Symposium Series No. 92

PROCESS FLOWSHEETING ON SUPERCOMPUTERS

i Mark A. Stadtherr and James A. Vegeais
Chemical Engineering Department, University of I1linois, Urbana, 11,

SUMMARY

The coming availability of relatively cheap supercomputing power will
have a major impact in the areas of process flowsheeting and process
control. However, because supercomputers differ architecturally from
conventional machines, the computational strategies that work well on a
conventional machine may not be well suited to the supercomputer, and
. this seems to be the case in process flowsheeting. This paper considers
the development of sparse matrix strategies that are suitable for
equation-based flowsheeting, and that take best advantage of
supercomputer architecture. An initial appraisal of three such
strategies is performed.

INTRODUCTION

A new challenge and opportunity for those working in the area of process
simulation, design, and optimization is the increasing availability of
supercomputers. These machines differ architecturally from today's
“conventional” large mainframe computers, and have the potential to
provide very Tlarge increases in.computational speed relative to the
conventional machine. However the amount by which speed can be increased
depends on the problem to be solved, on how that problem is formulated,
and on what strategies are used to solve the problem. If its
architecture is not well exploited, a doubling of speed is all that might
be expected; if fully exploited, speed may be increased by a factor of
twenty or more. This level of performance comes at a price upwards of
$10 million, however. o

While recent years have seen an explosion in microcomputer technology,
with constant improvements in speed and memory, this has generally not
been seen on the other end of the computer size spectrum. Machines
ranging from superminis (e.g., the VAX 11/780), through fast mainframes
(e.g., the CDC CYBER series, or array processors combined with a VAX), to
supercomputers (e.g., the Cray-1) have been on a relatively constant
plateau of speed and memory size for several years, despite advances in
chip technology. Indications are that this is soon to change, at least
with respect to supercomputing. Supercomputers two orders of magnitude
faster than current supercomputers seem 1ikely by the end of the
decade. Perhaps of even more impact is that the technology now exists to
mass-produce supercomputers comparable to the current Cray-1 for under $1
million each. Nobel laureate Kenneth Wilson of Cornell University [1]
expects that competition will cause prices for these mass-produced
machines to eventually drop to not much more than the prices of the
widespread superminis. An explosion in supercomputing technology seems
to be on the horizon. ' » ‘

67

e

Symposium Series No. 92

The ready avai1abi1ity'of relatively cheap supercomputing power will have
~a major impact in the areas of process flowsheeting and process control,

provided that practitioners are able to take advantage of the different
architecture of these machines. From the standpoint of steady-state
process flowsheeting and optimization, the use of supercomputing will
provide truly interactive design capabilities, most 1ikely involving

- sophisticated graphics interfaces for input and output. The engineer

will be able to make a design change in a complex process and will almost
immediately be able to see the simulated result. In terms of actual
wall-clock time, such simulations today too often require several minutes
even on a relatively fast conventional machine, and perhaps several hours
on an engineerls personal micro. Supercomputing . will thus mean
tremendous increases in the productivity of the design engineer. The
supercomputer will also have a major impact on the ability to do dynamic
process simulations and design control systems. Real-time, or faster-
than-real-time simulations of complex process units or entire plants will
be routine. nNynamic simulations of refinery units are apparently already
being done using supercomputers in at least one company.- While such off-
line simulations can be used to improve control system design and plant

operability, on-line simulations using supercomputers may provide a

capability for on-1ine optimization of complete plant operations.

It is important to emphasize that computational strategies that work well
on the conventional machines may not be the best on a supercomputer. For
instance, when DNuerre and Bumb [2] implemented the ASPEN flowsheeting
system on a Cray-1, they found that it ran only two to three times faster
than on an IBM- 370, which indicates that 1little advantage was taken of
the supercomputer architecture. In this paper we deal with the solution
of process flowsheeting problems on supercomputers, concentrating on the
equation-based approach, and on sparse matrix strategies for implementing
it that take best advantage of the supercomputer's architecture.

BACKGROUND

We begin this section by briefly discussing some of the basic aspects of
supercomputing. A more detailed introduction to the area of
supercomputers can be found in a recent article by Levine [3].

