ADVANTAGES OF SUPERCOMPUTERS (AND OTHER
ADVANCED COMPUTER ARCHITECTURES)

FOR CHEMICAL ENGINEERING APPLICATIONS

Mark A. Stadtherr
Cﬁemical Engineering Department
University of Illinois
1209 W. California Street
Urbana, Illinois 61801

U.S.AQ

In this paper we briefly discuss the following: 1. The basic
architectural concepts used in supercomputers andvother advanced-architecture
machines; 2. Applications 6f these machines with emphasis on those in chemicali
engineering§ 3. A basis for comparing the performance of such machines; 4.
Challenges in developing algorithms and codes that take best advantage of
advanced computer architectures.

These architectures provide the potential for much higher computational
speeds than typical "conventional" computers, as well as access to 1arger .
central memories. For more détail there are two good introductions to some
aspects of advanced computer architectures by Levine (1982) and Lerner (1985),
as well as a recent overview by Vegeais et alf (1986). A review of various
algorithms that exploit these architectures is given in Ortega and Voigt
(1985). Also, tutorial volumes compiled by Hwang (1984) and by Kuhn and Paaua

(1981) comprise a variety of papers describing both édvanced‘architectures and

related algorithms.

Advanced Computer Architectures

Today, the best known and most widely used advanced-architecture machines
are the so-called supercomputers, as typifigd by machines such as the Cray-1,
the CDC Cyber 205, the Cray X-MP, and the Cray-2. To relate supercomputer
speed to that of some familiar conventional machines, we note that the
Cray-1's peak speed is more than an order of magnitude faster than that of
large mainframe computers like the CDC éyber 175 or the IBM 3081, roughly
three orders of magnitude faster thanvthe VAX 11/780, a popular
superminicomputer, and roughly four orders of magnitude faster than the IBM

PC/AT. Depending on the number of processors available, the Cray X-MP and

Cray-2 can increase computational throughput by yet another order of magnitude
or more relative to the Cray-l. It should be emphasizgd that these figures
reflect approximate peak speeds, which may not be realized in practice unless
the program and algorithm used are able to take advantage of the supercomputer'_'
architecture. One very popular benchmark for comparing computer performance

is the solution of linear equation syétems using the LINPACK roﬁtines
(Dongarra, 1986). For example, Dongarra reports that in solving a 100 x 100
set of linear eéuations using LINPACK, with the basic linear algebra
subroutines (BLAS) in Fortran, the Cray X-MP (using four processors) éxecutes
at a rate of 49 MFLOPS (millions of floating point operations per second), the
Cray X-MP (using one processor) at 24 MFLOPS, the IBM 3081 K and CDC Cyber 175
at 2.1 MFLOPS, the VAX 11/780 (with floating point accelerator) at 0.l4
FMFLOPS, and the IBM PC/AT (with 80287 math coprocessor) at 0.012 MFLOPS. A
problem this small is actually too small for a supercomputer to achieve its
peak speed, and the LINPACK algorithmskand code were not designed with a
supercomputer architecture in mind. For instance, Dongarra also reports that
on a 1000 x 1000 problem using different code, the Cray X-MP (using 4
processors) executes at a‘rate of 713 MFLOPS.

While supercomputers have been defined as the fastest computers available
at any specific time or as computers that are only one generation behind the
computing requirements of leading-edge efforts in sciencg and engineering, the
characteristic that distinguishes today's supercomputers from other computers
1s the extensive use of some form of parallelism. The need for parallelism
can be easily seen by noting that since';omputers were first being
manufactured, most of the increases in computational speed have been due
simply to increased clock speed. However, it appears that a limit to the

clock speed is now being approached. For computers with extremely fast clock

speeds, the dimensions of the machine become an important consideration.
Since electrical signals cannot travel faster than the speed of light, a very
high clock speed requires that the maximum distance a signal must travel be
very small. For example, a signal can travel only about 30 centimeters in onei
nanosecond. Therefore, a computer with a one ns clock (which would be roughly
a factor of four faster than the clock cycle of a processor in a state-of-the~
art supercomputer such as the Cray-2) must be no more than about a cubic foot
in size. This, of course, causes tremendous wiring and cooling problems.
Because of this, it has become necessary for computer manufacturers to look to
the parallel processing of instructions and data to significantly increase the
speed of their computers. This pa;allelism generallykmanifests itself in some

form of vector processing or multiprocessing architecture, as described

below. For instance, machines such as the Cray X-MP or Cray-2 use a vector
multip:ocessing architecture.

