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Motivation — Computing Phase Equilibrium

e At equilibrium,
— How many phases are present?
— What types of phases are present (vapor, liquid, solid)?
— What is the composition of each phase?
— How much of each phase is present?

e Typically the temperature, I, pressure, P, and overall composition (mole
fraction), x(, are specified (but other specifications are possible)

e A critical computation in the simulation, optimization and design of a wide
variety of industrial processes, especially those involving separation
operations such as distillation and extraction

e Also important in the simulation of enhanced oil recovery processes, such as

miscible or immiscible gas flooding

e Even when accurate models of the necessary thermodynamic properties are

available, it is often very difficult to reliably compute phase equilibrium
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Background — Computing Phase Equilibrium

e [or phase equilibrium at constant temperature and pressure, the total Gibbs

energy of the system is minimized.

e Gibbs energy models are available (equations of state, activity coefficient
models, etc.)
— Symmetric approach: Same model for all types of phases

— Asymmetric approach: Different models for different types of phases

e Computation generally done in two (possibly alternating) phases:
— Phase stability problem

— Phase split problem



Background — Phase Stability Problem

Determine if a given mixture (test phase) can split into multiple phases

Can be interpreted as a global optimality test that determines whether the
phase being tested corresponds to a global optimum in the total Gibbs energy

of the system.

Can be formulated as an optimization problem or equivalent nonlinear

equations solving problem

Must be solved globally to assure correct solution to the overall phase

equilibrium problem



Background — Phase Split Problem

Determine amounts and compositions of phases assumed to be present

Can be interpreted as finding a local minimum in the total Gibbs energy, either
by direct minimization, or by solving an equivalent nonlinear equation system
(equipotential equations)

This local minimum can then be tested for global optimality using phase
stability analysis

If necessary, the phase split calculation must then be repeated, perhaps
changing the number and/or type of phases assumed to be present, until a
solution is found that meets the global optimality test.

The correct global solution of the phase stability problem is the key in this

two-stage global optimization procedure for phase equilibrium

Conventional solution methods for phase stability are initialization dependent,
and may fail by converging to trivial or nonphysical solutions, or to a point that
is a local but not a global minimum: NEED FOR INTERVAL METHODS
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Interval Methodology

e Core methodology is Interval Newton/Generalized Bisection (IN/GB)

— Given a system of equations to solve, an initial interval (bounds on all

variables), and a solution tolerance:

— IN/GB can find (enclose) with mathematical and computational certainty

either all solutions or determine that no solutions exist

— IN/GB can also be extended and employed as a deterministic approach for

global optimization problems

® A general purpose approach; in general requires no simplifying assumptions
or problem reformulations

e No strong assumptions about functions need to be made



Interval Methodology (Cont’d)

Problem: Solve f(x) = O for all roots in interval X (0)

Basic iteration scheme: For a particular subinterval (box), vmc&. perform root

inclusion test:

e (Range Test) Compute the interval extension F(X (¥)) of £(x) (this provides
bounds on the range of f(x) for x € X (%))
—1f0 ¢ F (X)), delete the box. Otherwise,

e (Interval Newton Test) Compute the image, ZQ&. of the box by solving the

linear interval equation system
M\AN@XZAS _ ASV — Iiwgv

— %) is some point in X (%)

— F/(X(*)) is an interval extension of the Jacobian of f(x) over the box
X (k)



Interval Methodology (Cont’d)

e There is no solution in X (%)



Interval Methodology (Cont’d)

e There is a unique solution in X (k)
e This solution is in N (%)

e Additional interval-Newton steps will tightly enclose the solution with quadratic

convergence
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Interval Methodology (Cont’d)

N®

X4

e Any solutions in X (%) are in intersection of X (¥) and N (¥)
e |f intersection is sufficiently small, repeat root inclusion test

e Otherwise, bisect the intersection and apply root inclusion test to each
resulting subinterval

e This is a branch-and-prune scheme on a binary tree
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Interval Methodology (Cont’d)

e Can be extended to global optimization problems
e For unconstrained problems, solve for stationary points (V¢ = 0)
e [For constrained problems, solve for KKT or Fritz-John points

e Add an additional pruning condition (objective range test):
— Compute interval extension of objective function
— If its lower bound is greater than a known upper bound on the global

minimum, prune this subinterval

e This combines IN/GB with a branch-and-bound scheme on a binary tree



Interval Methodology (Cont’d)

Enhancements to basic methodology:

Hybrid preconditioning strategy (HP) for solving interval-Newton equation
(Gau and Stadtherr, 2002)

Strategy (RP) for selection of the real point %(¥) in the interval-Newton
equation (Gau and Stadtherr, 2002)

Use of linear programming techniques to solve interval-Newton equation —
LISS/LP (Lin and Stadtherr, 2003, 2004)

_ Exact bounds on N *) (within roundout)

Constraint propagation (problem specific)

Tighten interval extensions using known function properties (problem specific)



Application to Phase Stability Analysis

Will a mixture (feed) at a given I, PP, and composition x split into multiple
phases?

