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Abstract

A method based on interval analysis is presented for determining parameter values from

mutual solubility data in two-parameter activity coefficient models for liquid-liquid equilib-

rium. The method is mathematically and computationally guaranteed to locate all sets of

parameter values corresponding to stable phase equilibria. The technique is demonstrated

with examples using the NRTL and electrolyte-NRTL (eNRTL) models. In two of the NRTL

examples, results are found that contradict previous work. In the eNRTL examples, binary

systems of an ionic liquid and an alcohol are considered. This appears to be the first time

that a method for parameter estimation in the eNRTL model from binary LLE data (mutual

solubility) has been presented.



1 Introduction

Excess Gibbs energy models, often expressed in terms of the equivalent activity coefficient,

are widely used in the modeling of liquid-liquid equilibrium. For modeling binary systems,

the models used typically have two temperature-dependent binary parameters that must be

determined from experimental data. There are a wide variety of such two-parameter models,

including the UNIQUAC, NRTL (with fixed nonrandomness parameter), electrolyte-NRTL

(eNRTL), van Laar and Margules (three suffix) models. Values of the binary parameters

can be determined directly from mutual solubility data at a given temperature [1, 2]. The

equal activity conditions for liquid-liquid equilibrium provide two equations that, given the

experimental phase compositions, can be solved directly for the two binary parameter values

needed to fit the mutual solubility data, thereby providing an exact fit to the experimental

results. While this approach is widely practiced [3, 4], and simple in concept, there are

computational difficulties that may arise and that must be addressed. One difficulty is that

the nonlinear equation system to be solved for the binary parameters has an unknown number

of solutions. There may be one solution, no solution or, for some models, notably NRTL

and its variants, even multiple solutions. A technique is needed for finding all solutions with

certainty, or showing rigorously that there are none. Another difficulty is that equal activity

is only a necessary, but not sufficient, condition for equilibrium. This means that some

solutions for the binary parameters may correspond to states that are not stable (unstable

or metastable). Thus, a rigorous phase stability test is needed to verify whether solutions for

the parameters represent stable equilibrium states. However, phase stability analysis is itself
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well known to be a challenging computational problem, as it requires the rigorous solution

of a nonlinear and nonconvex global minimization problem.

In this paper, we describe how both of these difficulties can be dealt with using strategies

based on interval analysis. The method described will find all solutions to the equal activity

conditions within specified parameter intervals (which may be arbitrarily large) and do so

with mathematical and computational certainty, and it will also rigorously solve the phase

stability problem, again with certainty. Since the solution of the phase stability problem

for excess Gibbs energy models using interval methods has already been described [5, 6], we

will focus here on the problem of computing all solutions for the binary parameters from

the equal activity conditions, a problem that has not been previously addressed using the

interval approach. The problem formulation is presented in the next section, along with a

discussion of earlier work. This is followed by a brief summary of the interval method to

be used. Then, several examples are presented to demonstrate the technique. For these

examples we will use the NRTL and eNRTL models (with fixed nonrandomness parameter);

however, the methodology can be applied in connection with any two-parameter activity

coefficient model for liquid-liquid equilibrium.

2 Problem Formulation

Consider liquid-liquid equilibrium in a binary system at fixed temperature and pressure.

For this case, the necessary and sufficient condition for equilibrium is that the total Gibbs

energy be at a global minimum. The first-order optimality conditions on the Gibbs energy
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lead to the familiar equal activity conditions,

aI
i = aII

i , i = 1, 2, (1)

stating the equality of activities of each component (1 and 2) in each phase (I and II). As

noted above, this is a necessary but not sufficient condition for equilibrium. Given an activity

coefficient model, expressed in terms of mole fractions, x1 and x2 = 1 − x1, and involving

two binary parameters, θ12 and θ21, the equal activity conditions can be expressed as

xI
iγ

I
i(x

I
1, x

I
2, θ12, θ21) = xII

i γII
i (xII

1 , xII
2 , θ12, θ21), i = 1, 2. (2)

Substituting in experimental values for the mole fractions in each phase results in the 2 × 2

system of nonlinear equations

xI
i,expγ

I
i(x

I
1,exp, x

I
2,exp, θ12, θ21) = xII

i,expγ
II
i (xII

1,exp, x
II
2,exp, θ12, θ21), i = 1, 2, (3)

which can in principle be solved for the parameters θ12 and θ21.

As discussed above, a significant difficulty is that the number of solutions to Eq. (3)

is not known a priori. Thus, standard local methods for nonlinear equation solving are

inadequate. In many cases, use of local methods with different initial guesses will be an

effective approach. However, in general, multistart approaches are not completely reliable,

since the number of solutions being sought is not known, and so it cannot be known when to

stop trying different starting points. Strategies such as homotopy/continuation also provide

the capability for locating multiple solutions, but still provide no guarantees that all solutions

will be found. We will demonstrate here an approach for solving Eq. (3) based on interval

mathematics, in particular an interval-Newton method. This method provides the capability
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of finding, with complete certainty, all solutions for the binary parameters, θ12 and θ21, within

specified search intervals.