Despite all of the current interest in supercomputers, their availability
is still limited by their high cost, typically in excess of $5 million and
perhaps much more. This may put the supercomputer out of the price range‘of
all but the largest concerns. However, machines have now become available
which cost one or tﬁo orders of magnitude less than this, and which, by using
advanced computer architectures, offer substantial performance improvements
compared to similarly priced conventional machines. Some of these advanced-
architecture machines use architectures very similar to the Cray-l,band may
even be software compatible with the Cray-1. Others use much different
architectural concepts. Assuming that t%eir architectures can be effectively
exploited by the user, all of these machines, often called
"minisupercomputers" or even "personal supercomputers,'" appear to offer

significantly better price/performance ratios than the conventional

technology.

As noted above, the key element in advanced computer architectures is
parallelism. There are many different ways in which a computer can be made to
operate in parallel. In order to easily distinguish between these
differences, several different sets of categories have heen proposed. Perhaps
the most widely used taxonomy involves the four categories originally proposed
by Flynn and described in some detail by Hwang and Briggs (1984). These four
categories are: single-instruction single-data-stream (SISD), single-
instruction multiple-data-stream (SIMD), multiple-instruction single-data-
stream (MISD), and multiple-instruction multiple-data-stream (MIMD).

In the SISD machine (which includes most conventional computers) only one
instruction is executed at a time, and the instruction operates on only one
data stream. In an SIMD computer there is an array of separate processors,
each capable of doing the same instruction at the same time on a different
data stream. For example, a single instruction could compute the sum of two
vectors. Assuming enough processors were available, all the additions of the
correspoﬁding elements of the operand vectors could be done simultaneously.

In this case the processing is synchronous; that is, all processors must begin
to execute the iﬁstruction at the same time. It should also be noted that
various schemes can be used to interconnect the processors, and to connect
them to memory. In a MIMD computer, there is again an array of separate
processors, and égain the processors may be connected to each other and to
memory in a variety of ways. In this case, however, each processor is capable
of doing different operations on differe;t data streams. Also, in a MIMD
machine, ptocessipg is usually asynchronous; that is, the different processors
may start their different operations at different times. Finally, in the MISD

machine, a single data stream is operated on by a éequence of different

processors, each capable of different instructions. This last category is
considered by some to be not very useful, because it is regarded as
impractical and there are no real implementations. A second, and more
serious, problem with this classification scheme is that’there is no good
agreement on where to categorize "pipelined" machines. They have been
categorized by various people as SISD, SIMD, and MISD. For these reasons, it
is perhaps better (and simpler) to classify advanced computer architectures
into three categories: vector processing, multiprocessing, and vector
multiprocessing‘(Bucher, 1983).

The vector processing category includes SIMD machines, as well as
"pipelined" computers, because both facilitate the processing of identical
operations on large vectors or arrays of numbers. Pipelining is perhaps besE
explained using an assembly-line analogy. For example, a floating-point
operation involves several steps. Without pipelining, all the steps needed to
complete one operation would be performed before starting the first step of
the next operation. Thus, in effect, the computer works on one operation at a
time. On the other hand, to perform a particular operation in a highly
Pipelined computer, there are several "stations," each of which p‘erfoxjms only
one step of the-overali operation. Since, as in an assembly line, all
stations are working concurrently, the computer can perform eéch step of the
operation on different data at the same time. Examples of this type of
computer are the Cyber 205 and the Cray-l; both are highly pipelined machines,
although they operate somewhat differently. For instance, the Cyber 205
operates most efficiently on very long ;ectors, while the Créy-l can operate
efficiently even on relatively short vectors. Rudimentary forms of pipelining
can also be found in sqme/conventional machines.

As discussed above, SIMD computers are composed of an array of separate

processors, each performing the same operation at the same time but on
different data. Perhaps the best known high-performance machines of this type
are the ILLIAC IV, now retired, and the Massively Parallel Processor (MPP)
built for NASA by Goodyear Aerospace, primarily for 1magé processing. The
ILLIAC IV, which had an array of 64 processors, could, for instance, add two
64-element vectors in about the same time as a scalar addition, since all 64
scalar additions needed to add the vectors could be done ih parallel.