Using tangent plane analysis, can be formulated as a minimization problem,

or as an equivalent nonlinear equation solving problem.

A phase at given I’, P, and feed composition X is not stable (and may split)
if the Gibbs energy vs. composition surface g(x) ever falls below a plane
tangent to the surface at X

.Qg:@Auﬂv — .QAVAOV + QQAN0vHAN | NOV

That is, if the tangent plane distance

D(x) = g(x) — gtan(x)
IS negative for any composition X, the phase is not stable.

To prove stability, must show global minimum of D is zero.
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[llustration

e Liquid-liquid equilibrium for the mixture of n-Butyl Acetate (1) and Water (2).

e Symmetric model using NRTL activity coefficient model to obtain the Gibbs

energy.

e Gibbs energy (of mixing) vs. 1

0.04 | m
0.02 {
/ , x1
0.2 0.6 0.8
- 0.02}
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lllustration (cont’d)

e For feed (test phase) composition g1 = 0.95

0.08 |

0.04 ¢

- 0.04 ¢

e A liguid phase of this composition is stable, since D is never negative (1M

never crosses m.)
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lllustration (cont’d)

e For feed (test phase) composition 2o 1 = 0.62

0.04 |

0.02 |

- 0.02 |

e A liguid phase of this composition is not stable and will split, since D
becomes negative (15, Crosses 1m.)

e At liquid-liquid equilibrium, m+,,, touches m at two points (the phase
compositions), and D = 0 at these points. These points are found in a phase
split calculation.
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Asymmetric Model

e Different Gibbs energy models for different types of phases

e Often used in the case of vapor-liquid equilibrium at low/moderate pressures.
— Vapor phase model gV (x): Equation of state (e.g., Peng-Robinson, SRK)
— Liquid phase model g (x): Activity coefficient (e.g., NRTL)

e The system model is then g(x) = min{g" (x), g"(x)}

0.8

0.6 -

0.4
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Reduced Gibbs Energy
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Asymmetric Model (cont’d)
e Tangent plane distance function is now

D(x)= min[g" (x), g"(x)] — g(xo) + Vg(xo) " (x — x0)
— min[D" (x), D"(x)]

e Objective in stability analysis is miny D(x) = min, min[DV (x), D¥(x)]

1

0.8 1

0.6 - 6 =0 (liquid)

PTPD
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Asymmetric Model (cont’d)

e To deal with slope discontinuity, define a “pseudo tangent plane distance”

objective function

~

D(x) = 6DV (x) + (1 — ) D" (x)
with binary variable 8 € {0, 1} or6(1 —60) =0
e Complete optimization problem, using cubic equation of state (EQS), is

min D(x,6, Z)
x,0,7

subject to
mn
1 — MU X — 0
i=1

EOS: f(Z,x)=Z°+b(x)Z° +c(x)Z +d(x) =0
0c{0,1} o H(1—-6)=0
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Asymmetric Model (cont’d)

e Usually the stationary points in this optimization problem are sought, since
they can be used as good initializations in the phase split calculation

e Find stationary points by solving the nonlinear equation system
oD 0D
@&@. @&3 N

H|Wu§”©
1=1

f(Z,x)=27°+b(x)Z° +c(x)Z +d(x) =0

0, +=1,...,n—1

0ec{0,1} o 6(1-6)=0

e An (n + 2) X (n + 2) equation system to be solved using an interval

Newton approach
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Example

Consider the binary mixture of 2,3-dimethyl-2-butene (component 1) and

methanol (component 2)

Vapor-liquid equilibrium measurements were made by Uusi-Kyyny et al.

(2004) at atmospheric pressure

The data was modeled using the NRTL activity coefficient model for the liquid

phase and the SRK equation-of-state model for the vapor phase

AtT' = 325.243, Uusi-Kyyny et al. (2004) use their model to compute phase
equilibrium at x1 = 0.6233 (liquid) and 11 = 0.4684 (vapor). This is a

close match to experimental data.