Since Eq. (3) is not a sufficient condition for phase equilibrium, once a solution for the

binary parameters is found it must be checked to determine whether or not it actually corre-

sponds to a stable equilibrium state. The determination of phase stability is generally based

on the concept of tangent plane analysis [7]. On a Gibbs energy versus composition surface,

phases in equilibrium will share the same tangent plane, with the equilibrium compositions

corresponding to the points of tangency. For this to be a stable equilibrium, the tangent

plane must not cross (go above) the Gibbs energy surface. To implement a stability test, a

standard approach [8] is to consider the “tangent plane distance” function, that is the dis-

tance of the Gibbs energy surface above the tangent plane. If this is ever negative, the state

is not stable. To prove stability, it must be shown that the global minimum of the tangent

plane distance function is zero, corresponding to the points of tangency. This is a challeng-

ing problem since there are often multiple local minima in the tangent plane distance. To

solve this global optimization problem rigorously, we will also use an approach [5, 6] based

on an interval-Newton method, which can find the global minimum in the tangent plane

distance with complete certainty. For additional details on the formulation and solution of

the phase stability problem, see Tessier et al. [6]. The approach used here differs only in

that a somewhat more efficient interval-Newton algorithm is used.
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2.1 NRTL

In the examples considered below the NRTL model is used. This is a model for the excess

Gibbs energy gE/RT and is given in Appendix A for a binary system. The nonrandomness

parameter α is frequently taken to be fixed when modeling liquid-liquid equilibrium, and this

is the case in the examples studied below. The binary parameters that must be determined

from experimental data are then θ12 = ∆g12 = RTτ12 and θ21 = ∆g21 = RTτ21. For purposes

of phase stability analysis, an expression for the Gibbs energy versus composition surface is

needed. If the reference states are taken to be pure liquids 1 and 2 at system temperature

and pressure, then the needed expression is given by the Gibbs energy of mixing

gM

RT
= x1 ln x1 + x2 lnx2 +

gE

RT
. (4)

The activity coefficient expresstions given by Eqs (A.2-A.3) are used in connection with

Eq. (3) to obtain the system of equations to be solved for the NRTL interaction parameters

θ12 = ∆g12 and θ21 = ∆g21. This equation system is usually solved [2, 3, 9] using standard

local methods, such as Newton’s method, but is well known to frequently have multiple

solutions [9]. Multiple solutions can be found using local methods and trying multiple

starting points; however, this approach is not guaranteed to find all the solutions, and

can lead to incorrect solutions, as shown in Section 4.2. One approach to determining all

solutions is to attempt first to determine the number of solutions, as described by Mattelin

and Verhoeye [10]. However, this approach is not always reliable, as shown in Section 4.3.

Another approach is described by Jacq and Asselineau [11], who reformulated the equation

system in terms of the new variables t1 = tanh(α∆g21/2RT ) and t2 = tanh(α∆g12/2RT ).
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The entire parameter space can then be covered by t1 ∈ [−1, 1] and t2 ∈ [−1, 1]. Solutions

are sought using a “sweeping” method in which one tries to follow the path of one equation in

the parameter space, while checking for intersections with the other equation. Since the path

tracking requires that some finite step size be used, there is no guarantee that all solutions

(intersections) will be found. We will demonstrate here the use of an interval-Newton method

that will guarantee that all solutions are found.

2.2 Electrolyte-NRTL

In some of the example problems, the electrolyte-NRTL (eNRTL) model is used, and

applied to LLE in binary liquid salt (1)/solvent (2) systems. This model assumes complete

dissociation of the salt, as described by

Salt −→ ν+(Cation)z+ + ν−(Anion)z
−, (5)

where zj is the valency associated with ion j. As in the case of the non-electrolyte case,

parameter estimation can be done by using mutual solubility data and solving the equal

activity condition. Equal activity is most conveniently expressed in terms of the actual mole

fractions, y+, y−, and y2 = 1−y+−y−, of cation, anion and solvent, respectively, and by using

mean ionic quantities for the salt (component 1). For some quantity ξ, the corresponding

mean ionic quantity for the salt is given by ξ± = (ξ
ν+

+ ξ
ν
−

− )
1/ν

with ν = ν+ + ν− [12]. In these

terms, the equal activity condition of Eq. (2) can be restated as [13]

yI
iγ

I
i(y

I
±, yI

2, θ12, θ21) = yII
i γII

i (yII
±, yII

2 , θ12, θ21), i = ±, 2. (6)
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Using the experimental mutual solubility data, we then obtain the 2 × 2 equation system

yI
i,expγ

I
i(y

I
±,exp, y

I
2,exp, θ12, θ21) = yII

i,expγ
II
i (yII

±,exp, y
II
2,exp, θ12, θ21), i = ±, 2 (7)

to be solved for θ12 and θ21. The actual mole fractions are related to the observable mole

fractions, x1 and x2 = 1 − x1, by

y± =
ν±x1

(ν − 1) x1 + 1
(8)

y2 =
x2

(ν − 1)x1 + 1
. (9)

