. M. Hilton, Development of a
new equation-based process flowsheeting
systems: Numerical studies. 1In Selected Topics
on Computer-Aided Process Design and Analysis
(eds. R. S. H. Mah and G, V. Reklaitis), AIChE
Symposium Series (1982).

8. P. Cronin, S. Barendregt, R. Srinivasan & M, Van
Meulebrouk, Optimization of an ammonia plant
using an equation based package. Pres. at AIChE
Spring National Meeting, Houston (1985).

9. J. A. de Leeuw den Bouter, M. Van Meulebrouk, A.
G. Swenker & S. Barendregt, Olefin plant
optimisation using SPYRO and TISFLO-II. Pres. at
AIChE Spring National Meeting, Houston (1983).

10. P. K. Gupta, R. C. Lavoie & R. R, Radcliffe, An
industry evaluation of SPEEDUP. Pres. at AICHE
Annual Meeting, San Francisco (1984).

11. E. Gordon, M. H. Hashemi, R. D. Dodge & J.
LaRosa, A versatile steam balance program. CEP,
74(7), 51 (1978).

12,

13.

14.

15.

16.

17,

18.

19.

20.

21.

22.

23.

B. Hegner and H. Schoenmakers, CHEMASIM—-
Experience with BASF's Simultaneous Process
Simulator. IChemE Symp. Ser. 92, 365 (1985).

S. Macchietto, Solution techniques for processes
described by mixed sets of equations and
procedures. IChemE Symp. Ser. 92, 377 (1985).

J. R. Paloschi, The numerical solution of
nonlinear equations representing chemical
processes. Ph. D. thesis, University of London

(1982).

A. Lucia and S. Macchietto, New approach to
approximation of quantities involving physical
properties derivatives in equation-oriented
process design. AIChE J., 29, 705 (1983).

A. Lucia and K. R. Westman, Low cost solution to
multistage, multicomponent separation problems by
a hybrid fixed point algorithm. In Proceedings
of the Second International Conference on
Foundations of Conputer—Aided Process Design
(eds. A. W. Westerberg and H. H. Chien), CACHE
(1984).

D. C. Miller and A. Lucia, The behavior of a
bybrid fixed-point methed in a chemeial process
design environment. AIChE J., 31, 329 (1985).

A. Lucia, D. C. Miller & A. Kumar ,
Thermodynamically consistent quasi-Newton
formulae. Pres. at AIChE Annual Meeting, San
Francisco (1984).

K. R. Westman, A. Lucia, and D. C,. Miller, Flash
and distillation calculations by a Newtomlike
method. Comput. Chem, Eng., 8, 219 (1984).

H. S. Chen and M. A. Stadtherr, On solving large
sparge nonlinear equation systems. Comput. Chem.
Eng., 8, 1 (1984).

H. S. Chen & M. A. Stadtherr, A modification of
Powell's dogleg method for solving systems of
nonlinear equations. Comput. Chem. Eng. 5, 143
(1981).

T. L. Wayburn and J. D. Seader, Solutions of
systems of interlinked distillation columns by
differential homotopy-continuation method. In
Proceedings of the Second International
Conference on Foundations of Conputer-Aided
Process Design (eds. A. W. Westerberg and H. H.
Chien), CACHE (1984).

J. D. Seader, R. Chavez & T. L. Wayburn, Multiple
solutions to systems of interlinked distillation
columns by differential homotopy continuation.
Pres. at AIChE Annual Meeting, San Francisco
(1984).

24.

T. L. Wayburn and J. D. Seader, Degree theory and
homotopy--Tools for computer-aided process
design. Pres. at AIChE Annual Meeting, San
Francisco (1984).

25 V. H. Hlavacek, Invited discusaion: Nonsequential

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

modular flowsheeting. 1In Proceedings of the
Second International Conference on Foundations of

Conputer-Aided Process Design (eds. A. W.
Westerberg and H. H. Chien), CACHE (1984).,

M. A. Stadtherr and E. S. Wood, Sparse matrix
methods for equation-based chemical process

flowsheeting—-1I. Reordering phase, Comput. Chem.
Eng., 8, 9 (1984).

M. A. Stadtherr and E. S. Wood, Sparse matrix
methods for equation—based chemical process
flowsheeting--1I. Numerical phase, Comgu:. Chem.
Eng., 8, 19 (1984).

K. Wilson, Supercomputing: Cooperation with
industry, SIAM News, 18(5), 6 (1984).

K. H. Duerre and A. C. Bumb, Implementing ASPEN
on the Cray computer, Los Alamos Report LA-UR-8]-~
3528, Los Alamos National Laboratory, Los Alamos,
New Mexico (1981).

I. S. Duff and J. K. Reid, Experience of sparse

matrix codes on the Cray-1, Comput. Phys. Comm, ,

26, 293 (1982).

W. P. Peterson, Vector Fortran for numerical
problems on Cray-l, Comm. ACM, 26, 1008 (1983).

D. A. Calahan, Performance of linear algebra
codes on the Cray-1, SPE J., 21, 558 (1981).

D. A. Calahan, Direct solution of linear

equations on the Cray-1, Cray Channels, 3(2), 2
(1981).

D. Heller, A survey of parallel algorithms in
numerical linear algebra, SIAM Review, 20, 740
(1978).

I. S. Duff and J. K. Reid, The multifrontal
solution of unsymmetric sets of linear equations,
AERE Harwell Report CSS 133 (1983).

D. A. Calahan, A block-oriented equation solver
for the Cray-1, SEL Report No. 136, University of
Michigan, Ann Arbor (1980).

D. A. Calahan and W. G. Ames, Vector
procesgors: Models and applications, IEEE
Trans. on Circuits and Systems, CAS-26, 715
(1979).

M. A. Stadtherr and J. A. Vegeais, Process
flowsheeting on supercomputers. IChemE Symp.
Ser. 92, 67 (1985).

