DEVELOPMENT OF A NEW EQUATION-BASED
PROCESS FLOWSHEETING SYSTEM:

NUMERICAL STUDIES

MARK A. STADTHERR

A new squation-based flowsheeting system Is described. The system uses a simulta-

neous linearization approach and employs powerful sparse matrix routines. The equation
generation procedura Is efficlont and makes flowsheet input aasy. The flowsheet Input
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format is very much like the format used in conventional sequential modular simulators.

The current system Is a protatype that is being used to study a number of fundamenta!

computational probiems. Resuits of such numerlcal studles are reported.

Current methods for chemical process sim-
ulation and design (flowsheeting) are typically
based on the sequential-modular approach, in
which the computations for each type of unit
operation are organized into modules and solved
sequentially. However, this approach has
inherent limitations that make it ineffective
in dealing with Targe and complex processes.
Since processes of the future are likely to be
increasingly complex, as various schemes for
conserving material and energy and for con-
trolling effluents are implemented, the devel-
opment of effective flowsheeting systems for
such processes is particularly timely. One
strategy for overcoming the current limitations
is the equation-based approach. In this case,
the computational modules are done away with
and all the equations describing a process
solved simultaneously. One approach to solving
the very large equation system that results is
algebraic decomposition (or tearing). In this
case, the system may be solved by iterating on
relatively few variables. Though this intu-
itively seems desirable, serious computational
problems can arise, as noted by Lin and Mah
(1978), who advocate a simultaneous 1lineari-
zation approach as potentially more powerful.
In this case, all the equations are linearized
and all variables iterated on simultaneously
using a Newton-Raphson or quasi-Newton ap-
proach. Although in the past, equation-based
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flowsheeting calculations were based primarily
on algebraic decomposition, there has been
considerable recent interest (Gorczynski and
Hutchison, 1978; Gorczynski et al., 1979;
Westerberg and Berna, 1978; Lin and Mah, 1978;
Benjamin et al., 1981) in the simultaneous
linearization approach. This is the approach
used here. The new system is a prototype that
is being used in studies of a number of fun-
damental computational problems. In this
paper, we describe the prototype system and
present results for some of the studies made
using the system.

One study reported here involves the
reliability with which convergence is obtained
from the "worst-case" initial guess situation.
This is the case in which the user supplies no
initial guess values and all must be generated
internally by the program. We compare the
convergence behavior for three schemes for
internally generating an initial guess, and for
several strategies for linearizing the non-
Tinear equations. Also presented is a study
involving the reliability of convergence from a
"best-case" initial guess situation using
several different linearization strategies.
Different strategies for computing thermo-
physical properties are also considered.

BACKGROUND
Extensive reviews of past work in the area
of process flowsheeting have been provided by

Motard et al. (1975) and Hlavacek
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(1977), and more recent work has been re-
viewed by Rosen (1980), and Evans (1981).
These reviews discuss many of the advantages
and disadvantages of the modular and equation-
based approaches to process flowsheeting.
Also, the recent monograph of Westerberg

et al. (1979), is particularly useful as an
Introduction to the field of process flow-

sheeting.

One can distinguish between two general
approaches to equation-based flowsheeting.
The first of these, typified by the SPEEDUP
system (Leigh et al., 1974), involves tear-
ing. One guesses, or tears, values for a
number of variables sufficient to permit
values for the remaining variables to be
found by solving a sequence of small, usually
one-variable problems. The remaining equa-
tions (tear equations) may then be solved for
new values of the tear variables, and some
sort of successive substitution procedure
used, providing of course that the tear
equations contain the tear variables explic-
itly. If this is not the case, the residuals
in the tear equations can be used in connec-
tion with other standard root-finding proce-
dures. Thus in effect one is able to solve a
large system of nonlinear equations by iter-
ating on only a few tear variables, thereby
drastically reducing the dimensionality of
the problem.

The key step in the tearing approach is
the development of an appropriate solution
strategy (information flow pattern) for the
particular problem at hand. That is, one
must decide which variables to tear, which
equations to solve for which variables
(output set), and in which sequence to solve
them (precedence order). Furthermore, since
most equation systems describing chemical
processes will be underconstrained, it is
also often necessary to designate certain
variables as design variables. What is
needed then is a systematic and efficient
procedure for finding a solution strategy
that will converge reliably and rapidly to
the solution. Over the past several years, a
variety of techniques have been devised with
this as a goal. Many are designed to produce
a solution strategy involving a minimum
number of tear variables. Others also try to
account for the relative difficulty of the
single-variable problems that must be solved.
Still others involve sensitivity consider-
ations, for reasons discussed in more detail
shortly. Many such techniques are prone to
combinatorial problems and thus are not
reliably efficient. Moreover, there is
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little degree of certainty that i
strategies obtained will ¥e112b1;hgo§3;gsé?n

Thus, a basic premise of the tearing approach,
namely that a small-dimensioned problem is
easier to solve than a large-dimensioned one,
is not necessarily correct. This has been
emphasized by Lin and Mah (1978), who point
out that because a very long chain of compu-
tations typically exists between the guessed
tear values and the residuals in the tear
equations, sensitivity problems can arise
that may cause divergence even for initial
guesses very near the solution. For this
reason, methods for employing sensitivity
considerations in choosing a solution strat-
egy have been developed, as mentioned above.
Compared to the sequential-modular approach,
the tearing approach is typically faster and
capable of solving more compiex flowsheeting
problems. Nevertheless, because the problem
of efficiently choosing a reliable solution
strategy has not been completely solved,
there has been reluctance to adopt this
approach.