The eNRTL model is an excess Gibbs energy model and is given in Appendix B for a

binary system. Note that we have renormalized the model [14, 15] relative to a symmetric

reference state (pure dissociated liquid 1 and pure liquid 2, both at system temperature

and pressure). Again the nonrandomness parameter α is taken to be fixed, and the binary

parameters that must be estimated are θ12 = ∆g12 = RTτ12 and θ21 = ∆g21 = RTτ21.

The value to be used for the closest approach parameter ρ will discussed in Section 4. For

purposes of phase stability analysis, the Gibbs energy versus composition surface is given by

gM

RT
=

ν

ν±
y± ln

(

ν

ν±
y±

)

+ y2 ln (y2) +
gE

RT
. (10)

To determine the binary parameters θ12 and θ21, we will solve the equal activity conditions

expressed by Eq. (7). For this purpose, expressions for the activity coefficients are needed,

and these are provided by Eqs. (B.6-B.10). Note that since all of the examples below involve

1:1 electrolytes, activity coefficient expressions are provided in Appendix B for this case only.
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In Section 4, we apply eNRTL to the case of LLE in binary solutions of ionic liquids

(component 1) and alcohols (component 2), and solve the parameter estimation problem

outlined above. This appears to be the first time that this particular parameter estimation

problem has been addressed. The eNRTL model has been used before primarily in the cor-

relation of activity coefficient and vapor pressure depression data for electrolytic systems

(e.g., [16, 17, 18]) and when applied to LLE problems has been in the context of multicom-

ponent systems, such as phase splitting with salt in a mixture of solvents (e.g., [13, 19]). In

these cases, the parameter estimation problem is much different from the problem described

here and requires the optimization of some goodness of fit criterion (which can also be done

rigorously using interval methods [18]).

3 Reliable Parameter Estimation Method

For solving the 2 × 2 nonlinear systems given by Eq. (3) or Eq. (7) for the binary

parameter values θ12 and θ21, we use a method based on interval mathematics, in partic-

ular an interval-Newton approach combined with generalized bisection (IN/GB). This is a

deterministic technique that provides a mathematical and computational guarantee that all

the solutions to the relevant equation system are found. For general background on inter-

val mathematics, including interval arithmetic, computations with intervals, and interval-

Newton methods, there are several good sources [20, 21, 22]. Details of the basic IN/GB

algorithm employed here are given by Schnepper and Stadtherr [23], with important en-

hancements described by Gau and Stadtherr [24] and Lin and Stadtherr [25].
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An important feature of this approach is that, unlike standard methods for nonlinear

equation solving that require a point initialization, the IN/GB methodology requires only an

initial interval, and this interval can be sufficiently large to enclose all physically reasonable

results. The initial parameter search intervals used are given in Section 4. Intervals are

searched for solutions using a powerful root inclusion test based on the interval-Newton

method. This method can determine with mathematical certainty if an interval contains

no solution or if it contains a unique solution. If it cannot be proven that that interval

contains no solution or a unique solution, then the interval is bisected and the root inclusion

test is applied eventually to each subinterval. Once an interval proven to contain a unique

solution has been found, that solution can be found by either 1) continuing interval-Newton

iterations, which will converge quadratically to a tight interval enclosure of the solution, or

2) switching to a routine local Newton method, which will converge to a point approximation

of the solution starting from any point in the interval. On completion, the IN/GB algorithm

will have determined tight enclosures or point approximations for all the solutions to Eq.

(3) or Eq. (7).

The overall method for determining the binary parameter values can be summarized as

follows:

1. Select initial search intervals for the parameters.

2. Use the interval-Newton approach to solve the equal activity conditions, obtaining all

possible solutions for the parameters within the specified search intervals.

3. Test each solution to determine if it corresponds to a stable equilibrium state, again
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using an interval-Newton approach [6] to ensure correctness. Discard any solutions

that do not represent stable states.