The first machine generally regarded as a supercomputer was the ILLIAC
IV, a one-of-a-kind machine originally installed in 1972 but now
retired. There are now two main families of supercomputers available
commercially, the Cray-1 and it descendents, and the CYBER 205, whose
descendents will be coming from ETA Systems. Japanese supercomputers ‘are
available in Japan, and will undoubtedly soon have a major impact on the
international marketplace.

Supercomputers differ architecturally from conventional computers. The
most: significant architectural difference 1is the ability of the
supercomputer to perform several computational steps concurrently, or in
parallel. On the other hand, conventional “sequential" computers
typically must carry out steps one at a time, though the fastest

- sequential computers usually - include some rudimentary form of

“pipelining”, a concept discussed below.

Machines such as the Cray-1, CYBER 205, and ILLIAC IV use a form of
parallelism typically known as vector processing: thus these machines are

Sympoéium Series No. 92

often called vector machines or vector processors. The basic idea
involved in designing vector machines is to speed up the execution of
vector operations. One obvious way to do this is to include vector
instructions in the instruction set used by the instruction processor.
More important however, is the use of "multiprocessing" and “pipelining":
both involve provisions for performing parts of the overall vector
operation concurrently. . ‘

Pipelining is perhaps best explained using the assembly-line analogy
[3]. A floating point operation involves several steps. Without
pipelining, all the steps needed to complete one operation would be
performed before starting the first step of the next operation. Thus in
effect the computer works on one operation at a time. On the other hand,
to perform-a particular operation in a highly pipelined computer, there
are several “stations", each of which performs only one part of the
overall operation. Since, as in an assembly line, all stations are '
working cencurrently, the computer can work on more than one similar
operation at the same time. The Cray-1 and CYBER 205 are both highly
pipelined machines, though each operates somewhat differently. For
instance, the CYBER 205 operates most efficiently when operating on very
Tong vectors, while the Cray-1 can operate efficiently even on relatively
short vectors. ‘

Multiprocessing basically involves putting several (64 in the case of the
ILLIAC IV) data processors in parallel. Thus the ILLIAC IV could add two
length-64 vectors in about the same ‘time as one scalar addition, since
all 64 scalar addition operations needed to add the vectors could be done
concurrently. The Cray X-MP will ultimately employ up to sixteen
processors in parallel, each highly pipelined.

~ To date the most common use of supercomputers has been in the numerical
simulation of continuous fields, with applications in areas such as aero-
dynamics, metereology, and petroleum reservoir simulation. Such problems
involve the solution of systems of partial differential equations by dis-
cretization. A key subproblem in this process, and one that the
supercomputer is very adept at solving, is the solution of a large sparse
system of - linear equations, usually with specific structural and/or
numerical properties, such as symmetry, bandedness, and positive
definiteness, that can be readily exploited. The solution of a large
sparse system of linear equations is also a key step in the equation-
based approach for process flowsheeting. This would suggest that, with
the right techniques for solving the sparse matrix problem, the equation-
based formulation of the process flowsheeting problem would be well
suited to the supercomputer.

A considerable amount of research on solving systems of linear equations
using vector processors has concentrated on idealized computers, such as
a computer composed of an infinite number. of independently operating
~processing units. Typically this involves the assumption that there are
never any internal conflicts of any kind. This research, while finding
some bounds on computation times, cannot be directly applied in practice
to real general-purpose supercomputers.

Research - dealing with the solution of 1linear equation systems on
supercomputers has dealt both with general systems of equations having no
regular structure, and with highly structured systems such as those with
a tridiagonal or block-diagonal form. Process flowsheeting matrices do
not have such a highly structured form, and in general require the use of

69

Symposium Series No. 92

general-purpose linear equation solvers. Nevertheless flowsheeting
problems do have an easily recognizable block structure that can be
exploited to tailor the general-purpose routines for application to
flowsheeting [4,5]. General-purpose routines however are not ‘easily
"vectorizable", i.e., they are not able to take much advantage of the
vector processing capability of the supercomputer. This is clearly seen
in some comparisons conducted by Nuff and Reid [6]. A general -purpose
full matrix routine, compiled and executed on a Cray-<1, was found to be
roughly 20 to 30 times faster than the same routine compiled and executed
on an IRM 3033. On the other hand, when the same comparison was made
using a general-purpose sparse matrix routine, it was found to bhe only
about two times faster on the Cray-1, which appears to be due simply to
the fact that the scalar speed of the Cray-1 is roughly twice that of the
IBM 3033. Clearly very little vectorization of the sparse matrix routine
was possible, largely, it appears, because of the amount of indirect
addressing in sparse matrix codes. Quoting from [6], "“This is very -
disappointing since there is no easy fix which can give us better
vectorization, We are therefore forced to rethink our sparse matrix
algorithms with the Cray architecture in mind." Similarly if we are to
make the most effective wuse of supercomputers in equation-based
flowsheeting, we must rethink the sparse matrix strategies used. ’