A second and more promising approach to
equation-based flowsheeting is the quasi-
linear approach. This involves the simul-
taneous linearization of all the equations
and iteration on all the variables, using the
Newton-Raphson method, a quasi-Newton method,
or some hybrid thereof. Thus in each iter-
ation we are faced with solving a huge set of
sparse linear equations, involving perhaps
several thousand variables. At this point
the guasilinear approach has been proven very
successful in dealing with some specialized
problems, such as flows in pipe networks
(Mah, 1974; Bending and Hutchison, 1973) and
simulation of distillation columns (Hutchison
and Shewchuk, 1974; Kubicek et al., 1976).
These applications have been summarized by
Westerberg et al. (1979), who also emphasize
the promising aspects of this approach.
Application of the quasilinear approach to
flowsheeting problems in general is a very
recent development. The work of Mah and Lin
(1978), who apply this approach to a flow-
sheeting problem involving the simulation of
a natural gas liquefaction process, is indic-
ative of the potential of this approach, but
they do not provide a generalized flowsheeting
system. Hutchison and coworkers at the
University of Cambridge in Great Britain have
recently described a flowsheeting package
called QUASILIN (Gorczynski et al., 1979)
that may be regarded as a prototype of such a
generalized quasilinear flowsheeting system.
The ASCEND II package (Benjamin et al.,

1981) developed by Westerberg and co-workers
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at Carnegie-Mellon is equally noteworthy in
this regard.

The most fundamental computational prob-
lems with the quasilinear approach 1nvo1ye the
strategy to be used to converge the nonlinear
equations, and the strategy to be used_to solve
the huge sparse linear systems that arise after
linearization. The sparse matrix strategy used
determines in effect the limit on the size of
problems that can be solved. For instance,
consider the problem of solving the linear
system Ax = b. The usual solution procedure
can be represented by the factorization A = LU
where L is Tower triangular and U is upper
triangular. The elements of L and U are usu-
ally found using Gaussian elimination or some
variation thereof. If A is large and sparse,
the number of nontrivial nonzeros in L and U
may greatly exceed the number of nonzeros in A.
This Toss of sparsity, or "fill-in", may lead
to excessive storage requirements and unaccept-
ably Tong computational times. Without the use
of sparse matrix strategies to reduce this
fill-in, only very small flowsheeting problems
could be handled by the quasilinear approach.
Since one of the main reasons for adopting an
equation-based approach is its ability to
handle large and complex problems, the need for
effective sparse matrix strategies is partic-
ularly important. Westerberg et al. (1979)
emphasize that while current sparse matrix
software is capable of handling problems in-
volving one or two thousand equations and
sometimes more, realistic chemical plant flow-
sheeting problems will require sparse matrix
strategies capable of handling equation systems
larger by an order of magnitude or more. An
important feature of the new flowsheeting
system we are developing is that it is inter-
faced to a set of powerful new sparse matrix
routines that can handle problems involving
several thousand equations without resort to
decomposition. This represents significant
progress toward the goal cited above.

The strategy used to converge the non-
linear equations determines, to a great extent,
the reliability and speed with which a given
problem can be solved. Straightforward Newton-
Raphson is not particularly attractive because,
as discussed below, it may be difficult to
supply a good enough initial guess. There are
a variety of approaches to improving conver-
gence from a poor initial guess. One promising
approach is that described by Gorczynski and
Hutchison (1978). They note that since a
second-order linearization method, such as
Newton-Raphson, provides speed at the expense
of reliability, while first-order methods
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provide reliability at the expense of speed, a
blend of the two linearization strategies
would seem to be appropriate. Indeed they
seem to have had some success with such blended
linearizations. Unfortunately, there is
little published regarding such important
details as the actual values of the blending
parameters used. Another approach to the
convergence problem is to use "hybrid" or
"dogleg" methods (Powell, 1970; Westerberg and
Director, 1978) that consider the steepest-
descent direction in addition to the Newton-
Raphson direction. A hybrid method recently
described by Chen and Stadtherr (1981) appears
to be very reliable. Though the current code
based on this method is written for full
matrix problems, it can also be extended to
sparse systems of nonlinear equations. This
work is currently in progress. The need for
nonlinear equation solvers capable of conver-
ging from poor initial guesses could of course
be ameliorated considerably given an efficient
procedure for generating a good initial guess.
The difficulty here is that since all vari-
ables are iterated on, they all require ini-
tial values. For relatively small problems,
the user may be quite capable of supplying a
good initial guess; however, on larger prob-
lems, the user may not be able to provide
initial guesses for all of the several thou-
sand variables that may be involved. Thus one
needs algorithms for systematically generating
"good" initial guesses given Tittle or no user
input. Gorczynski and Hutchison (1978) out-
line a simple initialization scheme, though
again little numerical detail is provided, and
it is unclear how effective it is.

DESCRIPTION OF FLOWSHEETING SYSTEM

The system described here, which we have
dubbed SEQUEL, is a prototype of a new eq-
uation-based process flowsheeting system. As
the name implies, SEQUEL is an outgrowth of
previous work in process flowsheeting and
represents a new chapter in the continuing
effort to design and simulate chemical pro-
cesses by equation-based methods. It must be
emphasized that SEQUEL has been designed pri-
marily as a tool for use in developing and
evaluating computational strategies for equa-
tion-based flowsheeting. Thus, SEQUEL is
lacking several features that would be impor-
tant in a production code. For instance,
although flowsheet input to SEQUEL is very
easy, friendliness to the user has in general
been a secondary concern. Also, the number of
components in the physical property data base
is quite small and the thermodynamic models
used are very simple and are inadequate for
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Figure 1. Flowsheet for NH; problem used as example. Figure 2
shows the flowsheet input file for this flowsheet.

some problems.

