NUMERICAL TECHNIQUES FOR PROCESS
OPTIMIZATION BY SUCCESSIVE
QUADRATIC PROG RAMMING

by

M. A. STADTHERR and H.-S. CHEN
Chemical Engineering Department
University of Illinois

Urbana, Illinois 61801

USA

Recent work in process optimization has concentrated on the
application of the Han-Powell algorithm for successive
quadratic programming (SQP). Recently Jirapongphan (1980)
and Biegler and Hughes (1981,1982) have demonstrated the
effectiveness of this method on some problems in connection
with the simultaneous-modular approach. Techniques for
applying the Han-Powell method in connection with the
equation~-based approach have been described by Berna et al.
(1980). In this paper we consider enhancements to the basic
Han-Powell method to make it more efficient and reliable on
process optimization problems. Some numerical results are
presented for a new optimization code SQPHP that
incorporates these enhancements. For solving process
optimization problems SQPHP has been incorporated into
SIMMOD, a new flowsheeting and optimization package based on
the simultaneous-modular approach. We now proceed to
summarize the enhancements considered. This work will be
presented in more detail elsewhere.

Solving the QP subproblems

The starting point for the development of the enhanced code
SQPHP was Powell's code VF022D, which is available as part
of the Harwell Subroutine Library. VF02AD calls another
Harwell Library routine VEO2AD to solve the gquadratic
programming (QP) subproblems imbedded in the SQP
algorithm., VEO02AD requires (n+m)“ + O(n+m) working
storages, where n is the number of variables and m the
number of constraints. This is not storage efficient when
the number of equality constraints is about equal to the
number of variables, as is typically the case in process




optimization problems. Thus we use the equality constraints
to eliminate some of the variables. This reduced QP problem
is then solved using the method of Gill and Murray.

Handling bounds on variables

In the Han-Powell method, bounds on variables can be handled
very efficiently by including them in the QP subproblem.
However, in VF02AD bounds on variables are treated as
general inequality constraints. This is inefficient both in
terms of storage and CPU time. As an indication of the
potential saving of CPU time, we ran the test problem used
in Berna et al. (1980). This problem has 10 variables, 3
equality constraints, 8 general inequality constraints, and
20 bounds on variables. When bounds are treated as general
inequality constraints, our program takes about 1.1 CPU
seconds to solve it. When bounds are handled directly, our
program requires only about 0.4 CPU seconds.

The stepsize procedure

Maratos (1978) has shown that there exist problems for which
the stepsize procedure in the Han-Powell method causes less
than the full step to be taken no matter how close the
current iterate is to the solution point. In this case the
superlinear rate of convergence of the Han-Powell method
cannot be obtained. Several solutions to this problem have
been proposed: 1. Include a projection step or second-order
correction step to reduce the degree of constraint
violations (Mayne, 1980; Fletcher, 1982); 2. Replace the
nondifferentiable line search function used by a
differentiable augmented Lagrangian function (Schittkowski,
1981; Yamashita, 1982); 3. Add a second line search function
to ensure that a full step will eventually be used
(Chamberlain et al., 1982). 1In our program we adopt the
last approach and use the basic "watchdog" technique of
Chamberlain et al. (1982). This approach was chosen because
it is easily implemented in connection with VF02AD, and
because the results of Schittkowski (1981) indicate that the
usage of the differentiable augmented Lagrangian function
for the line search does not improve the overall efficiency,
and in fact slightly reduces the reliability of the Han-
Powell method.

Scaling

One advantage of the Han-Powell method is that constraints
need not be scaled. However, the scaling of the objective
function and the variables will affect the performance of
the method. 1In SQPHP the user is given the option of
providing scaling factors for the variables, and of choosing
one of three methods for scaling the objective. To study
the performance of the Han-Powell method on a very badly
scaled problem, we use the electrolytic cell problem given
by Stadtherr et al. (1983). This problem has 40 variables,
37 equality constraints, 2 general inequality constraints,



and 51 b%unds on variables. The variables range in size
from 10 to 102, so this is a very badly scaled problem.
In comparing runs with and without scaling, it was found
that with scaling the solution was found in 10 iterations,
while without scaling 45 iterations were required. Another
more severe problem is that the run without scaling would
have terminated prematurely far from the solution if a
slightly looser convergence tolerance had been used. For
process optimization problems, the problem of premature
termination can be severe because evaluation of the
functions typically requires the solution of systems of
nonlinear equations. Because it may not be practical to
always solve these systems to very high accuracy, a loose
convergence tolerance has to be used.