A variety of ideas [e.g., 7-10] have been suggested for more effectively
using supercomputers in general-purpose linear equation solving. In the
context of equation-based flowsheeting and optimization, there are three
such ideas that appear to be of some promise, namely the-use of a frontal
approach [e.g.,- 117, the use of block-oriented methods [e.g., 127, and
‘use of methods involving a search for contiguous nonzero elements [e.q.,
13]. In each case the hasic idea is to treat parts of the sparse matrix
as full to increase the amount of vectorization. Another consideration
is the central memory requirement. Although these machines have large
central memories, it may still be necessary on very large problems to
page parts of the problem repeatedly in and out of central memory. This
represents a potential bottleneck in the computation. We discuss in this
paper the use of these three ideas in developing methods for solving
flowsheeting matrices, and present a critical appraisal comparing the
different approaches.

SPARSE MATRIX STRATEGIES

B]ock-Oriented Approach

One approach to the solution of sparse flowsheeting matrices is the
block-oriented approach [12]. The indirect addressing problem that slows
down the general-purpose sparse equation solvers is eliminated by
treating parts of the sparse matrix as if they were dense blocks of
nonzeros. The blocks are so located that the system can be solved by
performing block Gaussian elimination. The blocks are given descriptors
that identify the size of the block and its position in the matrix. The
elements in the block are then stored in a regular way so that no indices
are required for each nonzero element. Because the blocks are considered
full, the location of all elements is described completely by the block
descriptors. This allows the data to be easily accessed since elements
in a block are stored contiguously. The system is then solved by block
Gaussian elimination. Because of the regular way the matrix is stored,
the operations performed in this approach are vector operations.

70

Symposium Series No. 92

|
t

One advantage of this approach is that it can exploit the natural block
structure of the matrices that arise in process flowsheeting. This is
because normally, equation-based flowsheeting packages are set up to
generate the entire set of equations for each unit operation
simultaneously. The block descriptors could be generated at the same
time the equations for the blocks are generated. The only preprocessing
necessary would be to locate blocks where fill-in will occur and generate
the descriptors for this block fill-in, :

There are drawbacks to this method as well, however. First, a high
execution rate may be misleading with this method. Although a huge
number of operations per second may be performed, many of these
operations are on zero elements and do not have to be done. The result
could be a program that runs at a high rate of speed but that takes
longer to run than a slower program. Another drawback is the difficulty
involved in pivoting to maintain numerical stability. In order to
perform threshold pivoting it is necessary to search through the blocks
to see if the blocks contain elements in the same row. If it becomes
necessary to exchange columns for reasons of numerical stability, all the
elements of the two exchanged columns must be exchanged, which could
involve transfers among a number of the blocks, and the formation of new

- blocks if the exchange affects the location of the fill-in that will
arise when these blocks are eliminated. This could slow down the overall
performance of the block-oriented solver considerably.

Continuous Backsubstitution Approach

Another approach to increasing the amount of vectorization when process
flowsheeting matrices are solved on supercomputers is to locate and
perform vector operations on contiguous nonzero elements when they
arise. Though not originally developed with supercomputers in mind, the
continuous backsubstitution algorithm (CBS) is a solution method that
tries to exploit the presence of contiguous nonzero elements, and which
could be used advantageously on the supercomputer. A description of this
method is given by Stadtherr and Wood [5]. The CBS algorithm limits
fill-in in the matrix to certain columns, called spike columns. Because
these spike columns normally become completely filled-in in the CRBS
algorithm, they can be stored as a full vector. This means that indirect
addressing in the spike columns can be eliminated and that computations
with the spike columns can be done as vector operations. ' :

One advantage of this method is that it operates almost exclusively on
nonzeros., This method also 1limits the amount of fill-in that can
occur. Unneeded. operations are not performed on zero elements, so there
is no tradeoff between more operations and a faster rate of operations,
as there is in the block-oriented approach.