Equation Generation

One problem commonly cited (e.g., Evans,
1981) in connection with the equation-based
approach is that a complex executive routine
is needed to generate the equations describing
a particular flowsheet. Two ideas have ap-
peared in recent years that aid in overcoming
this difficulty. The first such idea is
modularity (Gorczynski et al., 1979; Benjamin
et al., 1981). SEQUEL is organized in a
modular fashion, with the modules correspon-
ding to the various standard process units.
0f course in this context, the modules are not
procedures for equation solving, as in the
sequential-modular case, but instead are used
for generating the equations for a particular
process unit. The modular architecture is a
natural response to the need for flexibility
and ease of user input, as well as the desire
for an efficient and easily understood code.
The second idea (Gorczynski et al., 1979; Mah
and Lin, 1978; Book and Ramirez, 1978) for
simplifying the equation generation code
involves the observation that the equations
representing a process, typically involve a
rather limited number of equation types. 1In
SEQUEL, this is exploited by using a "library"
of standard equation types. It is assumed
that the flowsheet can always be represented
by a set of equations of these standard types.
When necessary, the library of standard types
can be augmented by the user. The use of
standard equation types is a very efficient
way to store the information required for
Jacobian and function evaluation. Rather than
maintain a copy of this information for each
occurrence of a particular equation type, only
one copy is required. It is also worth noting
that by adopting this approach, we avoid the
use of algebraic equation-manipulation pro-
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"FLASH" 83 8 9 10
"SPLT" 9 3 9 11 12
"PMPVAL" 10 2 12 13
"HTR" 11 2 13 14
"FLASH" 12 3 10 15 16
IlENDII

Figure 2. Flowsheet input file for NH; problem shown in Figure
1. See text for additional detail.

grams, whose use in this context has sometimes
been proposed (Hanyak, 1980; Coup et al.,
1981; Kubicek et al., 1976).

Flowsheet input to the equation generator
uses standard FORTRAN free-format conventions.
Figure 1 is an example of a chemical process
flowsheet; the input file describing this
flowsheet is shown in Figure 2. There are six
types of statements in the input file:

1. The first statement specifies whether
the equation set will describe only a material
balance of the process or a complete material
and energy balance.

2. The second input is the total number
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of streams in the flowsheet together with a
specification of the phase of each stream. The
user may specify the stream as all vapor, all
liquid, or of unknown state.

3. The third input is the number of
chemical species in the process together with
their property data bank identification num-
bers.

4. The fourth gives the type of thermo-
dynamic model to be used for predicting vapor-
liquid equilibria, and whether the thermo-
physical properties are to be evaluated in
external subroutines or as part of the overall
matrix.

5. Fifth, the unit operations involved
are listed followed by their user identifi-
cation number, the number of streams connected
to the unit operation, and the numeric des-
ignator of each such stream. The unit oper-
ations may be listed in any order.

6. Sixth, the input 1ist is terminated
with an END statement.

Like in many other flowsheeting programs,
each connecting stream i is described by a
vector S. comprising molar component flowrates,
total stream flowrate, temperature, pressure,
and total stream enthalpy. That is, S. = ("1’
Fis Tan Pi’ H:). Component flowrates were
chosed as priﬁitive variables rather than mole
fractions because material balances around a
unit could then be represented by linear equa-
tions. The total stream flow was included for
clarity and to simplify the structure of some
equations. Of course, the inclusion of both
component flows and total stream flow as vari-
ables requires an additional equation for each
stream, namely the stream balance that equates
total flow to the sum of the component flows.
After reading the number of streams and number
of components, SEQUEL creates a variable vector
X that comprises all of the stream vectors.
That is X = (Sy, Sps.v.0s Sy) where M is the
number o?'stre;ms. Since ?ﬂe order of the
variables within each stream vector is the
same, it is easy to locate any individual
variable within the X-vector. After initial-
ization, the X-vector contains only the exter-
nal variables describing flows between units.
As discussed below, internal variables are
appended to the X-vector as they arise in
generating the equations.

As each unit operation in the input file
is read, control within the equation generator
branches to the module for that type of unit
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Figure 3. Information flow in equation generation routine.

operation. This module subsequently issues
calls to a subroutine library that creates
general balance equations as well as an equa-
tion set unique to the unit operation and
stream configuration specified. Figure 3 il-
lustrates the general program flow during
equation generation.

The equations representing any given unit
operation are a subset of a "library" of stan-
dard equation types, as shown in Figure 4, In
defining standard equation types, care must be
taken to structure the equations so that numer-
ical difficulties such as division by zero are
avoided. Additional equation types can be add-
ed as necessary.

As the equations are generated, occurrence
matrix information is stored by sequentially
filling an array CI with the position in the X-
vector of each variable contained in an equa-
tion. A pointer array RLI is maintained that
indicates where in CI each row (equation)
begins. An additional vector EQN is prepared
that contains numerical values specifying the
equation type corresponding to each row of
the occurrence matrix. If an equation type
involves coefficients that vary from row to
row, these constants are stored in another
vector. As an example of the equation gen-
eration process, we show in Figure 5 the
arrays produced when the material balances
around a heater are generated.

Some equations involve the use of inter-
nal variables such as K-values, split frac-
tions, and heat loads. As these variables
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Equation Type \ \ N Ny
10 Xy * 121 byXy * 1'£1 )(1.cp|_1.(c1.-c0)+i£1 X; [ va1dXN+]=0(vapor)
N “
-X0+ 151 Xi CpLi (XN+'I -co) = 0 (1iquid)
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X 4 X -1
. I e
CoLt = 34 [d1+dﬂ‘ e ) +dy (- ]
€2 %oy
n -X0X1 + exp c1+Y2- +c31!nX2 +c4 _)(_2_] = 0
2

6 -X0+m1n[X.|,X2,...,X.] =0

R
7 'XOXI +X2 =0 12 -X0+X1 + ¢ymin q,q,... = 0
[ -X0X1X2+X3X4 = 0
<, . X3 X4
9 -xox] + exp ¢ - -63-+—X2—— =0 13 -x.0+x1 +X2+c0m1n -c—a-.q.... =0

Figure 4. Partial list of standard equation types used in SEQUEL.
There are currently 22 standard equation types. The X;’s are the
variables; the ¢’s are constants.

arise in generating the equations they are
sequentially assigned a position in the X-
vector. An identification vector is also
maintained containing the type of variable at
each position for use when subjecting the X-
vector to global constraints, as discussed
below.