Use interval method to test this result: Do stability analysis for
1.0 = 0.6233



Results
e For feed (test phase) composition 1 o = 0.6233

e Computed stationary points are

1 0 D
0.6233 O 0
0.4684 1 0
0.2914 0 -0.006428
0.8559 0 -0.004878

e A liquid with 1 = 0.6233 is not a stable phase.

e Phase equilibrium calculation by Uusi-Kyyny et al. (2004) is wrong!



Results (cont’d)

e Tangent plane distances curves are

0.1
0.08 | M|A
0.06 |
0.04 |
0=0

0.02 | \

O T T T T

) 02 04 0.6 08

-0.02

PTPD

X1

e The correct phase equilibrium is liquid-liquid equilibrium with one phase at
r1 = 0.29703 and the other at 1 = 0.85822.

e This is not what is observed experimentally.



Results (cont’d)

e Phase diagram computed using interval method vs. experimental data

350

345 -

340 -

335 -

325 -

320 -

315 -

310

0 0.2 0.4 0.6 0.8 1
X4

e The model predicts a heterogeneous azeotrope (VLLE line). Experimentally it

IS @ homogeneous azeotrope.

e The model predicts liquid-liquid phase splits. This is not observed

experimentally

e The model of Uusi-Kyyny et al. (2004) is poor.
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Results (cont’d)

Q: How did Uusi-Kyyny et al. (2004) go wrong?

Al: In parameter estimation, they fit their experimental data to an unstable

solution of the phase split problem, obtaining a poor model

A2: In solving for phase equilibrium, they either did not check phase stability,
or used a method that did not work correctly. Thus they obtained an unstable

solution to the phase split problem

Second mistake cancels the first mistake—experimental results successfully

matched and model apparently validated

Incorrect solution of incorrect model = match of experimental data = validated
model
Many such “validated” models exist in the literature
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Another Example

Consider the binary mixture of dichlorodifluoromethane (CFC-12) (component

1) and hydrogen fluoride (component 2)

Vapor-liguid equilibrium measurements were made by Kang (1998) at

T = 303.15 K. A liquid-liquid phase split was observed.

The data was modeled using the NRTL activity coefficient model for the liquid
phase and the Peng-Robinson equation-of-state model (with association

terms) for the vapor phase.

For overall composition z; = 0.54, Kang (1998) uses his to model to
compute a liquid-liquid equilibrium with 1 = 0.0652 for one phase and
r1 = 0.8993 for the second phase. This is a close match to the

experimental observation.

Use interval method to test this result: Do stability analysis for
1.0 = 0.0652



Results
e For feed (test phase) composition 21,9 = 0.0652

e Computed stationary points are

1 0 D
0.0652 O 0
0.8993 O 0
0.8152 1 0.0001724
0.2228 O 0.005488
0.5446 0 -0.0008581
0.7762 O 0.001485

e A liquid with z1 = 0.0652 is not a stable phase.

e Phase equilibrium calculation by Kang (1998) is wrong!
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Results (cont’d)

e Tangent plane distances curves are

0.01
0.008 - =1
0.006 -

0.004 - S

0.002 -

PTPD

-0.002 A

-0.004

e [For overall composition of 0.54, the correct result is only a single liquid phase;

this is not what is observed experimentally

® As in previous example, Kang (1998) fit his model parameters to an unstable
solution of the phase split problem, then obtained match of experimental data

by incorrect solution of incorrect model
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Combining with Standard Software for Phase Equilibrium

There are many existing methods and software packages for phase and

chemical equilibrium
Many are very reliable and fail to find the correct answer only occasionally

We can use interval methods for phase stability to validate correct results

from these codes and identify incorrect results

Corrective feedback can be provided until a result that is correct is found and

validated

You can use your favorite software package for phase equilibrium, but still

have validated result



Combining Interval Method with CHASEOS

e CHASEQOS is a code for phase and chemical equilibrium using cubic

equation-of-state models (symmetric)

— Based on reactive phase split method of Castier et al. (1989) and Myers
and Myers (1986)

— Incorporates phase stability method of Michelsen (1982)

— Very reliable, but can fail to get correct result in some cases

e Combine with INTSTAB, our code for phase stability analysis based on

interval Newton approach
e Results from CHASEOQOS are passed to INTSTAB for validation

e |f result is incorrect, then stationary points from INTSTAB are passed back to

CHASEOS to get a new initialization for the phase split calculation

e The resultis V-CHASEQOS (Burgos et al., 2004)
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Example: Using V-CHASEOS

e Consider system of acetic acid, ethanol, water, ethyl acetate and CO» at

T =60Cand P =57.8 atm.