4. Examine the suitability of the remaining parameter solutions. There are various rea-

sons that a solution might be considered unsuitable. Two such reasons are discussed

in detail by Heidemann and Mandhane [9] and are: 1) The case in which the param-

eters give a gM model showing more than one miscibility gap. Though theoretically

possible, this type of behavior is rarely observed. 2) The case in which one or both of

the parameter values are large negative numbers. This leads to values of G12 and/or

G21 that are extremely large, resulting in a highly distorted and unrealistic Gibbs en-

ergy surface whose slope changes sharply near x1 = 0 and/or x1 = 1, but which is

nearly linear elsewhere. Sørensen and Arlt [3] consider as unsuitable any parameter

solution that gives a gM model having multiple composition solutions to the equal ac-

tivity equation (i.e., multiple lines bitangent to the Gibbs energy surface). This case

(and the case of multiple miscibility gaps) can be characterized as having a gM versus

x1 curve with more than two inflection points. A rationale for considering this case

unsuitable is that if these parameter values are used, and the equal activity conditions

have multiple composition solutions, then phase equilibrium problems based on this

model will be more difficult to solve. However, since today there are interval-based

computational methods (e.g., [6, 26]) for easily dealing with this situation in comput-

ing phase stability and equilibrium, it is really not necessary to consider this a case of

unsuitable parameters.
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By beginning with an arbitrarily large initial interval in Step 1, and by finding all possible

parameter solutions in Step 2, we ensure that the most suitable set(s) of parameter values

will remain after Steps 3 and 4.

4 Results and Discussion

In this section, we provide several examples demonstrating the use of the interval method

for computing binary parameters from mutual solubility data in modeling liquid-liquid equi-

librium. In the first three examples, only the NRTL model is used, and in two of these

examples results are found that contradict previous work. The final three examples involve

modeling of binary LLE in ionic liquid (IL) systems, using both NRTL and eNRTL. Using

the parameter estimation method described here, our colleagues Crosthwaite et al. [27] have

modeled several complete phase diagrams for IL-alcohol systems, and have shown that it is

possible to correlate binary LLE data for these systems using NRTL with binary parameters

having a linear temperature dependence. However, it does not appear that NRTL is a good

predictive model in this context [28]. Thus, we are also interested in the use of the eNRTL

model, and present here our parameter estimation strategy for this model.

In the examples that follow, we will use the arbitrarily large initial search intervals

θ12 = ∆g12 ∈ [−1 × 106, 1 × 106] J/mol and θ21 = ∆g21 ∈ [−1 × 106, 1 × 106] J/mol. Of

course, it is not really necessary to use such a large initial search interval, especially since, as

discussed above, parameters that are large negative numbers may not be suitable. However,

since it may not always be clear where to draw the line on what is too large, it is easiest to just
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use such an arbitrarily large initial interval, and to then examine all solutions and discard

those that are unsuitable. All computations were done on a workstation running Linux

with a 3.2 GHz Intel Pentium 4 CPU. Computation times were on the order of seconds for

problems involving NRTL, and on the order of minutes for problems involving eNRTL.

4.1 n-Octanol and Water

This example demonstrates the routine use of the parameter estimation procedure de-

scribed above. Consider a mixture of n-octanol (1) and water (2) at T = 313.15 K and

atmospheric pressure. Based on smoothed experimental data from Sørensen and Arlt [3], the

observed liquid-phase compositions at equilibrium are xI
1,exp = 0.000144 and xII

1,exp = 0.7530.

Binary NRTL parameters are sought for the case of α = 0.2. Applying the interval method

to the solution of Eq. (3) with this data yields four parameter solutions, as listed in Table

1 in terms of ∆g12 and ∆g21 as well as the equivalent τ12 and τ21.

The four parameter solutions found are now checked to see if they correspond to sta-

ble phase equilibrium. This is done rigorously using an interval-based global optimization

method [6], as discussed above. Two of the parameter solutions (3 and 4) are found not to

represent stable phase equilibrium, and thus they can be discarded. Examination of the gM

versus x1 function for the remaining solutions shows that solution 2 represents a case with

two immiscibility gaps, and so it is not a suitable solution. Solution 1 has only two inflection

points in the gM versus x1 curve, and so it is the most suitable solution. Solution 1 is the

solution given by Sørensen and Arlt [3].
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4.2 n-Butanol and Water

Consider a mixture of n-butanol (1) and water (2) at T = 363.15 K and atmospheric

pressure. Liquid-liquid phase equilibrium is observed experimentally with phase composi-

tions xI
1,exp = 0.020150 and xII

1,exp = 0.35970. Heidemann and Mandhane [9] modeled this

system using NRTL with α = 0.4. They obtained three solutions for the binary parameters,

as shown in Table 2, in terms of τ12 and τ21. Applying the interval method to this system, we

find only two solutions, as also shown in Table 2. The extra solution found by Heidemann

and Mandhane [9] is well within the search space used by the interval method, so clearly

is a spurious solution resulting from numerical difficulties in the local method used to solve

Eq. (3). This can also be verified by direct substitution of solution 3 into the equal activity

conditions, and is most easily seen when equal activity is expressed in terms of ln xi and ln γi

(by taking the logarithm of both sides of Eq. (3)). Both of the valid parameter solutions

correspond to stable phase equilibria. Solution 1 is the preferred solution, since solution 2

leads to a model that predicts two immiscibility gaps.

