Advances in Row Ordering for Frontal Solvers in Process Engineering

Jennifer A. Scott Computational Science and Engineering Department Rutherford Appleton Laboratory Oxon, England

> Mark A. Stadtherr Department of Chemical Engineering University of Notre Dame Notre Dame, IN, USA

SIAM Annual Meeting, Atlanta, GA May 1999

Outline

- Background
 - Process Engineering Problems
 - Frontal Method
- Row Ordering Methods
- Results
- Concluding Remarks

Process Engineering Problems

- Realistically complex process simulation and optimization problems typically require large-scale computation.
- When an equation-based problem formulation is used, a key computational bottleneck is often the solution of large, sparse linear equation systems (may be as much as 80-90% of total simulation time).
- Properties of process engineering matrices:
 - Very sparse
 - Very unsymmetric (structurally)
 - Numerically indefinite
 - Not diagonally dominant
 - May be ill-conditioned

Process Engineering Problems (continued)

- Solve Ax = b, where A is large, sparse and has highly asymmetric structure.
- General-purpose direct solvers (e.g., MA48) typically used
 - Factor: PAQ = LU (P and Q represent row and column permutations)
 - Solve: Ly = Pb

$$\bigcup \mathbf{z} = \mathbf{y}$$
$$\mathbf{x} = \mathbf{Q}\mathbf{z}$$

using row- or column-oriented Gaussian elimination with threshold pivoting to obtain LU factors.

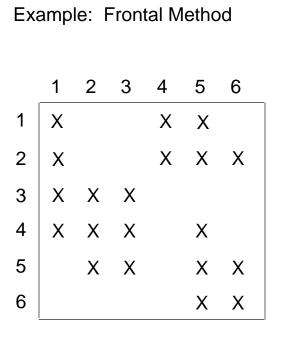
• Frontal elimination is an attractive alternative for a wide range of modern computer architectures.

Frontal Method

- Basic idea: Restrict computations to a relatively small *front* (or *frontal matrix*) and exploit efficient dense matrix kernels (high level BLAS).
- Originally developed for banded matrices to solve large finite element problems in limited core (Irons, 1970; Hood, 1976).
- Duff (1979) first suggested using frontal method to exploit vector computing in solving finite element problems, implementing it in the Harwell Subroutine Library (HSL) code MA32 (Duff, 1980).
- Applied to process engineering problems on vector/parallel machines by Vegeais and Stadtherr (1985,1990).
- FAMP code (Zitney and Stadtherr, 1993) used in CRAY versions of commercial process simulation codes (e.g. SPEEDUP, ASPEN PLUS).
- Today, the HSL provides MA42 (Duff and Scott, 1992), a generalpurpose frontal solver for elements or assembled problems.

Frontal Method (continued)

- Basic factorization steps:
 - Assemble a row into the frontal matrix (beginning with row 1 and proceeding sequentially).
 - Determine if any columns are fully summed (have all their nonzero entries in the frontal matrix).
 - If enough fully-summed columns, perform partial pivoting in those columns and do partial factorization to eliminate them (outer product update).
 - Repeat until all columns have been eliminated.
- Frontal matrix sizes, and thus computational performance, depend on row ordering.



As	seml	ble r	ow 1		
_	1	4	5		
1	Х	X	Х		
no	vari	able	s full	y sui	mmed
As	sem	ble r	ow 2	2	
	1	4	5	6	_
1	X	Х	X X		
2	X	Х	Х	Х	

_

variable 4 fully summed select pivot from column 4 (say in row 2)

Example: Frontal Method (continued)						
	1	2	3	4	5	6
1	Х			Х	Х	
2	Х			Х	Х	X
3	Х	Х	Х			
4	Х	Х	Х		Х	
5		Х	Х		Х	X
6					Х	Х

pivot on element (2,4) 4 1 5 6 2 U U U U 1 L X X X

updated frontal matrix:

	1	5	6
1	Х	Х	Х

assemble row 3: no variables fully summed assemble row 4: variable 1 fully summed

Example: Frontal Method (continued)							
	1	2	3	4	5	6	
1	Х			Х	Х		
2	Х			Х	Х	Х	
3	Х	Х	Х				
4	Х	Х	Х		Х		
5		Х	Х		Х	Х	
6					Х	Х	

using element (4,1) as pivot:

