Reliable Computation of Phase Behavior Using Interval Methods

Gang Xu, Benito A. Stradi, Robert W. Maier, Joan F. Brennecke and Mark A. Stadtherr ${ }^{1}$

Department of Chemical Engineering
University of Notre Dame Notre Dame, IN 46556 USA

1999 SIAM Annual Meeting
Atlanta, GA, May 12-15, 1999

[^0]
Summary

- In modeling phase behavior, computational problems due to multiple roots or multiple local optima are well known (e.g., convergence to trivial or incorrect roots; convergence to a local but not global optimum).
- Many clever techniques have been devised to alleviate such difficulties, but there has been no general-purpose, model-independent, and completely reliable method for solving all phase behavior problems.
- Interval analysis provides a mathematically and computationally guaranteed method for reliably solving phase behavior problems.
- This is demonstrated using example problems, including the determination of phase stability and the computation of azeotropes and critical points.

Background—Interval Analysis

- A real interval $X=[a, b]=\{x \in \Re \mid a \leq x \leq b\}$ is a segment on the real number line and an interval vector $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$ is an n-dimensional rectangle or "box".
- Basic interval arithmetic for $X=[a, b]$ and $Y=$ $[c, d]$ is X op $Y=\{x$ op $y \mid x \in X, y \in Y\}$ where op $\in\{+,-, \times, \div\}$. For example, $X+Y=$ $[a+c, b+d]$.
- Computed endpoints are rounded out to guarantee the enclosure.
- Interval elementary functions (e.g. $\exp (X), \log (X)$, etc.) are also available.
- The interval extension $F(\mathbf{X})$ encloses the range (all values) of $f(\mathbf{x})$ for $\mathbf{x} \in \mathbf{X}$.
- Interval extensions can be computed using interval arithmetic (the "natural" interval extension), or with other techniques.

Interval Method Used

- Interval Newton/Generalized Bisection (IN/GB)
- Given a system of equations to solve, an initial interval (bounds on all variables), and a solution tolerance
- IN/GB can find (enclose) with mathematical and computational certainty either all solutions or determine that no solutions exist. (e.g., Kearfott 1987,1996; Neumaier 1990).
- A general purpose approach; applied to phase behavior problems requires no simplifying assumptions or problem reformulations.
- First implemented for process modeling problems by Schnepper and Stadtherr (1990) and for phase behavior problems by Stadtherr, Schnepper and Brennecke (1994).
- Implementation based on modifications of routines from INTBIS and INTLIB packages (Kearfott and coworkers)

Interval Method (Cont'd)

Problem: Solve $\mathbf{f}(\mathbf{x})=\mathbf{0}$ for all roots in interval $\mathbf{X}^{(0)}$.
Basic iteration scheme: For a particular subinterval (box), $\mathbf{X}^{(k)}$, perform root inclusion test:

- (Range Test) Compute an interval extension of each function in the system.
- If 0 is not an element of any interval extension, delete the box.
- Otherwise,
- (Interval Newton Test) Compute the image, $\mathbf{N}^{(k)}$, of the box by solving the linear interval equation system

$$
F^{\prime}\left(\mathbf{X}^{(k)}\right)\left(\mathbf{N}^{(k)}-\mathbf{x}^{(k)}\right)=-\mathbf{f}\left(\mathbf{x}^{(k)}\right)
$$

- $\mathbf{x}^{(k)}$ is some point in the interior of $\mathbf{X}^{(k)}$.
- $F^{\prime}\left(\mathbf{X}^{(k)}\right)$ is an interval extension of the Jacobian of $\mathbf{f}(\mathbf{x})$ over the box $\mathbf{X}^{(k)}$.

Unique solution in $\mathrm{X}^{(\mathrm{k})}$
This solution is in $N^{(k)}$
Point Newton method will converge to it

(k)
 Any solutions in $X^{(k)}$ are in intersection of $X^{(k)}$ and $N^{(k)}$

If intersection is sufficiently small, repeat root inclusion test; otherwise bisect the result of the intersection and apply root inclusion test to each resulting subinterval.

Phase Stability Problem

- Will a mixture (feed) at a given T, P, and composition x split into multiple phases?
- A key subproblem in determination of phase equilibrium, and thus in the design and analysis of separation operations.
- Using tangent plane analysis, can be formulated as a minimization problem, or as an equivalent nonlinear equation solving problem.
- Equation system to be solved may have trivial and/or multiple roots (optimization problem has multiple local optima).
- Conventional techniques may fail to converge, or converge to false or trivial solutions.