One disadvantage to this method is that the increased speed only occurs
in the spike columns. The elements below the diagonal are still
indirectly indexed and cannot be operated on as vectors. Another
disadvantage of this method is that, when column exchange is necessary in
order to maintain numerical stability, the spike column must be put into
indexed form and the pivot column must be "unindexed" into a contiguous
vector. ' :

7

Symposium Series No. 92

Frontal Approa;h o ‘ \

Another way of taking advantage of vectors is to use a variation of the
frontal approach. The frontal approach {111 was developed for use in
finite element problems. It takes advantage of the fact that each
variable only appears in a few equations and that pivoting on a variahle
will only affect a small number of equations and variables. This can be
exploited by storing only a small submatrix, called the frontal matrix,
at any time during the solution of the sparse matrix. Basically, this
method is designed to take advantage of a banded type of matrix
structure. : ‘

In the original frontal codes, the input is by finite element. Equations
and variables enter the front as their elements are encountered. As soon
as all the elements containing a particular variable are in the frontal
matrix, that variable may be used as a pivot. Since we are not trying to
solve finite element problems, we use a somewhat more general -purpose
approach in our version of the frontal approach. In this version, tha
input is by equation. Variables enter the frontal matrix the first time
they are encountered in an equation. After the equation that contains
the last occurrence of the variable has been entered into the frontal
matrix, the variable is eliminated.

As an example, in order to solve the matrix

- 12 3 4 5
1 x X X
- 2 i X X
I x x x
4 x x X
5 X X

the first equation is entered into the frontal matrix. In order to do
this, variables 1, 3, and 4 must be entered into the front. The frontal
matrix now looks like: S ,

1
[

~ 1.3 4

1 x x x

None of these elements may be pivoted on because none of the variables
are completely within the frontal matrix. Thus we proceed to the second
equation. Because the second equation contains the fifth variable,
variable 5 must enter the frontal matrix. The frontal matrix now looks
like: ‘ o

1 3 .45

X X

R X o

1
2 X
The fourth variable is now completely in the frontal matrix. A nonzero
in that column is now chosen as a pivot. After eliminating the other
nonzeros in the column the pfvot row and column are removed. If the
second equation is chosen as the pivot row the following frontal matrix
is obtained: o .)

1 365

1l x x f

.12

Symposium Series No. 92

The f here represents a zero element that has become a nonzero element
during elimination (a fill-in). Note here that the first equation could
also have been chosen as the pivot row. Now the third row is entered
into the frontal matrix. Since the third equation contains the second
variable, variable 2 must be entered into the frontal matrix. The matrix
now looks like:

5 2
f

K XK -
x X W

1
3 X

The third variable is now completely in the frontal matrix and may now be
chosen as a pivot. Eliminating the third equation leaves the matrix:
15 2
1 x f f -

The fourth equation is now entered, and the frontal matrix is:

X X
X ~Hhn
X ~H N

1
4

The first variéble may now be used as a pivot. Pivoting on the first
equation and entering the final equation to the frontal matrix results in
the final frontal matrix

4 N
5

x X% v
x X N

which is now solved by simple Gaussian elimination.

The major advantage of this method is that the frontal matrix is fairly
dense and can be operated on as a full matrix. This allows the use of
vector operatfons during elimination. Another advantage of this method
is that the amount of storage necessary for the frontal matrix and other
needed arrays.is small. - In fact, except for very small matrices, the
storage required is less than that required for the original matrix and
much less than the storage required for the CBS algorithm. This can also
be seen from the data in Table 1. The Table contains the total amount of
array storage necessary for the solution of flowsheeting matrices using
the frontal method. The matrices used were among the examples used by
Stadtherr and Wood [4,5]. ~ The frontal method requires as little as a
tenth of the storage needed by the CBS algorithm.