The arrays produced by the equation
generator are used directly when performing
function evaluations and when creating and up-
dating the linearized model at each iteration.
When a call is issued by the solution portion
of SEQUEL to evaluate functions or derivatives,
EQN is sequentially scanned. For each equation
I, the program branches to the procedure
specified by EQN (I), and using the occurrence
matrix information in CI in conjunction with
the values in the X-vector, the desired expres-
sions are evaluated. As previously stated,
this type of program, in which each procedure
(equation type) is coded only once, results in
a tremendous reduction in core requirements,
and makes equation generation efficient even
for very large problems.

Thermophysical Property Models

As noted above, the models available to
date in SEQUEL are very simpie and will not
always be adequate. In part, this is because
our interest here is less in the accuracy of
the models than in the computational strategy

for using them. For determining such proper-
ties as K-values, dew and bubble points,
enthalpies, vapor fractions, etc., one can in
general identify three types of computational
strategies:

Case 1. In the simplest case all thermo-
physical properties are evaluated in external
subroutines. Therefore, the thermophysical
models are not treated as part of the overall
process matrix and are not subject to linear-
jzation. That is, no linearized K-value, dew
and bubble point, or phase determination
equations appear in the process matrix. A
linearized enthalpy equation for each stream
in the flowsheet is included in the matrix to
allow the update of each stream's temperature.
After a process matrix iteration, current
values of temperature, pressure, and compo-
sition are provided to the subroutines, which
in turn update, perhaps iteratively, the
thermophysical property values required for
function and Jacobian evaluation. The omis-
sion of the thermophysical property expres-
sions from the matrix keeps the process matrix
size smaller than would otherwise be possible.
However, except for stream enthalpies, no
information on the variation of the property
values with temperature, pressure or composi-
tion is included. A linearized process model
based on such a strategy is inaccurate and its
convergence behavior may be poor for some
problems. For example, in modeling a process
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Figure 5. Arrays created when generating material and stream bal-
ance equations around a heater unit. '

including an adiabatic flash, it is important
to include the K-value dependence on tempera-
ture in the linearized process model. A model
without this information, in general, will
exhibit poor convergence behavior. On the
other hand, if one were modeling a process
involving only isothermal flashes, good conver-
gence could still be expected.

Case 2. This case is like the first, with
the distinction that linearized K-value equa-
tions are now included in the process matrix.
This contributes to a possibly drastic increase
in the size of the occurrence matrix, since
multiple copies of the linearized K-value model
must be included. However, the model is more
accurate and may be expected to perform well in
both the adiabatic and isothermal cases. The
subroutines are used to update the property
values, and may also be used to generate the
coefficients in the linearized models. This
means that within each Newton-Raphson iter-
ation, there may be nested iteration loops in
the subroutines that need to be converged.

Case 3. A third type of strategy avoids
this nesting of iteration loops by eliminating
the subroutines and treating the physical

property models simply as equations within
the overall set whose residuals are to be
driven to zero by the Newton-Raphson process.
In this case, the thermophysical property
models are not converged until the end, and
the properties are updated at each iteration
by the Newton-Raphson process and not by
external subroutines. In comparison to Case
2 this may mean another drastic increase in
the size of the occurrence matrix. We are
currently using SEQUEL to perform numerical
studies comparing these three strategies.

Though the models used to date are
simple, the flexible nature of SEQUEL allows
the inclusion of more complex models with
little difficulty. Thermodynamic models are
represented as standard equation types within
the Tibrary set. It should be noted that a
standard equation type may in fact be a pro-
cedure involving several equations. Thus,
complex models can be handled in this context.
In the current version of SEQUEL, all streams,
both Tiquid and vapor, are modeled as ideal
solutions. Raoult's Taw is used for K-value
prediction, along with vapor pressures pre-
dicted using either the Antoine equation or
an equation of standard type 11 as given by
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prausnitz, and Sherwood (1977). The
rincipal differences between the vapor pres-
ﬂure equations is that they are, respectively,
explicit and implicit in vapor pressure, the
1atter thus requiring iterative solution. Heat
capacities of vapor components'are evaluated
using third order polynom1a]s_1n temperature.
Liquid component heat capacities are evaluated
using an equation of standard type 10. The
thermophysical property da;a base is a supset
of the data base included in Reid, Prausnitz,
and Sherwood (1977) and thus is very similar to
the CACHE data base. The data base is stored
in a separate file and is accessed only once.

Re'ld ’

pesign Specifications

After the equation generation routine has
processed the flowsheet input file, the equa-
tion set generated will in general contain more
variables than equations. Thus, design vari-
ables must be chosen and assigned values, or
other specifications added to the equat1on set.
Design variables are handled by adding to the
equation set equations that set the design
variables equal to their specified values.

In this version of SEQUEL the user is required
to choose the design variables and supply a
consistent set of specifications. Though the
user entry of this information is straightT
forward, the program could be made friendlier
to the user by incorporating one of the pro-
cedures available for automatically selecting
some or all of the design variables.

Initialization

Since all variables are iterated on, they
all require initialization. Ideally these
initial guesses would be provided by a user
whose insight into the process at hand permits
him to provide good guesses. For relatively
small problems, this is not an unreasonable
expectation. For larger problems, however,
this may be impractical. Nevertheless, even on
large problems a relatively good initialization
may be available. For instance, the result of
a similar problem solved earlier may be used.
Also, by starting with a small part of the
overall process for which a good guess can be
made, one may exploit the modular nature of
SEQUEL to "build" a process a unit or two at a
time. This is essentially a "continuat1oq"
approach in which a sequence of problems is
solved, the solution of one problem being used
to generate initial guesses for the next.