The multiprocessing category covers MIMD architectures that use an array
of scalar processors, each capable of executing different instructions at the
same time on different data. Today the term "parallel processing" is
generally regarded as synonymous with multiprocessing. It should be
recognized however that 'parallel processing" is a term whose meaning has
evolved over many years, and which thus may be misleading in some
circumstances. Two examples of commercial multiprocessors are the BBN
Butterfly and the Intel iPSC. There are also many experimental prototype
machines of this type, as well as other machines in various stages of
commercialization. Séme conventional machines can also be thought of as
"looéely-coupled" multiprocessors (Hwang and Briggs, 1984).

The vector multiprocessing category ("parallel vector processing") is
essentially a combination of vector processing and multiprocessing. There are
a number of processors that can run in parallel, and each of these processors
is itself a powerful vector processor, generally of the pipelined type. Most
state-of-the-art supercomputers, such as the Cray X-MP and the Cray-2 fall
into this category, and plans for newer ﬁ;chines suggest that this
architecture will continue to dominate the high end of the supercomputer
market for ht least the short-to-medium term. Currently available state-of-

the-art machines have up to four vector processors in parallel, and this

number is expected to grow significantly over the next several years. There
are currently several unresolved issues regarding multiprocessing and vector
multiprocessing architectures. Some of these are briefly discussed here.

One issue concerns the number and power of the processors to be used. To-
look at the two extremes, one can either use a very large number of
inexpensive and relatively slow microprocessors, or a relatively small number
of expensive and very fact vector processors. The latter extreme is firmly
entrenched commercially in machines such as the Cray X=MP, but the former
extreme may provide economical alternatives.

Another issue involves memory access. Global memory is directly
accessible by all processors. However, when there is a large number of

processors, this provides the potential fof conflicts caused by different
processors trying to access the same memory bank at the same time. Local
memory 1s directly accessible by only a single processor, so memory conflicts
are not a problem. However, in this case, if one processor needs daﬁa sfored
in another processor's memory, then that data must be transferred from one
processor to the other. Such interprocessor communication can be quite slow
relative to the computational speed and thus may become a bottleneck. There
are of course compromises between these two extremes. For instance, oné can
use a set of separate memorles that can be dynamically assigned, through some
sort of switching network, to different processors while a program is
executing. Or, some hierarchy of memories could be used: there could be some
global memory shared by all processors, some memories shared by clusters of
processors, and then local memories assi%ned to each individual processor.

A third issue involves the schemes used to interconnect the processors.
Such schemes may either be "static", with fixed interconnections between

processors, or "dynamic", with interconnections that are switchable while a

program 1is executing. In designing a static intercoﬁnection scheme there tend
to be two competing goals. First of all, one would like to have efficient

data transfer between any two processors. In practice this usuaily means that '
sending data fronm one processor to another should require going through a path-
involving relatively few other processors. From this standpoint of this goal,
one would ideally like to have every processor connected directly to every
other processor. However; with a large number of processors this is
infeasible, and so a second goal must be to use reasonably few direct

processor to processor connections. Various static interconnections have been
used; the most popular one today is probably the hypercube, or n-cubé. The
number of processors in an n-cube 1is Zn, each is connected directly to n other
processors, and the worst path for interprocessor commﬁnication-goes through
only n interconnections. A 2-cube can be easily visualized as a square, with
a processor at each vertex and each edge representing a connection. To make a
3-cube, two 2-cubes are connected at corresponding vertices, thus forming what
is easily visualized as a three dimensional cube. In general to form an n-
cube, one takes two (n-1)-cubes and connects corresponding vertices. Overall,
the hypercube is regarded as a compromise between the number of
interconnections and efficient data transfer. One commercial example is the
Intel i-PSC, currently available in up to a 10-cube. Dynamic intercdnnection
schemes utilize some sort of switching system to change the connections
between processors, or between processors and memory, while a program is
executing. These systems may be relatively simple ones such as the crossbar
scheme, or more sophisticated ones such‘as the banyan network or omega network'
(Vegeais et al., 1986). 1In general the more sophisticated networks require
fewer switches to interconnect a given nﬁmber‘of processors and memories than

the crossbar scheme. One commercial example of a machine using such a network

Y

is the BBN Butterfly.