Imposing a step bound

In applying the Han-Powell method to test problems, we found
that the method occasionally failed because in the first few
iterations the QP subproblems predicted very large
correction steps, and these large steps were not reduced by
the stepsize procedure because the penalty parameters were
too small. For these problems we find it is advantageous to
impose a step bound restricting the stepsize during the
first few iterations. SQPHP includes an option to impose
such a step bound for the first three iterations.

Evaluation of functions and derivatives

VF02AD requires the evaluation of functions and derivatives
at the same time, leading to some unnecessary derivative
evaluations whenever a full step length is not chosen. For
this reason we separate the evaluation of functions and
derivatives in SQPHP.

Convergence test

VF02AD uses an absolute convergence test. 1In SQPHP we use a
relative convergence test. This is slightly more convenient
because the same value of the convergence parameter can be
used for different problems, and also because it makes the
convergence test independent of the scaling of the objective
function as long as the absolute value of the objective is
greater than one. We now proceed to describe some of the
numerical tests used to study the performance of SQPHP.

Numerical tests

We use problems 1-14 from the collection of Cornwell et al.
(1978) to test the numerical performance of SQPHP. These
are standard test problems originating either with
Himmelblau or Colville. Minkoff (1981) recently used these
problems in testing VMCON, another well-known code for
implementing the Han-Powell method, and GRG2, an efficient
implementation of the generalized reduced gradient (GRG)
method. 1In Table 1 below we compare SQPHP to these two
codes. For purposes of comparison, the optional procedures




in SQPHP for scaling, for imposing a step bound, and for
using the basic watchdog technique are disabled.

TABLE 1. COMPARISON OF SQPHP, VMCON AND GRG2 ON
PROBLEMS 1-14 FROM CORNWELL ET AL.

Function Derivative CPU Time

Evaluations Evaluations (Seconds)
SQP HP 270 217 3.25
VMCON 258 258 11.33
GRG 2 4022 382 5.63

Several comments on the above results are in order:

1. The results for VMCON and GRG2 are taken from
Minkoff (1981), are for an IBM 370/195 computer, and are
based on using analytical derivatives. SQPHP was run on a
CDC Cyber 175 and difference approximation derivatives were
used. Both SQPHP and GRG2 returned a good solution for all
of the problems, although SQPHP terminated abnormally twice,
and GRG2 five times. VMCON failed to solve one problem, and
in one case terminated abnormally but with a good solution.

2. From the timing data given in the LINPACK Users'
Guide, the IBM 370/195 is about 70% faster than the CDC
Cyber 175. To be conservative we ignore this speed
difference in the discussion here.

3. SQPHP requires about the same number of function
evaluations as VMCON. This is expected because both
implement the Han-Powell method. However, SQPHP is
considerably faster than VMCON. We attribute this largely
to the fact that SQPHP handles bounds directly and uses a
more efficient QP routine. Along these lines it should be
noted that Lasdon (1982) has recently described a
modification of VMCON that "warm-starts" the QP problems,
providing a reduction in CPU time of more than 50% on a set
of the Himmelblau test problems. SQPHP "cold-starts" the QP
problems; incorporation of the warm-start procedure would
further improve the efficiency of SQPHP, at least on
problems for which a large fraction of the CPU time is spent
on the QP subproblems. While the test problems used here
fall into this category, our experience in using SQPHP with
SIMMOD is that for actual process optimization problems, a
relatively small fraction of the CPU time is spent on the QP
subproblems, most of the time being spent on function and
derivative evaluations. Thus the use of the warm-start
procedure is likely to provide only marginal savings on
actual process optimization problems.

4. Both VMCON and SQPHP require considerably fewer
function and derivative evaluations than GRG2. VMCON is



considerably slower than GRG2 however, while SQPHP is
faster. These results clearly demonstrate the importance of
a good implementation in reducing the overhead associated
with the Han-Powell method.

Effect of using the basic watchdog technique

The results presented in Table 1 are for SQPHP without use
of the basic watchdog technique. We also ran SQPHP on the
same 14 test problems using the watchdog technique, and
found that 251 function evaluations, 218 derivative
evaluations, and 3.23 seconds of CPU time were required.
Clearly for this set of test problems the use of the
watchdog technique has very little effect on the performance
of the Han-Powell method. However, we have observed a
beneficial effect on some actual process optimization
problems solved with SIMMOD, and since the overhead involved
in using the watchdog technique is very small, we recommend
that this option be used.