The worst case with respect to initializ-
ation is that the user will be gnab1e to
supply an initial guess, requiring the program
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to assign initial values internally. In our
numerical studies using SEQUEL one interest is
in studying the performance of the quasilinear
approach in this situation. Though any number
of internal initialization schemes might be
devised, for the purpose of the numerical
studies presented here we have used three such
"worst-case" schemes. In all three schemes,
temperature, pressure, and enthalpy are set to
preselected reference values, heat loads are
set to zero, and split fractions are set
equal. These values are overridden if other
values are specified as design variables. The
guesses for the K-values are calculated using
these preset or specified temperatures and
pressure values. The three schemes differ in
how component flowrates are guessed:

Type 1. In this most primitive scheme
all unspecified component flows are set to
some arbitrarily small number (we used 0.001).
Somewhat surprisingly this works remarkably
well for some kinds of problems.

Type 2. In this case all component flows
are set to some arbitrary "average" values.
As in the previous scheme each stream will
have the same component flowrate values,
except where overridden by a design specifica-
tion. There are any number of ways for choos-
ing the "average values". For instance, one
could simply use specified or estimated feed
stream values.

Type 3. In this case a set of heuristics
is used, one for each type of unit, and a
guess is generated by beginning with the feed
stream and moving sequentially through the
process until guessed flows for all streams
have been generated. Only one pass is made
through the process, so there is no iteration
on recycle streams. The heuristics are as
follows:

1. FEED STREAMS. Feed component flows
not specified are estimated using specifica-
tions for those components elsewhere in the
flowsheet if possibie. For a stream component
for which this is possible, the feed flow is
set to the average of flows specified else-
where for that component times the number of
output streams. For components that do not
have a flow specified anywhere in the flow-
sheet, the feed stream flows are set to the
average of all specified component flows.

2. STREAM MIXER. Guess the output
stream by assuming that any unknown inlet
flows contribute one-half the flow in the
largest known (or already guessed) inlet.
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3. STREAM DIVIDER. Guess outlet streams
using specified outlet/inlet ratios if avail-
able. Otherwise assume inlet flow is divided
equally among outlets.

4, EQUILIBRIUM FLASH. Guess outlet
streams by assuming total liquid flow out
equals total vapor flow out. Use the K-values
guessed as described above.

5. REACTOR. If conversion is not spec-
ified, guess outlet by assuming 100% conver-
sion of limiting reactant in inlet.

In using these heuristics, values given
by design specifications always override the
guessed flows and assumed parameters. Many
other heuristics such as these could be used,
and may be better than those given here.

Equation Linearization and Solution

Three linearizations are currently avail-
able in SEQUEL. These are: standard second-
order Newton-Raphson linearization, Newton-
Raphson with step size relaxation, and a
hybrid linearization that blends first and
second order linearizations according to user
specification. The hybrid linearization, an
approach suggested by Gorczinski and Hutchison
(1978) is based on a priori analysis of the
nonlinear equation types. Each nonlinear term
is linearized by selecting all but one of the
variables in the term to be constant. The
selection was made when SEQUEL was programmed.
The resulting linearization is first order.

It is then straightforward to gradually shift
from the first order representation to the
full Newton-Raphson linearization. The user
specifies the value of the blending parameter
(zero to one, where one is a full Newton-
Raphson linearization) and the rate at which
the blending parameter is to be increased. The
idea, of course, is that far from the solution
the stability of the first-order linearization
is desirable, while nearer the solution the
speed of the second-order linearization is
desirable. While requiring the user to select
the blending parameter and rate may not be
desirable in a production code, the require-
ment is consistent with our use of SEQUEL to
study different computational strategies.

X-vector values may vary considerably
from iteration to iteration, and values may be
outside the range of physical feasibility,
e.dg., negative flowrates. In some cases, this
may cause no difficulty, but in others it may
create numerical difficulties in performing
function and derivative evaluations. The
values for the X-vector are therefore con-
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strained to be within user-defined bounds of
feasibility. SEQUEL utilizes global con-
straints as opposed to constraints on individ-
ual variables. For example, all flowrates are
subject to the same constraints, rather than
varying flowrate constraints from component to
component and stream to stream. SEQUEL con-
strains pressures and flowrates to be positive,
and, to prevent excursions too far from the
applicable range of thermophysical property
models, constrains temperatures within maximum
and minimum values and enthalpies below some
maximum value. When a constraint is violated,
the X-vector values are reset heuristically.
Convergence is monitored using the norm of the
correction vector as well as the norm of the
residual vector.

Sparse Matrix Processing

For solving the linearized equations, we
use a two-pass approach. In the first pass,
the equations and variables are reordered into
a matrix form that reduces fill-in during the
solution. In the second pass, the linear
system is solved using Gaussian elimination or
some other technique. In this case, since all
the linearized problems have the same struc-
ture, the matrix reordering is done only once
and is saved for use in later iterations.

Various reordering and solution methods
are available to SEQUEL. For instanse, re-
ordering methods available include P° (Heller-
man and Rarick, 1971), hierarchical parti-
tioning (Lin and Mah, 1977), and our modifi-
cations of these methods. Solution methods
available include Gaussian elimination and the
methods described by Stadtherr (1979) and
Stadtherr and Wood (1980). Work comparing
various combinations of reordering and solu-
tion methods is in progress. Using a code
based on the solution method given by Stad-
therr and Wood (1980), we are able to solve
systems of several thousand equations without
problem decomposition. For larger problems
decomposition is required. Although the
current version of SEQUEL does not have a
decomposition capability, methods have been
described by Westerberg and Berna (1978) and
Stadtherr and Hilton (1982).

NUMERICAL STUDIES

Problem Set 1

The studies reported here involve the re-
Tiability with which convergence is obtained
from the so-called "worst-case" initial guess
situation described above. We compare the
performance in this regard of the three

|
\
'

e —————————————
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initial guess types given above and of several
different linearization strategies. What if
any effect the method of handling thermophysical
roperties has in this regard is also con-
sidered in preliminary fashion.