Applications

For the chemical engineer, most of the‘opportunities provided by'
advanced-architecture machines can be grouped into three §verlappingb
categories: 1. The opportunity to solve problenms involving the wodeling and
analysis of complex physical phenomena which were previously intractable, or
at least computationally infeasible; 2. The opportunity to greatly increase
engineering design productivity in areas requiring large-scale computation; 3.
The opportunity to use complex models in real-time applications. We discuss
each of these categories briefly here. More detail on supercompuﬁer
applications in chemical engineering has been provided recently by Stadtherr
and Vegeais (1985a).

There are a number of well-established applications in the first.
category, including petroleum reservoir simulation, weather forecasting,
quantum chemistry, high energy physics, astrobhysics, etc. Some typical
features of problems in tﬁis category are: 1. They require computationally
intensive solution methods such as finite element methods, finite difference
methods, or Monte Carlo simulation; 2. They may be computationally intractable
except on supercomputers (for example, problems that could take months to
solve‘on a Vax way require only hours on a Cray); 3. Using the supeféomputer,
they can be solved with much higher resolution, in more dimensions, and with
models thét more accurately represent the true chemistry and physics. Soﬁé
typical applications of this type in che;ical engineering include turbulent
flow phenomena, polymer rheology, combustion, chemicalyvapor deposition,

etc. Chemical engineering problems in this area often involve rapid changes

in a phenomena with respect to position or time, or an interacting combination

of phenomena, e.g., simultaneous chemical reaction, fluid flow, heat transfer,
or mass transfer. The supercomputer, while perhaps still not able to solve
all problems to the resolution desired, provides the chemical engineer the
opportunity to model such phenomena in much more detail and with greater
accuracy than previously possible.

The second category is the use of advanced computer architectures to
increase the productivity of design engineers. There are well established
applications of this sort in nuclear engineering, autbmotive engineering,
aerospace engineering, and electrical engineering. Problems in this category
can often be solved using conventional computers, but may require several
minutes, of much more, of computer time. By using the speed of advanced

computer architectures, design productivity can be greatly increased (for

example problems that could require several minutes on a Vax may reqﬁire a
second or less on a Cray). This means the englineer can consider many more
design alternatives, and, since the engineer can get very rapid feedback on
the results of design changes, there is much better man-machine interaction in
the design process. In chemical engineering there have been relatively few

applications of this sort so far. A few recently described ones are: batch
distillation (Crico, 1986) and interconnected systems of distillation columns
(Senior, 1986). Likely areas of major impact in the future include both
steady- and unsteady-state process flowsheeting and optimization (e.g.,
Stadtherr and Vegeais, 1985b).‘

The third category is currently the least developed of the three. Real-
time applications include robotics, avi;nics, speech recognition, image
processing, and process control. Applications in this category generally
require either that data be sampled at an extremely high rate or that a
complex modelvbr computationally intensive procedure be used to process the

i

10

data (so that without advanced architecture speed, the computer would fall
behind real time). The most likely chemical engineering application is
process control. Real time simulations of entire plant complexes using
advanced computer architectgres will provide a powerful tool for on-line,

model-based optimization of complete plant operations.

Performance

As noted above, the potential speed of advanced computer architectures
may not be (and usually is not) realized in practice unless the programs and
algorithms used are able to take advantage of the architecture. A factor used
to measure the pefformance of an algorithm or program in this regard is |
"speedup." On a multiprocessor, speedup is defined as the time it takes to
complete a job using only one processor, divided by‘the time the job requires
using P processors. Ideally speedup would be P, indicating that the algorithm
could be performed in P independent parts of equal size. Often, the speedup
is divided by the number of processors and is then called the efficiency.

It has been shown, based on a very simple model of parallel procéssing,
that if the fraction of code that can be performed in parallel on P processors
is f, then the maximum speedup S is P/(P - fP + f£), a relationship known as
Amdahl's law (Amdahl,'1967). Speedup is a measure that can also be used with
vector computers. In this case it is the ratio of the time it takes for a job
to execute without vectorization to the time it takes for a job to execute
with vectorization. For vector computers, one can obtain an equation
identical to Amdahl's law. In this casei however, f refers to the fraction of’
the code that vectorizes, and P refers to ratio of peak vector speed to peak
scalar speed. It can be seen from Amdahl's law that significant speeddp

requires that substantial portions of the code be run in parallel. Note, for

11

instance, that with 64 proceésors, just 5% non-parallelized code will result
in a maximum speedup of 15.42 (or a maximum efficiency of only 24%), Even
very small amounts of non-parallelized or non-vectorized code can cause very
significant losses in overall efficiency. In fact for f less than about 80%,
the value of P tends to make relatively little difference in'the overall
speed-up S. Unfortunately, many large general-purpose scientific codes,
NASTRAN for example, do not vectorize more than about 50-60%, nor do they
parallelize significantly better.