4.3 1, 4-Dioxane and 1, 2, 3-Propanetriol

Consider a mixture of 1, 4-dioxane (1) and 1, 2, 3-propanetriol (2) at T = 298.15 K and

atmospheric pressure. Liquid-liquid phase equilibrium is observed experimentally with phase

compositions xI
1,exp = 0.2078 and xII

1,exp = 0.9934. Mattelin and Verhoeye [10] modeled this

system using NRTL with various values of α. We will focus first on the case of α = 0.15.

For this case, Mattelin and Verhoeye [10] obtained six solutions for the binary parameters,
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which are reported graphically without giving exact numerical values. Applying the interval

method, we find only four solutions, as shown in Table 3 in terms of τ12 and τ21. The extra

solutions found by Mattelin and Verhoeye [10] are well within the search space used by the

interval method. Again, it appears that numerical difficulties in the use of local methods has

led to spurious solutions. Two of the four parameter solutions correspond to stable phase

equilibria. However, one parameter in solution 2 is a large negative number and results in a

highly distorted Gibbs energy surface. Thus solution 1 is the preferred parameter estimate.

Looking at the case of α = 0.25, the interval method finds two parameter solutions, as

indicated in Table 3. For this case, Mattelin and Verhoeye [10] obtained three solutions. In

Table 4, we summarize results for the several different values of α considered by Mattelin

and Verhoeye [10], showing the number of solutions that they found versus the number of

solutions found using the interval method. It can be seen that there are many cases in which

extra and incorrect solutions were found by Mattelin and Verhoeye [10]. The fact that we

always find an even number of solutions is consistent with Jacq and Asselineau [11], who

argue that, in general, there must be an even number of parameter solutions for NRTL.

Theoretically, there are specific values of α for which there are an odd number of solutions.

For example, on this problem, as α is increased from 0.20 to 0.25, two of the four solutions

will approach each other, and at some specific value of α will coincide, leaving only three

distinct solutions. Beyond this critical value of α there are then only two solutions. Since

it is unlikely that such a critical value of α will be specified, in practice an even number

of solutions should exist when using NRTL. Whether all of these are actually found would
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depend on the intial search interval.

4.4 [bmpy][Tf2N] and n-Hexanol

Consider a mixture of 1-n-butyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide

([bmpy][Tf2N]) (1) and n-hexanol (2) at T = 321 K and atmospheric pressure. The ex-

perimental liquid-phase compositions, based on the cloud point data of Crosthwaite et al.

[27], are xI
1,exp = 0.0206 and xII

1,exp = 0.4450. In terms of the actual mean ionic mole fraction,

these are yI
±,exp = xI

1,exp/(1 + xI
1,exp) = 0.0202 and yII

±,exp = xII
1,exp/(1 + xII

1,exp) = 0.3080. For

n-hexanol, d2 = 807 kg/m3 and ε2 = 10.7 [29], giving Aφ = 8.80. In principle the closest

approach parameter ρ depends on the properties of the electrolyte and on how the short-

range forces are modeled. However, for simplicity in practice, it is generally taken to be

a constant applicable to a wide variety of salts. In the development of the eNRTL model

[14], a value of ρ = 14.9 was used, as originally suggested by Pitzer [15], and was found

to be satisfactory for a large number of aqueous inorganic electrolytes. However, since ILs

such as [bmpy][Tf2N] involve bulky organic cations, a larger value of the closest approach

parameter may be appropriate for this group of salts. For this purpose, we suggest here

using the value ρ = 25, though it may be found in subsequent work that some other value

is more appropriate. In this problem, and in the remaining two examples involving ILs, we

will do parameter estimation using both the “traditional” value of ρ = 14.9 and the value of

ρ = 25. Both the NRTL and eNRTL models, with α = 0.2 in each case, will be used.

Applying the interval method to the solution of Eq. (3) for the NRTL model and Eq.
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(7) for the eNRTL model with ρ = 14.9 and ρ = 25, we find the parameter solutions shown

in Table 5. Both of the NRTL parameter solutions represent stable LLE. However, solution

2 has one large negative parameter value which leads to an unrealistic Gibbs energy surface.