The frontal method takes advantage of the fact that in flowsheeting
matrices elements tend to be concentrated in a band near the diagonal,
though without the intraband structure of matrices of the sort arising in
finite element problems. For a banded matrix the total amount of array
storage needed for the frontal method is N + 2B*B + 98 - 16, where N is
.the number of equations and B is the bandwidth of the matrix. The array
needed for the frontal matrix is B*(2B - 1). While the matrices that
arise in process flowsheeting have a predominately banded structure,
however, they do have nonzero blocks off the diagonal band that must also
be considered.

73

Symposium Series No. 92

To do this, we note that another desirable form for the frontal approach
is the triangular form. This is desirable because as each row enters the
matrix there 1is one pivot variable available. Because of this the
frontal matrix need only be of dimension 1 x N and the total array
storage needed is only 6N + 2. Flowsheeting matrices are not simply
triangular of course. Some nonzeros will always be found above the
diagonal, in the spike columns. But if we can keep those nonzeros
relatively close to the diagonal (i.e., in a band) then the frontal
matrix can be kept reasonably small. For ‘a triangular matrix with
spikes, the storage needed for the front is N times the maximum number of
Tocal spikes (this term is defined in [4] and is related to the proximity
to the diagonal of the topmost nonzero in a spike). Alsn, since the
triangular portion of flowsheeting matrices is not full, the storage
‘needed for the frontal method will actually be less than N times the
maximum number of local spikes. '

It is interesting to note here that the desired row-column ordering for
the frontal method is the opposite of the order for the CRS method. With
the CBS method, it is desirable to have small rows first and small

columns last. For the frontal method it is desirable to process small

columns first and small rows last. Because of this, matrices to be
solved by the frontal approach may be fairly efficiently ordered by
taking an a priori reordering method intended to reduce fill-in in
general sparse matrix solvers and reversing the order of the rows. This
can be seen in the results in Table 2, which shows the size of the
frontal matrix required using several different sparse matrix reordering
algorithms on the six example matrices used above. A description of the
reordering methods SPK1, SPK2, HP3N, and BLOKS can be found in [4]. The
notation REV in this table indicates the use of a reverse ordering. It
can be seen from example 1 in Table 2 that the reverse ordering results
in a much more compact frontal matrix than the unreversed ordering. This
is also true for the other example problems, though this data is not
Tisted. It can 'also be seen that in all cases the BLOKS reordering
performs very well. This reordering algorithm attempts to keep the
inherent block structure -associated with process flowsheeting matrices.
‘Interestingly, this reordering is also the fastest reordering algorithm

of those tested. ‘ ,

Because a variable does not enter the frontal matrix until it is
encountered in an equation, it does not matter at all in what order the
variables occur. The order of the equations is the only thing that will
affect the size of the frontal matrix. Recause _of this it may be
possible to find a reordering algorithm that is more efficient than the
current methods, and which produce a better equation ordering for the
frontal approach.

Because the frontal matrix is operated on as a full matrix and because
pivoting only affects those elements in the frontal matrix, it is not
necessary to limit pivoting to threshold pivoting. Instead, partial
pivoting may be performed in the column with no penalty of additional
fitl-in. This may help the numerical stability of the solution
algorithm, ' ' ’

A disadvantage to this method is that, 1ike the block-oriented approach,
operations are done on zero elements. This can be seen in Table 3, which
. shows the percentage of the total operations that are performed as vector
operations, and the percentage that are wasted due to operations on
zeros. Though about 90% of the operations performed are vector

74

 Symposium Series No. 92

operations, 1t can also be seen that about 30% of the operations are
unnecessary. So while the operations are performed at a much faster
rate, some of this speed is wasted on unnecessary operations,

- CONCLUSIONS

In order to fully exploit the computing potential of supercomputers in
equation-based process flowsheeting and optimization it {is necessary to
develop new strategies for the solution of the sparse matrices that
arise. Three approaches--the block-oriented approach, continuous
backsubstitution, and the frontal approach--appear to have some
promise. Each exploits a .different feature of the sparse flowsheeting
matrix to allow vectorization to occur during the solution of the
matrix. As discussed in the initial appraisal above, the three
approaches have their advantages and disadvantages. The potential
difficulties involved in pivoting in the block-oriented approach and
continuous backsubstitution have caused us to concentrate initially on
the frontal approach. A more detailed appraisal of the block-oriented
approach and continuous backsubstitution is still needed. Our initial
appraisal of the frontal approach makes it appear quite attractive. Its
performance could be further enhanced by the development of reordering
algorithms for flowsheeting matrices that are designed to produce an
ordering tailored specifically to the frontal approach.