For the studies reported here, we used ten
problems involving the three flowsheets shown
in Figures 1, 6, 7, all of which are familiar
in the flowsheeting literature. As shown in
Table 1, there are two flash with recycle
problems, four ammonia manufacture problems and
four Cavett problems. The problems differ with
respect to which variables are specified by the
user. Note that problems 5, 6, 8, 9, and 10
nave the feed stream and equipment parameters
specified and thus can be categorized as simu-
lation problems. The remaining problems are
design problems with one or more output flows
specified. The problems may also be classified
based on the type of flash specification used.
Problems 1, 3, 5, 7, 8, and 9 have flash tem-
peratures specified; we refer to this as the
jsothermal flash case. In other problems, the
flash heat loads are specified; we refer to
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this as the adiabatic flash case even though
the heat load may be specified to be nonzero.

For the flash with recycle problem a 50%
recycle rate is used. For the ammonia problem
the precent conversion of the limiting com-
ponent is set at 25%. Also, since this version
of SEQUEL has no compressor module, pump and
heater modules are specified to provide the

I__L,
I 2
e MIX ————3»| FLASH
7 4
6 5
PUMP | @———| DIVIDE | ———»

Figure 6. Flowsheet for flash with recycle problem used as
example.

5
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S
| 13 1 -
T e A | 3
| [I
_'2—:—- FLASH MIX —:—> MXx | —=| FLASH
|
| L 4 | ¢
L _____________ JI 6 i 8
7
MIX | —-=| FLASH 5
9
FLASH
I
N

Figure 7. Flowsheet for Cavett problem used as example. Dashed
area indicates flash/mix inserted to test condition of feed.
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Table 1. Summary of ten test problems used in
Problem Set 1.
Flowsheet ﬁiﬁﬁl:? Specifications
F;:z;c¥;th 1 M1s T], P1, N33s Nggs N3y = 0.994n]1, Ngg = .69F5;
(6 components) all unit parameters (T and P for flash)
2 same as #1, but Q specified for flash, not T
NH3 Synthesis 3 T1, P1, n11’], n]1,2’ n16,3’ n16,4’ "16,5;

(5 components)

all unit parameters (T and P for flashes)

4 Same as #3, but Q specified for flashes, not T

5 T], P1, ns all unit parameters (T and P for flashes)

6 same as #5, but Q specified for flashes, not T
Cavett Problem 7 T P..F

(16 components)

50 F110 M5 15 My g0 My 50 eee

» My L168

T and P specified for flashes; material balance only

8 Ty» Pys ny3 T and P specified for flashes; material
balance only
9 same as #8, but energy balance also performed
10 same as #9, but Q specified for flashes, not T
desired temperature and pressure changes. For Table 2. Jumeary of iinearization strategies used
the Cavett problem a sixteen component system 1 Frobiem Set 1.
was used. A flash-mixer combination is in-
serted into the feed stream as a means of Method Strategy

testing the feed condition. It should be
noted that the largest problem considered here
has only 365 equations and thus comes nowhere
close to taxing the sparse matrix handling
capabilities of SEQUEL. Comparisons of the
various sparse matrix routines avaijlable in
SEQUEL will be presented elsewhere.

The linearization strategies compared are
summarized in Table 2. The first strategy is
pure Newton-Raphson. The next four are Newton-
Raphson with step size relaxation; these
differ in how the relaxation parameter r is
determined. In strategy #2, r is selected
based on a standard norm reduction scheme.
Strategies #3-5 employ a scheme that is more
primitive, but which performs better on some
problems. In these strategies the user sup-
plies an initial value of r and a percentage
increment, which is implemented after each
iteration in which improvement is observed.
The remaining strategies involve a blending of
first and second order linearizations, as
discussed above. The user supplies an initial
blending parameter that indicates the fraction

Number Parameters

Newton-Raphson 1

Newton-Raphson
with step
size

§ r set by nom reduction:

4
relaxation 5

6

7

8

9

initial r=0.8, increment = 10%
.5 =10%
2 =10%

Blended
first-order

and second-

order linear-
izations 10

Initial ag = 0.1*

"
cCoocooco
—_—O = —

*

5

oO0ooDoocOo oo
WO oo G

= 1.
*indicates ag applied only after iteration during which

improvement occurred; otherwise 48 applied after every
iteration.

of a second-order linearization used. Thus 8 =
1 indicates a Newton-Raphson linearization and
B=0 a pure first-order linearization. The
user also specifies an absolute increment A8
that is applied either after every iteration
or only after iterations in which improvement
occurs. In our experience, it is not desir-
able to remain in the blended (8 < 1) mode for
too many iterations, thus in general the
values of AB used are relatively large.

Since the comparison of the strategies

;
k

e e S —
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handling thermophysical property ca!cu]a-
he principal concern of this
roblem set, somewhat §imp11fied versions of
the three strategies discussed above were used.
In particular, no dew or bubble point calcula-
tions were performed. .It is for this reason a
flash/mix is inserted in the feed stream to the
cavett problem to check the phase condition.
However, the fundamentg] d1ffereqces between
the three cases are §t1]1 maintained, and eqch
case presents a distinct problem to the various
equation solving routines.

for
tion is not t

Each of the ten problems was solved using

the twelve linearization strategies on the nine
ossible combinations of initial guess types
and thermodynamics cases, the only exception
being that the ammonia problems were not solved
for thermodynamics Case 3. Thus a total of 936
solutions were attempted. Table 3 summarizes
the success rate for the various guess types
and thermodynamics cases. The entries in this
table indicate what percentage of the twelve
linearization strategies were successful on
each type of problem, These success rates give
a very general indication of how difficult it
was to converge a given problem using the
twelve linearizations selected. Of course for
a different set of linearization strategies,
different results might be obtained. Never-
theless, while the results here are not conclu-
sive, they are interesting and in many respects
not surprising. First of all, we note that the
overall success rate was not particularly good.
Since "worst-case" initial guesses were used,
this is not too surprising. It does indicate
however, the need for better methods of inter-
nally generating initial guesses, and the need
to consider other approaches, such as the
dogleg method, for solving the nonlinear equa-
tions. Comparing the initial guess schemes we
see that the heuristic approach of Type 3 is in
general the best. The development of a better
set of heuristics might further improve the
success rate.