Tangent Plane Analysis

- A phase at T, P, and feed composition z is unstable if the Gibbs energy of mixing vs. composition surface

$$
m(\mathbf{x}, v)=\Delta g_{m i x}=\Delta \hat{G}_{m i x} / R T
$$

ever falls below a plane tangent to the surface at \mathbf{z}

$$
m_{t a n}(\mathbf{x})=m\left(\mathbf{z}, v_{\mathbf{z}}\right)+\left.\sum_{i=1}^{n}\left(\frac{\partial m}{\partial x_{i}}\right)\right|_{\mathbf{z}}\left(x_{i}-z_{i}\right)
$$

- That is, if the tangent plane distance

$$
D(\mathbf{x}, v)=m(\mathbf{x}, v)-m_{t a n}(\mathbf{x})
$$

is negative for any composition \mathbf{x}, the phase is unstable.

- In this context, "unstable" refers to both the metastable and classically unstable cases.

Example

n-Butyl Acetate-Water, NRTL Model

Gibbs energy of mixing m vs. x_{1}

Example (continued)

Feed composition $z_{1}=0.95$

Phase of this composition is stable (D is never negative).

Example (continued)

Feed composition $z_{1}=0.62$

Phase of this composition is unstable and can split (D becomes negative).

Optimization Formulation

- To determine if D ever becomes negative, determine the minimum of D and examine its sign

$$
\min _{\mathbf{x}, v} D(\mathbf{x}, v)
$$

subject to

$$
1-\sum_{i=1}^{n} x_{i}=0
$$

$$
E O S(\mathbf{x}, v)=0
$$

- Trivial local optimum (minimum or maximum) at the feed composition $\mathbf{x}=\mathbf{z}$; may be multiple nontrivial optima. Need technique guaranteed to find the global minimum.

Equation Solving Formulation

- Stationary points of the optimization problem can be found be solving the nonlinear equation system

$$
\begin{gathered}
{\left[\left(\frac{\partial m}{\partial x_{i}}\right)-\left(\frac{\partial m}{\partial x_{n}}\right)\right]-\left[\left(\frac{\partial m}{\partial x_{i}}\right)-\left(\frac{\partial m}{\partial x_{n}}\right)\right]_{\mathrm{z}}=0} \\
i=1, \ldots, n-1 \\
1-\sum_{i=1}^{n} x_{i}=0 \\
\operatorname{EOS}(\mathbf{x}, v)=0
\end{gathered}
$$

- Trivial root at the feed composition $\mathbf{x}=\mathbf{z}$; may be multiple nontrivial roots. Need technique guaranteed to find all the roots.
Equation Solving Formulation-Generalized Cubic Equation of State
Solve for $v, x_{i}, i=1, \ldots, n$

$$
1-\sum_{i=1}^{n} x_{i}=0
$$

Example 1

$\mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{~S}, T=190 \mathrm{~K}, P=40 \mathrm{~atm}, z_{1}=0.0187$, SRK model. Tangent plane distance D vs. x_{1}

- Five stationary points (four minima, one maximum).
- Standard local methods (e.g. Michelsen, 1982) known to fail (predict stability when system is actually unstable).

Example 1 (continued)

$\mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{~S}, T=190 \mathrm{~K}, P=40 \mathrm{~atm}, z_{1}=0.0187$, SRK model. Tangent plane distance D vs. x_{1} (region near origin)

Some Current Solution Methods

- Various local methods - Fast, but initialization dependent (may use multiple initial guesses), and not always reliable
- Some more reliable approaches
- Exhaustive search on grid (Eubank et al., 1992)
- Homotopy-continuation (Sun and Seider, 1995)
- Topological degree (Wasylkiewicz et al., 1996)
- Branch and bound (McDonald and Floudas, 1995, 1997; Harding and Floudas, 1998): Guarantee of global optimum when for certain types of models
- Interval analysis
- Provides a general-purpose, model-independent method for solving phase stability problem with complete certainty.
- Stadtherr et al. (1994,1995), McKinnon et al. (1995,1996): Activity coefficient models
- Hua et al. (1995-1999), Xu et al. $(1998,1999)$: Equation of state models, including cubic

Interval Analysis for Phase Stability

- Initial interval includes all physically feasible values of mole fraction and molar volume.
- To reduce overestimation in interval extensions due to dependency problem:
- Can identify and use function monotonicity.
- Can let monotonicity information be inherited when an interval is bisected.
- Can use special properties of mole fraction weighted averages.
- "Standard" mixing rules used with cubic equation of state
- Quadratic for a
- Linear for b

Example 1 - Phase Stability

$\mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{~S}, T=190 \mathrm{~K}, P=40 \mathrm{~atm}, z_{1}=0.0187$, SRK model

Feed $\left(z_{1}, z_{2}\right)$ and CPU time	Stationary Points (roots) $\left(x_{1}, x_{2}, v\left[\mathrm{~cm}^{3} / \mathrm{mol}\right]\right)$	D
$(0.0187,0.9813)$	$(0.885,0.115,36.6)$	0.011
0.20 sec	$(0.0187,0.9813,207.3)$	0.0
	$(0.031,0.969,115.4)$	0.008
	$(0.077,0.923,64.1)$	-0.004
	$(0.491,0.509,41.5)$	0.073

- CPU time on Sun Ultra $2 / 1300$.
- All stationary points easily found, showing the feed to be unstable.
- Presence of multiple real volume roots causes no difficulties.