Effect of imposing a step bound

We use here problems 15-21 from Cornwell et al. (1978), for
which Rosen is the original source. SQPHP was run using a
step bound parameter of 10° (no step bound), 1, and 0.1.
With no step bound SQPHP failed to solve all of the
problems; with a step bound parameter of 1, it failed to
solve two of the problems; and with a step bound parameter
of 0.1 all the problems were solved. On problems 1-14, all
the problems are solved without using a step bound; we find
that actually imposing a step bound anyway has very little
effect on numerical efficiency. We conclude that by
imposing step bounds during the first few iterations the
reliability of the Han-Powell method can be improved without
significantly affecting its overall efficiency. More
detailed results from this study and the others discussed
above will be made available elsewhere.

Application to process optimization

SQPHP has been incorporated into SIMMOD, a new flowsheeting
and optimization package that uses the simultaneous-modular
approach. Details regarding the theory and implementation
of SIMMOD, as well as detailed numerical results for several
flowsheeting and optimization problems will be given
elsewhere, There are several possible strategies for
formulating a nonlinear programming (NLP) problem using the
simultaneous modular approach. These differ most
significantly in whether to handle the stream connection
equations inside or outside the NLP routine. For instance,
Jirapongphan (1980) passes all stream connection equations
to the NLP routine. Thus he has a very large NLP problem to
solve, but each function evaluation requires only one pass
through each module. On the other hand, the Q/LAP, CFV, and
RFV methods of Biegler and Hughes (1981,1982) in effect
eliminate all the connection equations outside the NLP




routine. Thus, they solve a very small NLP problem, but
each function evaluation now requires a complete process
simulation. 1In SIMMOD we use a new method that attempts to
combine the good features of these two approaches, namely a
small NLP problem and function evaluations requiring only
one pass through each module. The strategy used is similar
in principle to that used in Biegler and Hughes' IPOSEQ
method; however they find this method to be less effective
than RFV or CFV. Our new method, used in connection with
SQPHP to solve the nonlinear programming problems, appears
more promising. For instance, using SIMMOD we have solved
the ammonia synthesis optimization problem in 6 CPU seconds
on a CDC Cyber 175. Other studies report times larger by
more than an order of magnitude. For instance Jirapongphan
reports a solution time of 311 seconds on an IBM 370/168.
While the various solution times reported in the literature
rare not directly comparable because of the different
computers used, and the different set of modules used in
each case, these considerations cannot account for the order
of magnitude improvement found using SIMMOD.

Concluding Remarks

Successive quadratic programming using the Han-Powell method
represents a very powerful technique for process
optimization. The new code SQPHP represents an enhancement
of the Han-Powell method to make it more efficient and
reliable, especially in connection with process optimization
problems.

References

Berna, T. J., M. H. Locke, and A. W. Westerberg, AIChE J.,
26, 37 (1980).

Biegler, L. T. and R. R. Hughes, Chem. Eng. Prog., 77(4), 76
(1981); AIChE J., to be published (1982); Comput. Chem.
Eng., to be published (1982).

Chamberlain, R. M., C. Lemarechal, H. C. Pederson, and M. J.
D. Powell, Math. Prog. Study, 16, 1 (1982)..

Cornwell, L. W., P. A. Hutchison, M. Minkoff, and H. K.
Schultz, Argonne National Lab., Report TM-320 (1978).

Fletcher, R., in Lecture Notes in Mathematics, Vol. 912
(1981).

Jirapongphan, S., Ph. D. Thesis, M.I.T. (1980).

Lasdon, L. S., presentation at AIChE Annual Meeting, Los
Angeles (1982).

Maratos, N., Ph. D. Thesis, Imperial College (1978).

Mayne, D. Q., in Lecture Notes in Mathematics, Vol. 773
(1980).

Minkoff, M., in Nonlinear Programming Symposium 4 (ed. O. L.
Mangasarian et al.), Academic Press (1981).

Schittkowski, K., Numer. Math., 8, 883 (1981).

Stadtherr, M. A., G. D. Cera, and R. C. Alkire, Comput.
Chem. Eng., to be published (1983).

Yamashita, H., Math. Prog., 23, 75 (1982).