Comparing thermodynamics Cases 1 and 2 we
note that in general Case 2 has a better suc-
cess rate. This is as expected, since in Case
1 the Jacobian does not include deriatives of
K-values with respect to temperature or pres-
sure and thus does not provide an accurate
linearization. It is interesting that on the
jsothermal flash problems (1,3,5,7,8,9), for
which the K vs. T information is not important,
Case 1 in general seems preferable to Case 2.
As expected, it is clear that except in prob-
lems for which temperatures are specified (or

closely guessed) for all equilibrium stages, it

is desirable to linearize the models for K-
value prediction and include these in the
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overall equation set. For Case 3 the results
are incomplete, but suggest worse convergence
behavior than Case 2. This observation is
discussed in more detail below.

Table 4 summarizes the success rate for
the various linearization strategies. The
entries in this Table indicate how successful
each linearization was for solving each problem
using all the different combinations of initial
guess type and thermodynamics case. For in-
stance, linearization #5 was successful in six
of the nine attempted solutions of problem 1.
These success rates give a general indication
of how reliable each Tinearization type was
under a variety of circumstances. Of course
for a different set of initial guesses dif-
ferent results might be obtained. Looking at
these overall results, we note that the blended
linearizations #6 and #7, which use an initial
B=0and a AB=0.1, appear the most success-
ful. For most problems, these strategies
performed the best or nearly best overall. For
some problems a different linearization seems
appropriate however. For instance, #9 per-
formed best on problem 7 and #12 best on prob-
lem 4. In fact, linearization #9 was the only
strategy to solve all the problems at Teast
once. If we focus just on the attempted sol-
utions using guess Type 3, and thermodynamics
Case 2 (the best combination from Table 3),
linearizations #6 and #7 solve 70 and 80 per-
cent of the problems respectively, but the norm
reduction strategy #2 solves 90% of the pro-
blems. Thus, it is difficult to make any
specific conclusions regarding the different
linearizations. We can say in general however,
that the blending of first and second order
linearizations appears to be a useful approach.
While an initial 8 = 0 and 48 = 0.1 seem to be
relatively good blending parameters, in general
it appears that the best blending parameters
will vary from problem to problem. This

Table 3. Success rate (%) for different guess types
and thermodynamics cases. See text for
more detailed information.

Thermodynamics: Case 1 Case 2 Case 3
Guess Type: 1 2 3 1 2 3 1 2 3
Problem: 92 92 100 92 100 100 92 100 100
0 8 17 67 100 100 83 100 92

1

2

3 42 17 92 42 17 92 = - =
4 17 17 17 33 42 75 = = =
5 2 0 67 42 0 67 = -
6 33 0 8 50 0 42 - - -
7 0 17 33 25 17 33 0 n 8
8 25 17 67 25 17 33 0 17 25
9 25 17 58 25 17 33 0
0 0o 0 o 25 0 W7 0

17 25

1 17 33

Overall 28 18 46 40 30 60 29 42 47
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Success rate (%) of different linearization
strategies on the test problems.

for more detailed explanation.

Problem Type: DESIGN

Flash: Isothermal Adiabatic

Prob. #: 1 3 7 2 4

Linearization:

1 100 0 N 67 0
2 100 33 N 67 17
3 100 33 0 67 33
4 100 33 N 56 33
5 67 67 22 67 17
6 100 100 O 67 50
7 89 100 0O 67 67
8 100 67 O 67 33
9 100 33 33 67 33
10 100 33 11 56 17
N 100 33 22 56 17
12 100 67 22 56 83

suggests that, as noted in Gorczynski et al.
(1979), it may be desirable to use different
blending parameters for different parts of the
process, rather than one set of parameters for
the overall flowsheet. The "goodness" of the
initial guess is another factor that must be
considered in choosing the blending parameters.
In general, for better initial guesses than
those used here, a wider range of parameters
will be successful and numerical efficiency
will govern the choice of B and A8, since it
will be desirable to move more quickly into the
pure second-order linearization. What is
needed is a systematic procedure for selecting
an appropriate set of blending parameters for a
given situation.

Though the studies presented here focus on
the reliability with which convergence is
obtained from a poor initial guess, it is also
appropriate to comment on numerical efficiency.
For the problems solved here, the solution
times and number of iterations vary with the
guess type, linearization strategy, etc. For
the flash with recycle problem a typical solu-
tion time is about 0.1 second and about seven
iterations are needed. For the NH, problem,
typical figures are 0.4 seconds ana 15 iter-
ations. For the Cavett problem, about sixteen
to twenty iterations are needed and times range
from about one second for the isothermal cases
to about three seconds for the adiabatic case.

See text
SIMULATION 0
Isothermal Adiabatic \é
8 5 9 6 10 :
. L
L
0 33 0 17 0 24
1 33 1 17 0 31
11 33 0 17 0 29
11 33 N 33 0 32
1T 33 11 17 0 31
78 66 78 33 44 62
78 66 78 50 44 63
22 33 133 17 1N 38
5 33 44 33 22 47
22 0 22 0 0 28
33 0 0 0 27
0 33 o0 33 0 37

These computational times were obtained on a
CDC Cyber 175 computer using the FTN compiler
under OPT = 1. The number of iterations
required reflects the fact that blending in a
first order linearization slows the rate of
convergence. For this reason, as noted above,
when better initial guesses are available, one
should avoid staying in the blended mode for
many iterations.

Problem Set 2

In this set of problems we look at the
convergence behavior from a set of "best-case"
initial guesses. These guesses were generated
by taking the known solution and randomly
perturbing the values in it a minimum of 5%
and a maximum of 10, 15, 20, 25, or 30%. Thus
five levels of initial guess accuracy were
considered. For each problem, three different
initial guesses were generated for each level
of accuracy.