As noted by Levesque (1986), Amdahl's law can be observed in the
marketplace. If one looks at a pair of supercomputers from Fujitsu, the VP-
100 and VP-400, one can observe that even though the VP-400 is four times
faster in vector mode than the VP-100, many application programs do not
vectorize sufficiently to utilize this speed. Thus, the slower (and cheaper)
VP-100 has been commercially more successful. Similarly, Levesque (1986) has
compared the computational and marketplace performance of three supercomputers
from the mid-1970s. The base case for this comparison is the CDC 7600, which
was regarded as the fastest conventional mainframe in the mid-1970s. The
three supercomputers compared are the ILLIAC IV and STAR 100, both early
supercomputers, slower than the 7600 by a factor of four in scalar mode, but
with vector speeds 16-20 times faster than the 7600, and the Cray-1l, just

introduced in the mid-1970s, with a scalar speed twice that of the 7600, but a

vector speed only ten times as fast as the 7600. Using Amdahl's lqw it is
easy to show that, because of their slow scalar speeds, the ILLIAC IV and STAR
100 will not outperform the CDC 7600 unéil the percent vectorization reaches
abou; 77%. ‘On the other hand, because of its higher scalar speed, the Cray-1
will always outperform the 7600, and will outperform the ILLIAC IV and STAR

100 at percentages of vectorization less than about 98%. Based on Amdahl's

12

law, it is not surprising that the ILLIAC IV and STAR 100 were commercially
unsuccessful, while the Cray-l was. The Cray-1 was so successful in this

marketplace because it offered both higher scalar speed and vector processing,

even though its vector speed was not the best available.

These arguments can be exteﬁded to today's multiprocessing
architectures. For instance, for a parallelization of 60%, Amdahl's law shows
that there 1s little to be gained in overall speed-up by having more than
about 6-8 processors. Even for 90% parallelization, which is rare in most
scientific computing today, there is 1itt1e to be gained by having more than
about 30-35 processors. This suggests that large arrays of parallel

processors may not be useful as a general-purpose computing resource.

However, as emphasized by Levesque (1986); the situation regarding parallel
processors on a large number of processors is not as bad as it might seem.
For instance, today there are some applications for which very high levels of
parallelization (approaching 100%) are possible; among these are signal
processing, image processing, and some finite difference codes. Furthermore,
in the future we can expebt numerical algorithms and codes that take much
better advantage of parallelism than today. In part this may be done using
programming languages with built-in parallelism, so that compilers can
optimize object code to best utilize parallel processing (today's Fortran is

difficult for compilers to optimize for parallelism).

Algorithms and Codes

%

In a vector processor, to obtain a high speedup factor one must be
concerned with writing code so that as much of the code as possible consists
of vector operations. Vectorizing compilers can now do a good job of

producing code that 1is vectorized; unfortunately, the compiler does not know

13

as much about the purpose of the code as does the programmer. Because of
this, it is still necessary for the programmgr to write code in such a way
that the compiler can reéognize as much vectorizable code as possible.
Vectorization can be inhibited by many different things. First, compilers
generally vectorize only DO loops. Loopé created with IF statements will not
vectorize and should be avoided. Vectorization may also not take place if
certain statements are within the loops. For example, loops with IF
statements, subroutine calls, or statements with recursion will normally not
vectorize nor will loops with irregular addressing. Strategies that avoid
some of these problems vary from simply removing a statement from a loop to
splitting a loop into multiple loops to using special vector functions such as
gather/scatter.