- REFERENCES
1. K. Wilson, Supercomputing: Cooperation with industry, SIAM News,
18(5), 6 (1984). ’ ,
2. K. H. Duerre and A. C. Bumb, Implementing ASPEN on the Cray computer,

Los Alamos Report LA-UR-81-3528, Los Alamos National Laboratory, Los
Alamos, New Mexico (1981).

3. R. D. Levine, Supercdmputers, Scientific American, 246(1), 118
: (1982). . .

4. M. A. Stadtherr and E. S. Wood, Sparse matrix methods for equation- -
based chemical process flowsheeting--I. Reordering phase, Comput.

Chem. Eng., 8, 9 (1984).

5. M. A. Stadtherr and E. S. Wood, Sparse matrix methods for equation-
based chemical process flowsheeting--I1. Numerical phase, Comput.

~ Chem. Eng., 8, 19 (1984).

6. 1. S. Duff and J. K. Reid, Experience of sparse matrix codes on the
' Cray-1, Comput. Phys. Comm., 2A, 293 (1982).

7. W. P. Peterson, Vector Fortran for numerical problems on Cray-1,
Comm, ACM, 26, 1008 (1983).

8. D. A. Calahan, Performance of linear algebra codes on the Cray-1, SPE
J., 21, 558 (1981). : -

.

75

9.

10.

11.

12.

13.

Symposium Series No. 92 ,'

D. A; Calahan, Nirect solution of linear equations on the Cray-1,
Cray Channels, 3(2), 2 (1981). :

D. Heller, A survey of parallel algorithms in numerical 1linear
algebra, SIAM Review, 20, 740 (1978).

I. S. huff and J. K. Reid, The multifrontal solution of unsymmetric
sets of 1inear equations, AERE Harwell Report CSS 133 (1983).

-D. A. Calahan, A block-oriented equation solver for the Cray-1, SEL

Report No. 13A, University of Michigan, Ann Arbor (198n).

D. A, Calahan and W. G. Ames, Vector processors: = Models .and

appligations; IEEE Trans. on Circuits and Systems, CAS-26, 715
(1979). ‘ ~

76

Symposium Series No. 92

TABLE 1.
STORAGE- STORAGE-

EXAMPLE EQUATIONS NONZEROS FRONTAL cBS

T 372 3253 - 5872 12453
2 814 7448 10190 *

3 1060 6254 3973 28040

4 1564 9369 4538 39889

5 2224 13577 6038 62487

6 2878 17772 7427 74530

*INSUFFICIENT STORAGE

TABLE 2.

EQUATIONS ~ REORDERING ~ MAXIMUM MAXIMUM
EXAMPLE (NONZEROS) METHOD EOQUATIONS VARIABLES

W - - - - e - 00 0 e e e e o 0 S e - " - - - > - -

1. 372 SPK1 160 160
(3253) REV SPK1 55 160
SPK2 160 160
REV SPK2 44 160
REV BLOKS 31 - 160
REV HP30 40 166
2 814 - REV SPK1 87 244
(7448) REV SPK2 74 278
REV BLOKS 47 263
REV HP30 51 . 267
3 1060 REV SPK1 203 | 490
(6254) REV SPK2 25 155
| " REV BLOKS 20 161
REV HP30 30 182
4 1564 REV SPK1 168 428
(9369) REV SPK2 39 183
REV BLOKS 17 140
- " REV HP30 .30 198
5° 2224 REV SPK1 174 466
(13577) REV SPK2 9 245
_ REV BLOKS 17 180
6 2878 REV SPK1 182 413
(17772) REV SPK2 43 299
REV BLOKS 17 215
TABLE 3.

% VECTOR % WASTED
EXAMPLE EQUATIONS OPERATIONS OPERATIONS

.-----------_-—-‘----—-------—----—---C-Q-—----_-

1 372 93.8 30.9
2 814 95.8 38.9
3 1060 91.6 32.5
4 1564 89.4 27.7
5 2224 89.9 o 27.6
6 2878 - 88.8 31.2