Example 2 - Phase Stability

$\mathrm{N}_{2}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, T=270 \mathrm{~K}, P=76$ bar, PR model

Feed $\left(z_{1}, z_{2}, z_{3}\right)$	Number of Stationary Points	$D_{\text {min }}$	CPU time (sec)
$(0.30,0.10,0.60)$	3	-0.015	1.3
$(0.15,0.30,0.55)$	3	-0.001	3.4
$(0.08,0.38,0.54)$	1	0.0	2.5
$(0.05,0.05,0.90)$	1	0.0	0.54

- CPU times on Sun Ultra 2/1300.
- It is not really necessary to find all the stationary points; only need to find the global minimum.
- Many other problems have been solved.
- Phase equilibrium problems have also been solved.

Computing Phase Equilibrium Using Alternative Mixing Rules

- Previous applications of the interval method to phase stability and equilibrium problems used standard mixing rules - quadratic for a, linear for b.

$$
\begin{gathered}
b=\sum_{i=1}^{n} x_{i} b_{i} \\
a=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} a_{i j}
\end{gathered}
$$

- Can the interval approach be used in connection with more complex mixing rules?
- In this example, the interval method is used to compute phase equilibrium when the Wong-Sandler mixing rules are used.

Wong-Sandler Mixing Rules

$$
\begin{gathered}
a=\frac{R T Q_{w s} D_{w s}}{1-D_{w s}}=R T D_{w s} b \\
b=\frac{Q_{w s}}{1-D_{w s}}
\end{gathered}
$$

where

$$
D_{w s}=\frac{A_{\infty}^{E}}{c R T}+\sum_{i=1}^{n} \frac{x_{i} a_{i i}}{R T b_{i}}
$$

$$
Q_{w s}=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j}\left(\frac{b_{i}+b_{j}}{2}-\frac{\sqrt{a_{i i} a_{j j}}}{R T}\left(1-k_{i j}\right)\right)
$$

and

$$
\begin{gathered}
\frac{A_{\infty}^{E}}{R T}=\sum_{i} x_{i}\left(\frac{\sum_{j} x_{j} \tau_{j i} g_{j i}}{\sum_{k} x_{k} g_{k i}}\right) \\
\text { (NRTL equation) }
\end{gathered}
$$

Problem 3

Computing Homogeneous Azeotropes

- What?
- A mixture has a homogeneous azeotrope when there are vapor and liquid phases are in equilibrium, and these two phases have the same composition.
- Problem: For a given pressure, determine if any azeotropes exist and find their temperature and composition.
- Why?
- Identify limitations in separation operations based on distillation.
- Construction of residue curve maps for design and synthesis of separation operations.
- Evaluation of thermodynamic models.

Computing Homogeneous Azeotropes (Cont'd)

- How?
- Solve system(s) of nonlinear equations derived from equifugacity condition; can use either a sequential or simultaneous approach to formulate problem (sequential is used here).
- These equation system(s) often have multiple and/or trivial roots, or may have no solutions.
- Account for temperature dependence using Antoine equation (ideal vapor phase) and temperature dependent activity coefficient model parameters (or evaluate parameters at a guessed "reference temperature" $T_{R E F}$ assumed close to the azeotropic T).

Formulation : Sequential Approach

- $\ln P-\ln P_{i}^{s a t}(T)-\ln \gamma_{i}^{L}(T)=0, i \in \mathcal{C}_{n z}$

$$
1-\sum_{i \in \mathcal{C}_{n z}} x_{i}=0
$$

- $\mathcal{C}_{n z}$ is a set of k nonzero components out of N total components.
- All k-ary azeotropes $(k \leq N)$ for the chosen $\mathcal{C}_{n z}$ are solutions; there may be no solutions.
- Solve (unordered) sequence of problems :

For $k=2 \rightarrow N$:
For all combinations of k nonzero components, solve for all k-ary azeotropes.

- Need solution method guaranteed to find all solutions of all problems, and to determine with certainty when there are no solutions.

Some Current Solution Methods

- Various local methods - Fast, but initialization dependent and hard to find all roots.
- Fidkowski et al. (1993) use a homotopycontinuation method.
- Simultaneous approach with explicit Tdependence of γ_{i}.
- Improved reliability but no guarantee that all roots are found.
- Harding et al. (1997) use a branch and bound method.
- Simultaneous and sequential approaches; $T_{R E F}$ approach for T-dependence of γ_{i}.
- Reformulation as a global optimization problem using convex underestimating functions.
- Mathematical guarantee that all roots are found in $T_{R E F}$ approach.