Even when a loop can be vectorized, it may not execute as fast as it
might if the code were altered. For example, nested loops may often be
speeded up by changing the order of the loops so that the i;ngest loop 1is
vectorized. Also, loopé may often be speeded up by "unrolling" them to reduce
the number of memory references. The concept of unrolling is demonstrated in
this example. Consider the following code, which computes the product of the
M x N matrix A and the véctor X (assuming Y(J) has been initialized to zero

for all J):

DO 200 I=1,N
DO 100 J=1,M
50 Y(J)=Y(J)+A(JTI)*X(1)
100 CONTINUE

200 CONTINUE

14

The inner loop in this code is vectorizable (though it may take a special
compiler directive to do it), and thus Y(J) and A(J,i), i=1,...,N, will be
operated on as vectors. The execution of this loop thus requires three vector
memory references: two vector loads (on the right-hand-side of 1ine 50) and
one vector store (left-hand-side of 50). On the Cray-l1, there is only one
path to and from memory, thus moving data to and from memory can become a
bottleneck. The data transfer rate (or bandwidth) to and from memory on the
Cray-l is 80 million words per second (Mword/éec), thus an upper bound on the
computation of the inner loop is 80/3 Mword/sec. Since computing each element
(word) of Y(J) requires two floating point operations, the upper bound in
MFLOPS is 2*(80/3) =~ 53 MFLOPS. Now consider unrolling this inner loop to a

"depth" of four, as shown in the following code:

DO 200 TI=4,N,4
DO 100 J=1,M
50 Y(I)=((((Y(I)+A(J,1-3)*X(I-3))
+A(J,I-2)*X(1-2))
+A(J,T-1)*X(1-1))
+A(J,I)*X(1))
100 CONTINUE

200 CONTINUE

Again the inner loop can be made to vectorize. (The extra parenthesgs in 50
ensures that the compiler produces code that performs the operations in the
most efficient order. Also, if N is not a multiple of four, some additional
lines of code wiil be needed.) Now the inner loop requires five vector loads

and one vector store, so the upper bound on execution rate is 80/6

15

Mwords/sec; But there are now eight floating point operatioﬁs required to
compute each element of Y(J) so the upper bound in MFLOPS is 8*%(80/6) = 107
MFLOPS. So we have doubled the maximum possible execution rate. Note that
this is essentially the result of reducing the total number of nemory
references. In the original code the inner loop was executed N times, énd
each time required three memory references, for a total of 3*N. In the
unrolled code the inner loop was executed N/4 times, and each time required
six memory réferences, for a total of 1.5*N. 1In this particular example,
where data transfer to and from memory is the rate~limiting step, thé halving
of memory references naturally results in a doubling of the maximum execution
rate. Iniother cases, such as on the Cray X-MP, where there are more paths to
and from memofy, data transfer to and from memory may not be rate limiting;
nevertheless, the unrolling of loops may still be a good programming practice,
siﬁce by reducing the number of memory references the likelihood of memory
conflicts will be reduced, and also this reduces the computational overhead
due to the start-up of vector operations.

It should be noted that codes that vectorize on one computer may not
vectorize on another vector computer, or may not show as much of a speed
increase if they do vectorize. For example, the Cyber 205 operates most
efficiently on very long vectors, while the Cray-l can operate efficiently on
shorter vectors.

For a multiprocessor, the goal is essentially to use solution algorithms
and write code that allows a job to be split into many separate tasks, some or
all of which can be executed simultaneously (multitasking). On machines where-
each processor shares some global memory this often results in some sort of
task queue. The next task in the queue is begun when a processor becomes
available. On a multiprocessor without global memory, however, it is often

necessary to specify not only the tasks but to determine which processor

16

should do each task. It is also necessary to determine in which local memory
variables will be kept.

Strategies for using multiproéessors exhibit varying degrees of
synchronization. The most synchronized approach would be to use a
multiprocessor as an SIMD computer by programming so that all processd;s are
performing the same operation at the same time. A slightly less synchronized
method would be for all processors to start different tasks at the saﬁe
time. As processors complete their tasks they become idle until the last
processor finishes its task. They may all begin on their next task then.
This method is often easy to program as it involves a sequence of parallel
steps. In such an algorithm it becomes important to keep the time for the
completion of a task about the same for all processors in order to minimize
the amount of time that processors remain idle while waiting for the ocher
processors to finish. ‘A more efficient method is to decompose the problem but
not require that all tasks start simultaneously. This allows,processoré that
have completed their tasks to begin new tasks immediately, if the necessary
data are available. In thils case it is necessary to synchronize only‘sb a
processor does not attempt to use an operand that has not yet been calculated
by another processor. This éynchronization can be done by several different
methods. One is by causing a processor to wait until a certain necessary
event has occurred. Another is to cause a processor to wait for the
completion of a certain tésk. In this case, the size of the separate tasks in
the code (or granularity) becomes a critical factor in obtaining maximum
efficiency. In the case of very small éranularity (microtaskipg), machines
are being developed for which this synchronization can be done on the machine
level, in what is known as a data flow machine. For larger granularity

(macrotaéking) the synchronization is usually done by the programmer or the

17

compiler,

Another major concern to the miltiprocessor programmer is how to
structure the data in the multiprocessor. This is normally not a problem for
a shared-memory multiprocessof, but is extremely important in machines with
local memory, such as computers with a hypercube architecture. If not done
properly, the memory transfer time could dominate the total e#ecution time of
the program.