Thus, solution 1 is the preferred solution and is the one presented by Crosthwaite et al. [27],

who used the method presented here to do their parameter estimation. For phase stability

analysis with the eNRTL model, we extended the interval-based global optimization method

[6] used for NRTL. When eNRTL is used with ρ = 14.9, there are four parameter solutions.

However, two of these do not represent stable phase equilibrium, and the other two each have

one large negative parameter value, making them unsuitable, as discussed above. Thus, this

“traditional” value of ρ does not appear to be appropriate. However, with ρ = 25 there are

three stable solutions not involving large negative parameter values. To judge the suitability

of these three solutions we examine the Gibbs energy versus composition surface (gM vs. y±)

as given by Eq. (10). These surfaces are shown in Figs. 1–3. On such a plot, liquid-liquid

equilibrium is indicated by a line bitangent to the Gibbs energy curve, with the two points

of tangency corresponding to the equilibrium phase compositions. The bitangent line shown

in each figure represents the experimental LLE at yI
±,exp = 0.0202 and yII

±,exp = 0.3080. It

can also be seen that in each case this is the only possible bitangent line. Thus, none of

these solutions leads to a model predicting multiple immiscibility gaps. All three of the

gM vs. y± curves have only two inflection points. Based on the Gibbs energy curves, it

is difficult to say that any one of the three parameter solutions is preferable; thus, the

decision may depend on context. For example, if the parameter estimation is being done
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using mutual solubility data at multiple temperatures, then at each temperature there is a

set of multiple parameter solutions, such as seen here, that may be obtained. The τ12 and

τ21 parameters are generally found to vary linearly with temperature, so those solutions that

provide the best linear correlation with temperature could be chosen. Another possibility is

that the parameter estimation from binary data is being done as part of an effort to model

multicomponent data. In this context, the parameter solution that provides the best match

to multicomponent data could be chosen.

4.5 [bmim][Tf2N] and n-Butanol

Consider a mixture of 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

([bmim][Tf2N]) (1) and n-butanol (2) at T = 288 K at atmospheric pressure. This system

has been studied experimentally by Najdanovic-Visak et al. [30], and from their cloud point

correlation the mutual solubility at T = 288 K is xI
1,exp = 0.021460 and xII

1,exp = 0.39889.

For n-butanol, d2 = 810 kg/m3 and ε2 = 17.8 [31], making Aφ = 4.84. Using both NRTL

and eNRTL (α = 0.2 in both cases), the interval method is used to solve for the parameters,

with the results shown in Table 6.

Again the preferred NRTL solution is the first one, as the second solution has a large

negative parameter value. For this system, eNRTL with ρ = 14.9 provides several stable

parameter solutions, including three with suitable parameter values. However, it provided

no suitable parameter solutions in the previous example, and will provide none in the next

example either. Since, as discussed above, it is desirable to be able to use the same value
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of ρ for all the salts in these examples, we choose not to use any of these solutions. Using

ρ = 25 for this system yields one stable solution not involving a large negative parameter

value, and that is the result (solution 1) we consider most appropriate.

4.6 [hmim][Tf2N] and n-Octanol

In this final example we consider the system of 1-n-hexyl-3-methylimidazolium

bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N]) (1) and n-octanol (2) at T = 298.15 K

and atmospheric pressure. The experimental mutual solubility data [32] is xI
1,exp = 0.0100

and xII
1,exp = 0.6450. For n-octanol, d2 = 821 kg/m3 and ε2 = 10.0 [31], so Aφ = 10.9.

Applying the interval method gives the parameter estimation results shown in Table 7 for

NRTL and eNRTL (both using α = 0.2).

For NRTL, there is again one solution with a large negative parameter value that can be

ruled out. For eNRTL with ρ = 14.9 there are two stable solutions, but neither is suitable

due to the large negative τ12 values. This result and the result for the [bmpy][Tf2N] and

n-hexanol system make it clear why we have chosen to employ a different value of ρ. For

eNRTL with ρ = 25, there are five stable solutions. Solutions 3, 7 and 8 can be ruled out

based on their each having a large negative parameter value. However, both solutions 1 and

2 are suitable parameter values and the choice of which to use may depend on context or

other considerations, as discussed above.
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5 Concluding Remarks

We have described here the use of an interval method for determining parameter val-

ues from mutual solubility data in two-parameter models of liquid-liquid equilibrium. An

interval-based global optimization method is used to determine if the parameter values cor-

respond to stable LLE. The method is mathematically and computationally guaranteed to

locate all sets of parameter values corresponding to stable phase equilibria. The technique

was demonstrated with examples using the NRTL and electrolyte NRTL (eNRTL) models.