Example 4 - Homogeneous Azeotropes UNIQUAC, Benzene(B), Ethanol(E) and Water(W), $P=1.0 \mathrm{~atm}$. CPU time is on a Sun Ultra $1 / 140$.

Comps.	Mole Frac. (B E W)	$T\left({ }^{\circ} \mathrm{C}\right)$	CPU (s)
BE	0.5520 .4480 .000	67.66	0.036
BW	$(0.5720 .0000 .428)^{*}$	$(61.98)^{*}$	0.037
EW	0.0000 .8860 .115	78.11	0.041
BEW	no azeotrope		1.21
total			

* This is a solution to the equifugacity condition, but is not a homogeneous azeotrope since the liquid phase will split.
- Explicit T-dependence of activity coefficient model parameters accounted for (no $T_{R E F}$ needs to be guessed).
- Many other problems (two to five components) easily solved, using Wilson, NRTL or UNIQUAC models, finding all azeotropes.

Computing Mixture Critical Points

- A mixture critical point is a point (temperature, pressure, molar volume, composition) that is stable, but on the limit of stability.
- Problem can be formulated as system of nonlinear equations
- Determinants
- Method of Heidemann and Khalil (1979)
- Nonlinear equation system to be solved for critical points has unknown number of roots.
- Interval method provides an approach guaranteed to find all roots, or to determine with certainty that there are none.
- Example problem computes critical point(s) for mixture of CH_{4} and $\mathrm{H}_{2} \mathrm{~S}$ at various compositions.
- Temperature range searched is $110-800 \mathrm{~K}$; Volume range searched is $1.1 b-4.0 b$.

Problem 5
$\mathrm{CH}_{4}(1), \mathrm{H}_{2} \mathrm{~S}(2)$, SRK EOS

Feed $\left(z_{1}, z_{2}\right)$	Critical Point(s)			CPU time
	$V_{c}\left[\mathrm{~cm}^{3} / \mathrm{mol}\right]$	$T_{c}[\mathrm{~K}]$	$P_{c}[\mathrm{bar}]$	(seconds)
$(0.97,0.03)$	107.70	196.74	50.37	1.26
$(0.93,0.07)$	97.75	204.78	56.72	4.97
	44.72	114.77	-283.57	
$(0.85,0.15)$	74.03	212.99	64.51	21.03
	59.41	190.98	22.53	

CPU time on Sun Ultra 30.
Problem 5 (Cont.)
CH_{4} (1), $\mathrm{H}_{2} \mathrm{~S}$ (2), SRK EOS

Feed $\left(z_{1}, z_{2}\right)$	Critical Point(s)			CPU time
	$V_{c}\left[\mathrm{~cm}^{3} / \mathrm{mol}\right]$	$T_{c}[\mathrm{~K}]$	$P_{c}[\mathrm{bar}]$	(seconds)
$(0.53,0.47)$	no critical point			17.35
$(0.52,0.48)$	59.26	270.02	146.07	30.02
	54.93	260.27	149.00	
$(0.51,0.49)$	63.37	279.25	145.02	25.60
	50.31	249.01	160.10	

CPU time on Sun Ultra 30.

Concluding Remarks

Interval analysis is a general-purpose and model-independent approach for solving phase behavior problems, providing a mathematical and computational guarantee of reliability

- Phase stability and equilibrium
- Gibbs energy formulation
- Helmholtz energy density formulation (Xu et al., 1998)
- Any EOS and mixing rule
- Or any activity coefficient model (e.g., Stadtherr et al., 1994)
- Azeotropes
- Homogeneous
- Heterogeneous (Maier et al., 1999)
- Reactive (Maier et al., 1998b)
- From any EOS or activity coefficient model
- Critical Points
- Any EOS and mixing rule

Concluding Remarks (Cont.)

- Interval analysis provides powerful problem solving techniques with many other applications in the modeling of thermodynamics and phase behavior and in other process modeling problems.
- Continuing advances in computing hardware and software (e.g., compiler support for interval arithmetic) will make this approach even more attractive.
- Acknowledgments
- ACS PRF 30421-AC9
- NSF CTS95-22835
- NSF DMI96-96110
- NSF EEC97-00537-CRCD
- EPA R824731-01-0
- DOE DE-FG07-96ER14691
- Sun Microsystems, Inc.
- For more information:
- Contact Prof. Stadtherr at markst@nd.edu

[^0]: ${ }^{1}$ Author to whom all correspondence should be addressed. Phone: (219)631-9318; Fax: (219)631-8366; E-mail: markst@nd.edu