e This problem arises in studying the esterification of acetic acid with ethanol

using supercritical CO2 as a solvent

acetic acid 4+ ethanol = ethyl acetate + water

e This is a reactive system. Want to consider both phase and reaction

equilibrium.

e Apply V-CHASEOS
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Example: Using V-CHASEOS (cont’d)

For one set of model parameters:
Initial run of CHASEOS computes a vapor-liquid equilibrium state

INTSTAB determines that this is not a stable state. A new phase split
initialization is returned to CHASEOS

Next run of CHASEOS computes a liquid-liquid equilibrium state

INTSTAB determines that this is not a stable state. A new phase split
initialization is returned to CHASEOS

Third run of CHASEOS computes a vapor-liquid-liquid equilibrium state (three

phases)

INTSTAB validates this result as a stable equilibrium state



Many Applications in Chemical Engineering

e Fluid phase stability and equilibrium
— Activity coefficient models (Stadtherr et al., 1995; Tessier et al., 2000)
— Cubic EOS (Hua et al., 1996, 1998, 1999)
— SAFT EOS (Xu et al., 2002)

—> Asymmetric models (Xu et al., 2005)
e Combined reaction and phase equilibrium (Burgos et al., 2004)

e Location of azeotropes: Homogeneous, Heterogeneous, Reactive (Maier et
al., 1998, 1999, 2000)

e Location of mixture critical points (Stradi et al., 2001)

e Solid-fluid equilibrium
— Single solvent (Xu et al., 2000, 2001)

— Solvent and cosolvents (Scurto et al., 2003)



Applications (cont’d)

e General process modeling problems (Schnepper and Stadtherr, 1996)

e Parameter estimation
—> Relative least squares (Gau and Stadtherr, 1999, 2000)

— Error-in-variables approach (Gau and Stadtherr, 2000, 2002)

e Nonlinear dynamics
— Equilibrium states and bifurcations in ecological models (Gwaltney et al.,
2004,2005)
e Molecular Modeling

— Density-functional-theory model of phase transitions in nanoporous

materials (Maier et al., 2001)
— Transition state analysis (Lin and Stadtherr, 2004)

——> Molecular conformations (Lin and Stadtherr, 2005)
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Example — Parameter Estimation in VLE Modeling

e Goal: Determine parameter values 0 in activity coefficient models (e.qg.,
Wilson, van Laar, NRTL, UNIQUAC):

Yui,cale = ewms Auﬁ:“ %v

e Use a relative least squares objective; thus, seek the minimum of:

_ o Q\tﬁom_oA%v — Ywi,exp
60)=> >

Q\tﬁwﬁu

2

1=1 p=1

e Experimental values 7y, exp Of the activity coefficients are obtained from VLE

measurements at compositions x,,, = 1,...,p

e This problem has been solved for many models, systems, and data sets in the
DECHEMA VLE Data Collection (Gmehling et al., 1977-1990)
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Parameter Estimation in VLE Modeling

e One binary system studied was benzene (1) and hexafluorobenzene (2)

e Ten problems, each a different data set from the DECHEMA VLE Data

Collection were considered

e The model used was the Wilson equation

A12 Aoy
Invy = —In(x1 + Aioxs) + 2 -
ga! (21 1222) 2 |z + Apxe A1y + 22
- A A |
Inve = —In(zg + Ag1z1) — x B
V2 (@2 2121) 1 |z + Apxe A1y 4+ 29

e This has binary interaction parameters
A1o = (v2/v1) exp(—61/RT)
Ag1 = (v1/v2) exp(—02/RT)

where v and vo are pure component molar volumes

e The energy parameters ; and 65 must be estimated

37-e



Results

e Each problem was solved using the IN/GB approach to determine the globally

optimal values of the 1 and 65 parameters

e For each problem, the number of local minima in ¢(0) was also determined

(branch and bound steps were turned off)

e Table 1 compares parameter estimation results for ¢ and @5 with those given
in the DECHEMA Collection

e CPU times on Sun Ultra 2/1300
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Table 1: IN/GB results vs. DECHEMA values

