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Summary

� In modeling phase behavior, computational
problems due to multiple roots or multiple local
optima are well known (e.g., convergence to trivial
or incorrect roots; convergence to a local but not
global optimum).

� Many clever techniques have been devised to
alleviate such diÆculties, but there has been
no general-purpose, model-independent, and
completely reliable method for solving all phase
behavior problems.

� Interval analysis provides a mathematically and

computationally guaranteed method for reliably
solving phase behavior problems.

� This is demonstrated using example problems,
including the determination of phase stability and
the computation of azeotropes and critical points.
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Background|Interval Analysis

� A real interval X = [a; b] = fx 2 < j a � x � bg is
a segment on the real number line and an interval
vector X = (X1;X2; :::;Xn)

T is an n-dimensional
rectangle or \box".

� Basic interval arithmetic for X = [a; b] and Y =
[c; d] is X op Y = fx op y j x 2 X; y 2 Y g
where op 2 f+;�;�;�g. For example, X + Y =
[a+ c; b+ d].

� Computed endpoints are rounded out to guarantee
the enclosure.

� Interval elementary functions (e.g. exp(X), log(X),
etc.) are also available.

� The interval extension F (X) encloses the range (all
values) of f(x) for x 2 X.

� Interval extensions can be computed using interval
arithmetic (the \natural" interval extension), or with
other techniques.
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Interval Method Used

� Interval Newton/Generalized Bisection (IN/GB)

{ Given a system of equations to solve, an initial
interval (bounds on all variables), and a solution
tolerance

{ IN/GB can �nd (enclose) with mathematical and

computational certainty either all solutions or
determine that no solutions exist. (e.g., Kearfott
1987,1996; Neumaier 1990).

� A general purpose approach; applied to
phase behavior problems requires no simplifying
assumptions or problem reformulations.

� First implemented for process modeling problems
by Schnepper and Stadtherr (1990) and for phase
behavior problems by Stadtherr, Schnepper and
Brennecke (1994).

� Implementation based on modi�cations of routines
from INTBIS and INTLIB packages (Kearfott and
coworkers)
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Interval Method (Cont'd)

Problem: Solve f(x) = 0 for all roots in interval X(0).

Basic iteration scheme: For a particular subinterval
(box), X(k), perform root inclusion test:

� (Range Test) Compute an interval extension of each
function in the system.

{ If 0 is not an element of any interval extension,
delete the box.

{ Otherwise,

� (Interval Newton Test) Compute the image, N(k),
of the box by solving the linear interval equation
system

F 0(X(k))(N(k) � x
(k)) = �f(x(k))

{ x
(k) is some point in the interior of X(k).

{ F 0
�
X

(k)
�
is an interval extension of the Jacobian

of f(x) over the box X(k).
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x1

x2

X
(k) N

(k)

There was no solution in X
(k)
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x1

x2

X
(k)

N
(k)

Unique solution in X

Point Newton method will converge to it

(k)

This solution is in N
(k)
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x1

x2

X
(k)

N
(k)

Any solutions in X      are in

intersection of X      and N

(k)

(k) (k)

If intersection is suÆciently small, repeat root inclusion
test; otherwise bisect the result of the intersection and
apply root inclusion test to each resulting subinterval.
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Phase Stability Problem

� Will a mixture (feed) at a given T , P , and
composition x split into multiple phases?

� A key subproblem in determination of phase
equilibrium, and thus in the design and analysis
of separation operations.

� Using tangent plane analysis, can be formulated
as a minimization problem, or as an equivalent
nonlinear equation solving problem.

� Equation system to be solved may have trivial
and/or multiple roots (optimization problem has
multiple local optima).

� Conventional techniques may fail to converge, or
converge to false or trivial solutions.
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Tangent Plane Analysis

� A phase at T , P , and feed composition z is unstable
if the Gibbs energy of mixing vs. composition
surface

m(x; v) = �gmix = �Ĝmix=RT

ever falls below a plane tangent to the surface at z

mtan(x) = m(z; vz) +
nX
i=1

�
@m

@xi

�����
z

(xi � zi)

� That is, if the tangent plane distance

D(x; v) = m(x; v)�mtan(x)

is negative for any composition x, the phase is
unstable.