In two of the NRTL examples, results were found that contradict previous work. In the

eNRTL examples, binary systems of an ionic liquid and an alcohol were considered. This

appears to be the first time that a method for parameter estimation in the eNRTL model

from binary LLE data (mutual solubility) has been presented. While we have focused here

on the NRTL and eNRTL models, this technique can be applied in connection with any

two-parameter activity coefficient model for LLE in which there is the potential for multiple

parameter solutions.
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Appendix A. NRTL Model

The NRTL model for a binary system is given by:

gE

RT
= x1x2

(

τ21G21

x1 + x2G21

+
τ12G12

x2 + x1G12

)

, (A.1)

where gE is the molar excess Gibbs energy, and

τ12 =
g12 − g22

RT
=

∆g12

RT

τ21 =
g21 − g11

RT
=

∆g21

RT

G12 = exp(−α12τ12)

G21 = exp(−α21τ21).

Here gij is an energy parameter characteristic of the i–j interaction, R is the gas constant, T is

the absolute temperature, and the parameter α = α12 = α21 is related to the nonrandomness

in the mixture. The activity coefficients corresponding to Eq. (A.1) are given by

ln γ1 = x2
2

[

τ21

(

G21

x1 + x2G21

)2

+
τ12G12

(x2 + x1G12)2

]

(A.2)

ln γ2 = x2
1

[

τ12

(

G12

x2 + x1G12

)2

+
τ21G21

(x1 + x2G21)2

]

. (A.3)
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Appendix B. Electrolyte-NRTL Model

When normalized for a symmetric reference state (pure dissociated liquid 1 and pure

liquid 2, both at system temperature and pressure), the electrolyte-NRTL (eNRTL) model

for a binary system is given by [14, 15]:

gE

RT
=

gPDH

RT
+

gLC

RT
(B.1)

where

gPDH

RT
= −40

ρ

√

10

M2

AφIy ln

(

1 + ρ
√

Iy

1 + ρ
√

I◦
1

)

(B.2)

Iy =
1

2

(

z2
+y+ + z2

−y−
)

(B.3)

with I◦
1 = limx1→1 Iy and

gLC

RT
= y2

(

(y+ + y−)G12

(y+ + y−) G12 + y2

)

τ12 + y+z+

(

1 − y−
y− + y2G21

)

τ21

+ y−|z−|
(

1 − y+

y+ + y2G21

)

τ21 (B.4)

with G12 = exp(−ατ12) and G21 = exp(−ατ21). Here gPDH is the Pitzer extended Debye-

Hückel model for the long-range electrostatic contribution, gLC is an NRTL-type local com-

position contribution, M2 is the molecular weight of the solvent, ρ is the “closest approach”

parameter, and Aφ is the usual Debye-Hückel parameter defined as

Aφ =
1

3

√

2πNAd2

1000

(

e2

ε0ε2kT

)3/2

. (B.5)

Here NA is Avogadro’s number, d2 is the density of the solvent in kg/m3, e is the elementary

charge, ε0 is the permittivity of free space, ε2 is the dielectric constant of the solvent, k is

Boltzmann’s constant, R is the gas constant, and T is the absolute temperature.
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Since the examples used here involve only 1:1 electrolytes (ν+ = ν− = 1) with z+ = 1

and z− = −1, we show here the activity coefficient expressions only for this case:

ln γi = ln γPDH
i + ln γLC

i , i = ±, 2 (B.6)

ln γPDH
± = −

√

500

M2

Aφ

[

23/2

ρ
ln

(

1 + ρ
√

y±

1 + ρ√
2

)

+
(2y±)1/2 − (2y±)3/2

1 + ρ
√

y±

]

(B.7)

ln γLC
± =

y2
2G12τ12

(2y±G12 + y2)
2
− y±y2G21τ21

(y± + y2G21)
2

+
y2G21τ21

y± + y2G21

(B.8)

ln γPDH
2 =

2
√

1000
M2

Aφy
3/2
±

1 + ρ
√

y±
(B.9)

ln γLC
2 = 2

(

y2
±G21τ21

(y± + y2G21)
2
− y±y2G12τ12

(2y±G12 + y2)
2

+
y±G12τ12

2y±G12 + y2

)

. (B.10)
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Table 1: NRTL parameter solutions for the mixture n-octanol and water (α = 0.20, T =

313.15 K). ∆g12 and ∆g21 are given in J/mol.

Solution ∆g12 ∆g21 τ12 τ21 Stable?

1 99.520 22304 0.038225 8.5668 Yes

2 58860 22356 22.608 8.5868 Yes

3 14293 120780 5.4922 46.392 No

4 12784 120880 4.9101 46.428 No
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Table 2: Comparison of NRTL parameter estimates for the mixture n-butanol and water

(α = 0.4, T = 363 K) obtained by Heidemann and Mandhane [9] and by the use of the

interval method.

Heidemann and Mandhane [9] Interval Method

Solution τ12 τ21 Stable? τ12 τ21 Stable?