Data Data T DECHEMA IN/GB No. of CPU
Set | points | (°C) 01 02 »(0) 01 02 »(0) Minima | time(s)
1* 10 30 437 -437 0.0382 -468 1314 0.0118 2 15.1
2% 10 40 405 -405 0.0327 -459 1227 0.0079 2 13.7
3* 10 50 374 -374 0.0289 -449 1157 0.0058 2 12.3
4* 11 50 342 -342 0.0428 -424 984 0.0089 2 10.9
5 10 60 -439 1096 0.0047 -439 1094 0.0047 2 9.7
6 9 70 -424 1035 0.0032 -425 1036 0.0032 2 7.9

Data Data P DECHEMA IN/GB No. of CPU
Set | points | (mmHg) | 61 62 »(0) 01 02 »(0) | Minima | time(s)
7* 17 300 344 -347 0.0566 -432 993 0.0149 2 17.4
8 16 500 -405 906 0.0083 -407 912 0.0083 2 14.3
9 17 760 -407 923 0.0057 -399 908 0.0053 1 13.9
10 17 760 -333 702 0.0146 -335 705 0.0146 2 20.5

*New globally optimal parameters found
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Discussion

Does the use of the globally optimal parameters make a significant difference

when the Wilson model is used to predict vapor-liquid equilibrium (VLE)?

A common test of the predictive power of a model for VLE is its ability to

predict azeotropes
Experimentally this system has two homogeneous azeotropes

Table 2 shows comparison of homogeneous azeotrope prediction when the
locally optimal DECHEMA parameters are used, and when the global optimal

parameters are used
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Table 2: Homogeneous azeotrope prediction

Data | T(°C)or DECHEMA IN/GB
Set P (mmHg) T1 o PorT T T2 PorT
1 T'=30 0.0660 0.9340 P=107 0.0541 0.9459 P=107
0.9342 0.0658 121
2 40 0.0315 0.9685 168 0.0761 0.9239 168
0.9244 0.0756 185
3 50 NONE 0.0988 0.9012 255
0.9114 0.0886 275
4 50 NONE 0.0588 0.9412 256
0.9113 0.0887 274
7 P=300 NONE 0.1612 0.8388 T'=54.13
0.9315 0.0685 52.49

e Based on DECHEMA results, one would conclude Wilson is a poor model for
this system. But actually Wilson is a reasonable model if the parameter

estimation problem is solved correctly
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Example — Molecular Conformations

e [or a given molecule, there are typically many possible conformational

geometries (structures)

e The conformation corresponding to the global minimum of the molecular
potential energy surface (PES) is of particular importance, since it dictates
both the physical and chemical properties of the molecule in the great

majority of cases.

® The existence of a very large number of local minima, the number of which
often increases exponentially with the size of the molecule, makes this global

minimization problem extremely difficult.
e Stochastic methods for optimization typically used (SA, GA, MC, etc.)

e Interval methods provide a deterministic approach.



Molecular Conformations (cont’d)

e Consider the problem described by Lavor (2003): This is a linear chain of /V
atoms (crude model of an n-alkane)

e There is a known analytical solution, so this is a good test problem

e Lavor (2003) determined the global minimum in the PES using interval

branch-and-bound
e The PES is given by

V= M [1 + cos(3w;;)] + M A||C@u

(2,5)€Ms (i,7)€Ms

where

rij = /10.60099896 — 4.14720682 cos(wi;) (i, ) € Ms.

e Determine the dihedral angles w;;, (7, 7) € MS3 that give the global
minimum
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Results

® Results using interval-Newton-based approach on Pentium 4 3.2GHz

workstation
N  Global Minimum  CPU time(s)

5 -0.08224 0.0009
10 -0.58939 0.02
15 -0.49342 0.16
20 -1.00057 1.53
25 -0.90460 8.31
30 -1.41175 76.02
35 -1.31579 396.2
40 -1.82294 3499.5

e The largest problem solved by Lavor (2003) was for /N = 25, which required

about 5800 s (adjusted for speed difference in machines used)

e [or a realistic model of an n-alkane, the largest problem we have solved is
N = 11 (n-undecane)



Concluding Remarks

e Interval analysis provides a powerful general purpose and model independent
approach for solving a wide variety of modeling and optimization problems,

giving a mathematical and computational guarantee of reliability.

® |In computing phase equilibrium, can combine with standard codes (Burgos et
al., 2004)
— Use interval methods for phase stability analysis as a final verification step
— Provide corrective feedback to the standard code
— Symmetric and asymmetric models

e Guaranteed reliability of interval methods comes at the expense of CPU time.

Thus, there is a choice between fast local methods that are not completely

reliable, or a slower method that is guaranteed to give the correct answer.

e The modeler must make a decision concerning how important it is to get the

correct answer.
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