� In this context, \unstable" refers to both the
metastable and classically unstable cases.
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Example

n-Butyl Acetate|Water, NRTL Model

Gibbs energy of mixing m vs. x1

0.2 0.4 0.6 0.8 1
x1

-0.02

0.02

0.04 m
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Example (continued)

Feed composition z1 = 0.95

0.2 0.4 0.6 0.8 1
x1

-0.04

0.04

0.08

m

m_tan

D

Phase of this composition is stable (D is never
negative).
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Example (continued)

Feed composition z1 = 0.62

0.2 0.4 0.6 0.8 1
x1

-0.02

0.02

0.04
m

m_tan

D

Phase of this composition is unstable and can split (D
becomes negative).
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Optimization Formulation

� To determine if D ever becomes negative, determine
the minimum of D and examine its sign

min
x;v

D(x; v)

subject to

1�
nX
i=1

xi = 0

EOS(x; v) = 0

� Trivial local optimum (minimum or maximum) at
the feed composition x = z; may be multiple
nontrivial optima. Need technique guaranteed to
�nd the global minimum.
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Equation Solving Formulation

� Stationary points of the optimization problem can
be found be solving the nonlinear equation system

��
@m

@xi

�
�
�
@m

@xn

��
�
��

@m

@xi

�
�
�
@m

@xn

��
z

= 0;

i = 1; : : : ; n� 1

1�
nX
i=1

xi = 0

EOS(x; v) = 0

� Trivial root at the feed composition x = z; may
be multiple nontrivial roots. Need technique
guaranteed to �nd all the roots.
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Example 1

CH4, H2S, T = 190 K, P = 40 atm, z1 = 0.0187,
SRK model. Tangent plane distance D vs. x1

0.2 0.4 0.6 0.8 1
x1

0.02

0.04

0.06

0.08

0.1
D

� Five stationary points (four minima, one maximum).

� Standard local methods (e.g. Michelsen, 1982)
known to fail (predict stability when system is
actually unstable).
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Example 1 (continued)

CH4, H2S, T = 190 K, P = 40 atm, z1 = 0.0187,
SRK model. Tangent plane distance D vs. x1 (region
near origin)

0.05 0.1 0.15 0.2
x1

0.005

0.01

0.015

0.02

D
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Some Current Solution Methods

� Various local methods | Fast, but initialization
dependent (may use multiple initial guesses), and
not always reliable

� Some more reliable approaches

{ Exhaustive search on grid (Eubank et al., 1992)
{ Homotopy-continuation (Sun and Seider, 1995)
{ Topological degree (Wasylkiewicz et al., 1996)
{ Branch and bound (McDonald and Floudas,
1995, 1997; Harding and Floudas, 1998):
Guarantee of global optimum when for certain
types of models

� Interval analysis

{ Provides a general-purpose, model-independent
method for solving phase stability problem with
complete certainty.

{ Stadtherr et al. (1994,1995), McKinnon et al.

(1995,1996): Activity coeÆcient models
{ Hua et al. (1995-1999), Xu et al. (1998,1999):
Equation of state models, including cubic
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Interval Analysis for Phase Stability

� Initial interval includes all physically feasible values
of mole fraction and molar volume.

� To reduce overestimation in interval extensions due
to dependency problem:

{ Can identify and use function monotonicity.
{ Can let monotonicity information be inherited
when an interval is bisected.

{ Can use special properties of mole fraction
weighted averages.

� \Standard" mixing rules used with cubic equation
of state

{ Quadratic for a
{ Linear for b
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Example 1 | Phase Stability

CH4, H2S, T = 190 K, P = 40 atm, z1 = 0.0187,
SRK model

Feed (z1; z2) Stationary Points (roots)

and CPU time (x1; x2; v [cm3/mol]) D

(0.0187, 0.9813) (0.885, 0.115, 36.6) 0.011

0.20 sec (0.0187, 0.9813, 207.3) 0.0

(0.031, 0.969, 115.4) 0.008

(0.077, 0.923, 64.1) -0.004

(0.491, 0.509, 41.5) 0.073

� CPU time on Sun Ultra 2/1300.

� All stationary points easily found, showing the feed
to be unstable.

� Presence of multiple real volume roots causes no
diÆculties.

21



Example 2 | Phase Stability

N2, CH4, C2H6, T = 270 K, P = 76 bar, PR model

Number of

Stationary CPU time

Feed (z1; z2; z3) Points Dmin (sec)

(0.30,0.10,0.60) 3 -0.015 1.3

(0.15,0.30,0.55) 3 -0.001 3.4

(0.08,0.38,0.54) 1 0.0 2.5

(0.05,0.05,0.90) 1 0.0 0.54

� CPU times on Sun Ultra 2/1300.

� It is not really necessary to �nd all the stationary
points; only need to �nd the global minimum.

� Many other problems have been solved.

� Phase equilibrium problems have also been solved.
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Computing Phase Equilibrium Using

Alternative Mixing Rules

� Previous applications of the interval method to
phase stability and equilibrium problems used
standard mixing rules | quadratic for a, linear
for b.

b =

nX
i=1

xibi

a =
nX
i=1

nX
j=1

xixjaij

� Can the interval approach be used in connection
with more complex mixing rules?

� In this example, the interval method is used to
compute phase equilibrium when the Wong-Sandler
mixing rules are used.
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Wong-Sandler Mixing Rules

a =
RTQwsDws

1�Dws

= RTDwsb

b =
Qws

1�Dws

where

Dws =
AE
1

cRT
+

nX
i=1

xiaii
RTbi

Qws =

nX
i=1

nX
j=1

xixj

�
bi + bj

2
�
p
aiiajj

RT
(1� kij)

�

and
AE
1

RT
=
X
i

xi

 P
j xj�jigjiP
k xkgki

!