1 0.0074518 3.8021 Yes 0.0074518 3.8021 Yes

2 10.182 3.8034 Yes 10.178 3.8034 Yes

3 -73.824 -15.822 Yes

27



Table 3: NRTL parameter estimates for the mixture 1, 4-dioxane and 1, 2, 3-propanetriol

(T = 298.15 K) found using the interval method for α = 0.15 and α = 0.25. Mattelin and

Verhoeye [10] reported finding 6 solutions for α = 0.15 and 3 solutions for α = 0.25.

α = 0.15 α = 0.25

Solution τ12 τ21 Stable? τ12 τ21 Stable?

1 5.6379 -0.59940 Yes 4.5512 0.54810 Yes

2 13.478 -82.941 Yes 4.8352 11.826 No

3 38.642 13.554 No

4 39.840 3.0285 No
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Table 4: Comparison of number of solutions for the mixture 1, 4-dioxane and 1, 2, 3-

propanetriol (T = 298.15 K) found by Mattelin and Verhoeye [10] and by the interval

method (IN/GB) for several values of α.

α 0.05 0.076 0.10 0.125 0.15 0.175 0.20 0.25 0.3 0.35 0.40 0.427

[10] 6 5 4 5 6 5 4 3 2 2 2 1

IN/GB 4 4 4 4 4 4 4 2 2 2 0 0
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Table 5: NRTL and eNRTL (ρ = 14.9 and 25) parameter solutions for [bmpy][Tf2N] and n-hexanol (T = 321 K, α = 0.2).

NRTL eNRTL (ρ = 14.9) eNRTL (ρ = 25)

Solution τ12 τ21 Stable? τ12 τ21 Stable? τ12 τ21 Stable?

1 -1.2378 5.2541 Yes -3.2193 5.2049 No -2.8136 5.6214 Yes

2 -50.427 12.997 Yes -2.4192 3.1407 No 0.012733 0.78331 Yes

3 -47.899 25.965 Yes 3.5240 -0.96382 Yes

4 -52.946 0.032378 Yes 6.1094 -22.605 Yes

5 10.164 32.594 No

6 -42.019 17.882 Yes
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Table 6: NRTL and eNRTL (ρ = 14.9 and 25) parameter solutions for [bmim][Tf2N] and n-butanol (T = 288 K, α = 0.2).

NRTL eNRTL (ρ = 14.9) eNRTL (ρ = 25)

Solution τ12 τ21 Stable? τ12 τ21 Stable? τ12 τ21 Stable?

1 -1.4245 5.4372 Yes -2.9302 5.8533 Yes -2.6641 6.1543 Yes

2 -50.094 13.626 Yes -0.019516 0.73181 Yes 1.7764 29.129 No

3 3.7634 -1.0776 Yes 7.4641 27.916 No

4 6.3820 -22.004 Yes -41.827 16.838 Yes

5 23.712 0.70331 No

6 10.154 33.433 No

7 -42.348 18.725 Yes

8 -84.504 0.71319 Yes
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Table 7: NRTL and eNRTL (ρ = 14.9 and 25) parameter solutions for [hmim][Tf2N] and n-octanol (T = 298 K, α = 0.2).

NRTL eNRTL (ρ = 14.9) eNRTL (ρ = 25)

Solution τ12 τ21 Stable? τ12 τ21 Stable? τ12 τ21 Stable?

1 -0.57053 5.1401 Yes -48.046 22.107 Yes -0.94386 1.7226 Yes

2 -58.495 10.500 Yes -57.265 0.19151 Yes -2.5081 4.6644 Yes

3 9.9928 -30.466 Yes

4 5.5007 -1.1504 No

5 14.547 0.29352 No

6 12.677 37.640 No

7 -46.975 17.085 Yes

8 -67.518 0.82012 Yes
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Figure 1: Gibbs energy versus composition surface for eNRTL (ρ = 25) with parameter

solution 1 (see Table 5) for the [bmpy][Tf2N] and n-hexanol system. The bitangent line

represents the experimental LLE at yI
±,exp = 0.0202 and yII

±,exp = 0.3080.
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Figure 2: Gibbs energy versus composition surface for eNRTL (ρ = 25) with parameter

solution 2 (see Table 5) for the [bmpy][Tf2N] and n-hexanol system. The bitangent line

represents the experimental LLE at yI
±,exp = 0.0202 and yII

±,exp = 0.3080.
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Figure 3: Gibbs energy versus composition surface for eNRTL (ρ = 25) with parameter

solution 3 (see Table 5) for the [bmpy][Tf2N] and n-hexanol system. The bitangent line

represents the experimental LLE at yI
±,exp = 0.0202 and yII

±,exp = 0.3080.
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