To execute efficiently, vector multiprocessors obviously require
algorithms and programs that exploit both vector operations and parallelism.
However, the need for long vectors and the need for several independent tasks
can sometimes be compefing demands. For example, in the implementation of a

nested dissection algorithm on a vector computer, the factorization time can

be decreased by stopping the disséction process short of completion (Geofge et
al., 1978). The incomplete dissection yields longer vectors than the original

scheme, but it also yields fewer submatrices that can be factored in parallel.b

ConcludiqgrRemarks

The ever—-increasing demand for more computingfpower has manifested.itself
not only in the popularity of single and multiple vector processors with
extremely fast clock cycles, but in the advent of innovative configurations of
arrays of microproéessors as well. The two predominant trends in advanced
architectures are the use of a few extremely powerful processors in parallel
and the use of very many microprocessors in parallel. Whether there will
continue to be a market for both'classe; of machines 1s still unresolved. The’
former type of machine has firmly established itself as a valuable scientific

tool. However, developments within the latter class indicate that its members

may be economical alternatives to expensive machines like the Cray~2. In

18

~either case, an understanding of the parallel nature of both the architecture
and the algorithm is necessary to fully exploit the machine's capabhilities.
It may be necessary to think not only of new algorithms, but new programming
languages. And as computational requirements continue to grow, the use of
parallel architectures in all branches of science and engiﬁeering seems

inevitable.

19

References

Andahl, G. M., Validity of the Single-processor Approach to Achieving Large

Scale Computing Capabilities, AFIPS Conf. Proc., 30, 483 (1967).

Bucher, I. Y., The Computational Speed of Supercomputers, Proc. ACM Sigmetriés

Conference on Measurement and Modeling of Computer System, p. 151 (1983).

Crico, A. M., ALAMBIC--A Vectorized Batch Rectification Simulator Running on

Supercomputers, Paper #55e, AIChE Annual Meeting, Miami Beach (1986).

Dongarra, J. J., Performance of Various Computers Using Standard Linear
Equations Software in a Fortran Environment, Technical Memorandum No. 23,

Argonne National Laboratory, Argonne, IL (1986).

George, A., W. G, Poole, Jr., and R. G. Voigt, Analysis of Dissection

Algorithms for Vectof Computers, Comp. Math. Appls., 4, 287 (1978).

Hwang, K., Supercomputers: Design and Applications, IEEE Computer Society

Press, Silver Spring, Maryland (1984).

Hwang, K. and F. A. Briggs, Computer Architecture and Parallel Processing,

McGraw-Hill, 1984,

Kuhn, R. H. and D. A. Padua, Tutorial on Parallel Processing, IEEE Computer

Society Press, Silver Spring, Maryland_(l981).

20

Lerner, E. J., Parallel Processing Gets Down to Business, High Technology,

5(7), 20 (1985).

Levine, R. D., Supercomputers, Scientific American, 246(1), 118 (1982).

Levesque, J. M., Effective Utilization of Parallel Vector Processors, Paper

#91b, AIChE Annual Meeting, Miami Beach (1986).

Ortega, J. M. and R. G. Voigt, Solution of Partial Differential Equations on

Vector and Parallel Computers, SIAM Review, 27, 149 (1985).

Senior, P. R., Simulation of Large Dynamic Systems, Paper #108g, presented at

AIChE Annual Meeting, Miami Beach (1986).

Stadtherr, M. A. and J. A, Vegeais, Advantages of Supercomputers for

Engineering Applications, Chem. Eng. Prog., 81(9), 21 (1985a).

Stadtherr, M. A. and J. A. Vegeais, Process Flowsheeting on Supercomputers,

IChemE Symp. Ser., 92, 67 (1985b).

Vegeais, J. A., A. B. Coon, and M. A. Stadtherr, Advanced Computer

Architectures: An Overview, Chem. Eng. Prog., 82(12), 23 (1986).

21