	1	5	6	2	3
4	U				U
1	L	Х	Х	Х	X X
3	L	Х		Х	X

updated frontal matrix:

	5	6	2	3	_
1	Х	Х	Х	Х	
3	Х		Х	Х	

continue until LU factors are complete

Row Ordering Methods

- RMCD (Camarda, 1997; Camarda and Stadtherr, 1998)
- NMNC (Camarda, 1997)
- MSRO (Scott, 1998)

RMCD Row Ordering

- Local ordering, based on bipartite graph model of unsymmetric matrix.
- Uses concept of a *net*
 - Net j comprises column vertex j and all adjacent row vertices (corresponding to rows with nonzeros in column j).
- Basic ideas:
 - Find column of minimum degree, giving priority to partially summed columns.
 - Put next in the row ordering the rows in the corresponding net.
 - Remove net from graph and update column degrees.
- When each net is assembled, there is at least 1 fully summed column.
- Restricts growth in row dimension (frow_i)of frontal matrix, but not in column dimension (fcol_i)

NMNC Row Ordering

- Global ordering, based on bipartite graph model of unsymmetric matrix.
- Uses concept of a net.
- Basic step is a graph bisection into two subgraphs
 - Seek to minimize (approximately) the number of nets cut in the bisection.
 - Seek to keep the subgraphs (approximately) the same size.
 - Heuristic approach used, based on min-net-cut method of Coon and Stadtherr (1995).
- Apply bisection step recursively.
- Restricts growth in both frow_i and fcol_i.

MSRO Row Ordering

- Two-phase ordering, global then local.
- Global ordering uses the concept of a *row graph* G_R.
 - The row graph of A is the undirected graph of the symmetric matrix
 B = A * A^T, where * indicates matrix multiplication without accounting for numerical cancellations.
 - The nodes of G_R are the rows of A.
 - There is a edge between nodes i and j if and only if there is at least one column in which both row i and row j have a nonzero entry.
- Global ordering methods used by MSRO:
 - Pseudodiameter approach (e.g. Gibbs et al., 1976) applied to G_R .
 - Spectral method (e.g., Barnard et al., 1995) applied to G_R .
 - NMNC method (G_R not used).

MSRO Row Ordering (continued)

- Local ordering is based on a *priority function* P_i.
- Basic ideas
 - Select the next row in the reordering by choosing, from a set of eligible rows, a row i that minimizes P_i.
 - Eligible rows are *active* rows and their neighbors in G_R .
 - An unordered row is active if it is adjacent in G_R to a row that has already been ordered.
- The priority function is the weighted average of a global priority (determined in global ordering phase) and a local priority (based on increases to frow_i and fcol_i caused by ordering row i next).

Results: Test Problems

- Row ordering methods were tested on a set of 22 matrices drawn from chemical process engineering problems.
- Applications include several multiunit flowsheets, many involving multiple separation columns.
- Application codes from which matrices were drawn include: SPEEDUP (Aspen Technology, Inc.), ASPEN PLUS (Aspen Technology, Inc.), NOVA (DOT Products, Inc.), SEQUEL (University of Illinois), ASCEND (Carnegie-Mellon University)
- Matrix sizes range from n = 1048 to n = 70304. All are highly asymmetric.
- Complete, detailed results given in: J. A. Scott, "Row ordering for frontal solvers in chemical process engineering," RAL Technical Report RAL-TR-1999-035 (submitted to *Comput. Chem. Eng.*)

Results: Highlights I

- Using average front size f_{ave} = (1/n) 3 i frow * fcoli as criterion, the number of problems on which each ordering was best (or tied for best):
 MSRO + spectral (MSRO/spec)
 MSRO + pseudodiameter (MSRO/pd)
 MSRO + NMNC (MSRO/NMNC)
 RMCD
 NMNC
- Due to limitations of package used to obtain the spectral ordering, MSRO/spec was not applied to the four largest problems. So MSRO/spec was best on 13 of the 18 problems for which it was used.

Results: Highlights II

• MSRO algorithms usually provide dramatic reductions in f_{ave}.