The problems solved were based on the
ammonia and Cavett flowsheets discussed above.
The thermophysical properties were handled
using either Case 2 or Case 3, thus generating
four problems as shown in Table 5. For
further details on these and other problems
solved see Hilton (1982). For this problem
set, dew and bubble point determinations are
included using either the Case 2 or Case 3
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Summary of test problems (Problem set 2).

Specifications

M, M5 Tys Pps Tys Py ("compressor" output);
Tes T7» Tgs T14* P1a ("compressor" output); P
and Q of both flashes; g 5= 0.1n5 4 (this fixes
the inerts into the reactor, etc. tb be a fixed

percentage of the active components)

Table 5.
Problem Flowsheet
Number —
1 NH3 Synthesis;
5 components;
Thermo. Case 2;
# of variables =165
2 As in 1 but As in 1.
Thermo. Case 3;
# of variables =234
3 Cavett Problem;

12 components;
Thermo. Case 2;
# of variables =228

4 As in 3 but
Thermo. Case 3;
# of variables = 506

strategy. Thus, the largest problem solved
now has 506 equations, which again does not
tax the sparse matrix capabilities of the
system. The linearization strategies used are
the same as for the first set of problems,
except that the damped Newton-Raphson strat-
egies 2 and 3 use somewhat more sophisticated
norm reduction schemes, as detailed in Table 6.
Each of the four problems was solved using the
twelve linearization strategies on each of the
eighteen different initial guesses. Thus a
total of 864 solutions were attempted.

Table 7a summarizes the success rate for
the various "best-case" guess types and the two
thermodynamics cases. The entries in this
table indicate how many solutions out of a
possible six were successful. Table 7b com-
pares the overall performance of the Newton-
Raphson linearizations (1-5) to the hybrid
linearizations (6-12) for the five guess
types. Two trends are apparent. Again we note
that the Case 2 strategy for computing the
thermophysical properties seems more reliable
than Case 3. It is not clear why this should
be so. Perhaps it is due to the fact that for
Case 3 the thermophysical property models are
not converged until the end, while for Case 2
they are converged after every iteration.
However, this is not a particularly satisfac-
tory explanation. A more probable explanation
is that Case 2 is more reliable because the
thermophysical property subroutines can employ
special-purpose solution algorithms known to be
fairly robust for a particular problem, while
for Case 3 a general-purpose solution algorithm

n1’1- n],12, T1, P], H1; P and Q of all flashes

As in 3,

Summary of linearization strategy changes
(problem set 2).

Table 6.

Method: Newton-Raphson with step
size relaxation

Strategy Evaluation of relaxation

Number : parameter r:

0.5
- (1+6n -1
2 R

. 2,22
where n = f'/f,
and if r < 0.05, r = 0,05

2f?1
3 T e
208 + £

where if r < 0.1, r = 0.1

If the norm of f is not
reduced:
or? g2

- - ; %?-1
il 2(_111 +£,4 (2r1. -1

where if it i

1€ 01 ey = 0.1r
2-5 When norm of f < 10, r = 1.

is applied to the entire equation set. The
second trend to note is that the Newton-
Raphson-based strategies (1-5) in general
perform better than the blended first-second
order linearization (6-12). This would seem
to indicate that since we are starting near
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Table 7 a.
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Success rate (convergences out of 6) of
different linearization strategies (problem set 2).

b. Success rate (%) for Newton-Raphson type
linearizations and hybrid type linearizations.

Guess Accuracy: 10% 15%
Thermo. Case: 2 3 2 3
Linearization: 1 6 4 6 4
2 6 6 6 6

3 6 5 6 5

4 6 5 6 3

5 6 6 6 5

6 5 3 3 4

7 4 3 3 3

8 5 5 6 3

9 4 4 6 4

10 5 5 6 3

11 6 5 6 3

12 3 4 2 1

Total(%)86 76 86 61

Guess Accuracy: 10% 15%
Thermo. Case: 2 3 2 3
Linearization Type:

Newton-Raphson 100 87 100 77
(Overall % Success

for linearizations

1-5)

Hybrid 76 69 76 50
(Overall % Success

for linearizations

6-12)

the solution, the more accurate second-order
Tinearization should be used from the start.
Overall the damped Newton-Raphson strategies 2
and 3 perform quite well. However there is
still room for improvements in robustness even
from relatively good initializations. We
believe the dogleg approach (Powell, 1970; Chen
and Stadtherr, 1981) to be particularly prom-
ising in this regard.

CONCLUDING REMARKS

A new equation-based flowsheeting system,

(a)
20% 25% 30%
Overall

3 3 2 3 Success (%)

63
87
80
70
75
52

W AW oo, N
W W e e N
N NN AW
[ I - B )
N DN W oo

47
60
58
67
62
28

(= S LT
W W P N ow N
~— = W N O W
N W e poow
'

O B w NP

72 44 57 33 64 43

20% 25% 30%

93 63 70 40 73 47

57 31 48 29 57 40

SEQUEL, is being developed. The system uses
a simple executive routine that efficiently
generates the equations to be solved, and is
interfaced to a set of powerful sparse matrix
routines capable of solving several thousand
equations without problem decomposition. For
larger problems decomposition may be re-
quired. Though SEQUEL does not currently
have a decomposition capability, the tech-
niques given by Westerberg and Berna (1978)
and Stadtherr and Hilton (1982) may be used
in this context.

SEQUEL is designed for use in studying



No' 214, Vol- 78

; gtational strategies for equation-
Var1§”?1§3§ﬁeeting. The studies discussed
”352 indicate that simple heuristics can be
heremped to improve internally generated
qe:t1a1 guesses when the user supplies no such
I ormation externally. Also the blending of
}irst and second order 1ineqr1zations appears
to be a useful approach to improve convergence
from poor guesses. However, choosing the best
plending parameters is not straight-

of e
?g:ward. For good initial guesses, as well as
some poor guesses, a damped Newton-Raphson
approach appears quite effective.
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