(NRTL equation)
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Computing Homogeneous Azeotropes

� What?

{ A mixture has a homogeneous azeotrope when
there are vapor and liquid phases are in
equilibrium, and these two phases have the same
composition.

{ Problem: For a given pressure, determine if any
azeotropes exist and �nd their temperature and
composition.

� Why?

{ Identify limitations in separation operations based
on distillation.

{ Construction of residue curve maps for design and
synthesis of separation operations.

{ Evaluation of thermodynamic models.
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Computing Homogeneous Azeotropes

(Cont'd)

� How?

{ Solve system(s) of nonlinear equations derived
from equifugacity condition; can use either a
sequential or simultaneous approach to formulate
problem (sequential is used here).

{ These equation system(s) often have multiple
and/or trivial roots, or may have no solutions.

{ Account for temperature dependence using
Antoine equation (ideal vapor phase) and
temperature dependent activity coeÆcient model
parameters (or evaluate parameters at a guessed
\reference temperature" TREF assumed close to
the azeotropic T ).
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Formulation : Sequential Approach

� lnP � lnP sat
i (T )� ln 
Li (T ) = 0; i 2 Cnz

1�
X
i2Cnz

xi = 0

� Cnz is a set of k nonzero components out of N total
components.

� All k-ary azeotropes (k � N) for the chosen Cnz are
solutions; there may be no solutions.

� Solve (unordered) sequence of problems :

For k = 2 ! N :

For all combinations of k nonzero components,
solve for all k-ary azeotropes.

� Need solution method guaranteed to �nd all
solutions of all problems, and to determine
with certainty when there are no solutions.
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Some Current Solution Methods

� Various local methods | Fast, but initialization
dependent and hard to �nd all roots.

� Fidkowski et al. (1993) use a homotopy-
continuation method.

{ Simultaneous approach with explicit T-
dependence of 
i.

{ Improved reliability but no guarantee that all
roots are found.

� Harding et al. (1997) use a branch and bound
method.

{ Simultaneous and sequential approaches; TREF
approach for T-dependence of 
i.

{ Reformulation as a global optimization problem
using convex underestimating functions.

{ Mathematical guarantee that all roots are found
in TREF approach.
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Example 4 | Homogeneous Azeotropes

UNIQUAC, Benzene(B), Ethanol(E) and Water(W),
P = 1.0 atm. CPU time is on a Sun Ultra 1/140.

Comps. Mole Frac. (B E W) T (ÆC) CPU (s)

BE 0.552 0.448 0.000 67.66 0.036

BW (0.572 0.000 0.428)� (61.98)� 0.037

EW 0.000 0.886 0.115 78.11 0.041

BEW no azeotrope 1.21

total 1.32

� This is a solution to the equifugacity condition, but is not a

homogeneous azeotrope since the liquid phase will split.

� Explicit T -dependence of activity coeÆcient model
parameters accounted for (no TREF needs to be
guessed).

� Many other problems (two to �ve components)
easily solved, using Wilson, NRTL or UNIQUAC
models, �nding all azeotropes.
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Computing Mixture Critical Points

� A mixture critical point is a point (temperature,
pressure, molar volume, composition) that is stable,
but on the limit of stability.

� Problem can be formulated as system of nonlinear
equations

{ Determinants
{ Method of Heidemann and Khalil (1979)

� Nonlinear equation system to be solved for critical
points has unknown number of roots.

� Interval method provides an approach guaranteed
to �nd all roots, or to determine with certainty that
there are none.

� Example problem computes critical point(s) for
mixture of CH4 and H2S at various compositions.

� Temperature range searched is 110{800 K; Volume
range searched is 1:1b� 4:0b.
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Concluding Remarks

Interval analysis is a general-purpose and
model-independent approach for solving phase
behavior problems, providing a mathematical and

computational guarantee of reliability

� Phase stability and equilibrium

{ Gibbs energy formulation
{ Helmholtz energy density formulation (Xu et al.,
1998)

{ Any EOS and mixing rule
{ Or any activity coeÆcient model (e.g., Stadtherr

et al., 1994)

� Azeotropes

{ Homogeneous
{ Heterogeneous (Maier et al., 1999)
{ Reactive (Maier et al., 1998b)
{ From any EOS or activity coeÆcient model

� Critical Points

{ Any EOS and mixing rule
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Concluding Remarks (Cont.)

� Interval analysis provides powerful problem solving
techniques with many other applications in the
modeling of thermodynamics and phase behavior
and in other process modeling problems.

� Continuing advances in computing hardware and
software (e.g., compiler support for interval
arithmetic) will make this approach even more
attractive.
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