• Examples:

Problem:	<u>hydr1 (n = 5308)</u>		<u>lhr14c (n = 14270)</u>
Original Ordering	$f_{ave} / 100 =$	310	1076
MSRO/spec		3	134
MSRO/pd		10	170
MSRO/NMNC		58	224
NMNC		197	266
RCMD		231	7645

Results: Highlights III

- MSRO/spec and MSRO/pd do not perform as well when there is a very high degree of connectivity in the row graph (average number of neighbors more than about 100).
- Examples:

Problem:	<u>ethylene-1 (n = 10673)</u>	<u>meg1 (n = 2904)</u>
Original Ordering	$f_{ave} / 100 = 1452$	11823
MSRO/spec	2449	1015
MSRO/pd	3910	1837
MSRO/NMNC	213	1781
NMNC	573	3068
RCMD	11249	461

Average number of neighbors in G_R is 190.7 for ethylene-1, and 128.1 for meg1. Meg1 has a much shorter pseudodiameter (7) than other problems.

Results: Highlights IV

- Factorization times (t_F) using frontal solver MA42 reflect improved row orderings, but improvement is not as dramatic as in average front size.
- Examples:

Problem:	<u>hydr1 (n = 5308)</u>		<u>lhr14c (n = 14270)</u>
Original Ordering	t _F (sec.) =	1.7	23.9
MSRO/spec		0.7	8.1
MSRO/pd		0.8	9.2
MSRO/NMNC		1.7	12.6
NMNC		1.4	13.1

- CPU times on Sun Ultra 1/140.
- For most problems, savings from MSRO row orderings are at least 50% and as much as 80%.

Results: Highlights V

- MA42 with new row ordering was compared with MA48 on the Sun Ultra 1/140.
- MA48 is a widely-used, general-purpose sparse solver for asymmetric systems. It is based on Gaussian elimination with Markowitz pivoting for sparsity and threshold partial pivoting for numerical stability.
- For half of the test problems, row ordering time plus MA42 factor time was less than MA48 analyze plus factor time.
- For several problems, MA42 factor time was less than MA48 factor time.
- For a few problems, MA42 factor time was also less than MA48 fast factor time.

Results: Highlights VI

• Examples (times in seconds on Sun Ultra 1/140):

	Problem:	<u>lhr34c (n = 35152)</u>	<u> 10cols (n = 29496)</u>
MA42:	row ordering	21.6	2.1
	factor	158	7.6
	solve	2.09	0.91
MA48:	analyze	148	15.0
	factor	231	4.7
	fast factor	225	3.2
	solve	0.77	0.20

- Solve-only times for single right-hand side are always less with MA48.
- For solving with multiple right-hand sides simultaneously, use of BLAS3 in MA42 may overcome sparser LU factors of MA48.

Results: Highlights VII

- Numerical experiments were also run on a CRAY J932.
- FAMP (Zitney and Stadtherr, 1993) was used as the frontal solver instead of MA42, since FAMP is highly tuned for the CRAY architecture.
- Row ordering performance is poor on the CRAY due to its slow integer arithmetic. Row orderings can be done faster on the Sun and passed to the CRAY.
- On all problems (except one tie), FAMP factor time is less than MA48 factor time.
- For many problems (10), FAMP factor time is also less than MA48 fast factor time.
- Solve-only times (one right-hand side) are always less with MA48.

Results: Highlights VIII

• Examples (times in seconds on CRAY J932):

	Problem:	lhr34c	10cols	bayer04
		(n = 35152)	(n = 29496)	(n = 20545)
FAMP:	factor	8.8	2.41	2.18
	solve	0.59	0.42	0.27
MA48:	factor	34.8	9.03	4.33
	fast factor	16.1	3.47	1.59
	solve	0.29	0.16	0.11

Concluding Remarks

- The MRSO algorithm (Scott, 1998) is available in the new code MC62, which will be included in next release of Harwell Subroutine Library (HSL 2000).
- MC62 also offers RMCD reordering (Camarda and Stadtherr, 1998), since it can outperform MRSO when pseudodiameter of row graph is short.
- MRSO usually provides a substantial improvement over original ordering and earlier RMCD and NMNC orderings.
- With a good row ordering, frontal solvers can provide a powerful and competitive alternative to general-purpose sparse solvers for chemical process applications.