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Process Engineering Problems

• Realistically complex process simulation and optimization problems

typically require large-scale computation.

• When an equation-based problem formulation is used, a key

computational bottleneck is often the solution of large, sparse linear
equation systems (may be as much as 80-90% of total simulation time).

• Properties of process engineering matrices:

– Very sparse

– Very unsymmetric (structurally)

– Numerically indefinite

– Not diagonally dominant

– May be ill-conditioned



Process Engineering Problems (continued)

• Solve Ax = b, where A is large, sparse and has highly asymmetric
structure.

• General-purpose direct solvers (e.g., MA48) typically used

– Factor: PAQ = LU     (P and Q represent row and column permutations)

– Solve: Ly = Pb

Uz = y

x = Qz

using row- or column-oriented Gaussian elimination with threshold
pivoting to obtain LU factors.

• Frontal elimination is an attractive alternative for a wide range of

modern computer architectures.



Frontal Method

• Basic idea:  Restrict computations to a relatively small front (or frontal
matrix) and exploit efficient dense matrix kernels (high level BLAS).

• Originally developed for banded matrices to solve large finite element

problems in limited core (Irons, 1970; Hood, 1976).

• Duff (1979) first suggested using frontal method to exploit vector
computing in solving finite element problems, implementing it in the

Harwell Subroutine Library (HSL) code MA32 (Duff, 1980).

• Applied to process engineering problems on vector/parallel machines

by Vegeais and Stadtherr (1985,1990).

• FAMP code (Zitney and Stadtherr, 1993) used in CRAY versions of

commercial process simulation codes (e.g. SPEEDUP, ASPEN PLUS).

• Today, the HSL provides MA42 (Duff and Scott, 1992), a general-

purpose frontal solver for elements or assembled problems.



Frontal Method (continued)

• Basic factorization steps:

– Assemble a row into the frontal matrix (beginning with row 1 and proceeding
sequentially).

– Determine if any columns are fully summed (have all their nonzero entries in

the frontal matrix).

– If enough fully-summed columns, perform partial pivoting in those columns

and do partial factorization to eliminate them (outer product update).

– Repeat until all columns have been eliminated.

• Frontal matrix sizes, and thus computational performance, depend on

row ordering.
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Example:  Frontal Method

X X X

1 4 5

1

Assemble row 1

no variables fully summed

Assemble row 2

X

X

X

X

X

X X

1

1

2

4 5 6

variable 4 fully summed
select pivot from column 4
       (say in row 2)
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Example:  Frontal Method
(continued)

U

L

U

X

U

X

U

X

4 1 5 6

2

1

pivot on element (2,4)

updated frontal matrix:

X X X

1 5 6

1

assemble row 3:
     no variables fully summed
assemble row 4:
     variable 1 fully summed



X

1 2 3 4 6

1

2

3

4

5

6

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

5

Example:  Frontal Method
(continued)

U U U U

L X X X X

1 5 6 2 3

L X X X

4

1

3

using element (4,1) as pivot:

updated frontal matrix:

X X X X

X X X

5 6 2 3

1

3

continue until LU factors 
     are complete



Row Ordering Methods

• RMCD (Camarda, 1997; Camarda and Stadtherr,
1998)

• NMNC (Camarda, 1997)

• MSRO (Scott, 1998)



RMCD Row Ordering

• Local ordering, based on bipartite graph model of unsymmetric matrix.

• Uses concept of a net

– Net j comprises column vertex j and all adjacent row vertices
(corresponding to rows with nonzeros in column j).

• Basic ideas:

– Find column of minimum degree, giving priority to partially summed

columns.

– Put next in the row ordering the rows in the corresponding net.

– Remove net from graph and update column degrees.

• When each net is assembled, there is at least 1 fully summed column.

• Restricts growth in row dimension (frowi)of frontal matrix, but not in

column dimension (fcoli)



NMNC Row Ordering

• Global ordering, based on bipartite graph model of unsymmetric matrix.

• Uses concept of a net.

• Basic step is a graph bisection into two subgraphs

– Seek to minimize (approximately) the number of nets cut in the bisection.

– Seek to keep the subgraphs (approximately) the same size.

– Heuristic approach used, based on min-net-cut method of Coon and
Stadtherr (1995).

• Apply bisection step recursively.

• Restricts growth in both frowi and fcoli.



MSRO Row Ordering

• Two-phase ordering, global then local.

• Global ordering uses the concept of a row graph GR.

– The row graph of A is the undirected graph of the symmetric matrix

B = A * AT, where * indicates matrix multiplication without accounting for
numerical cancellations.

– The nodes of GR are the rows of A.

– There is a edge between nodes i and j if and only if there is at least one

column in which both row i and row j have a nonzero entry.

• Global ordering methods used by MSRO:

– Pseudodiameter approach (e.g. Gibbs et al., 1976) applied to GR.

– Spectral method (e.g., Barnard et al., 1995) applied to GR.

– NMNC method (GR not used).



MSRO Row Ordering (continued)

• Local ordering is based on a priority function Pi.

• Basic ideas

– Select the next row in the reordering by choosing, from a set of eligible
rows, a row i that minimizes Pi.

– Eligible rows are active rows and their neighbors in GR.

– An unordered row is active if it is adjacent in GR to a row that has already

been ordered.

• The priority function is the weighted average of a global priority

(determined in global ordering phase) and a local priority (based on
increases to frowi and fcoli caused by ordering row i next).



Results:   Test Problems

• Row ordering methods were tested on a set of 22 matrices drawn from

chemical process engineering problems.

• Applications include several multiunit flowsheets, many involving

multiple separation columns.

• Application codes from which matrices were drawn include:

 SPEEDUP (Aspen Technology, Inc.), ASPEN PLUS (Aspen Technology,

Inc.), NOVA (DOT Products, Inc.), SEQUEL (University of Illinois), ASCEND
(Carnegie-Mellon University)

• Matrix sizes range from n = 1048 to n = 70304.  All are highly

asymmetric.

• Complete, detailed results given in:  J. A. Scott, “Row ordering for

frontal solvers in chemical process engineering,” RAL Technical Report
RAL-TR-1999-035 (submitted to Comput. Chem. Eng.)



Results:   Highlights I

• Using average front size   fave = (1/n) 3 i frowi * fcoli     as criterion, the

number of problems on which each ordering was best (or tied for best):

 MSRO + spectral (MSRO/spec) 13

 MSRO + pseudodiameter (MSRO/pd) 5

 MSRO + NMNC (MSRO/NMNC) 4

 RMCD 2

 NMNC 1

• Due to limitations of package used to obtain the spectral ordering,

MSRO/spec was not applied to the four largest problems.  So
MSRO/spec was best on 13 of the 18 problems for which it was used.



Results:   Highlights II

• MSRO algorithms usually provide dramatic reductions in fave.

• Examples:

Problem:  hydr1 (n = 5308) lhr14c (n = 14270)

 Original Ordering fave / 100  = 310 1076

 MSRO/spec 3 134

 MSRO/pd 10 170

 MSRO/NMNC 58 224

 NMNC 197 266

 RCMD 231 7645



Results:   Highlights III

• MSRO/spec and MSRO/pd do not perform as well when there is a very

high degree of connectivity in the row graph (average number of

neighbors more than about 100).

• Examples:

Problem:  ethylene-1 (n = 10673) meg1 (n = 2904)

 Original Ordering         fave / 100  = 1452 11823

 MSRO/spec 2449 1015

 MSRO/pd 3910 1837

 MSRO/NMNC 213 1781

 NMNC 573 3068

 RCMD 11249 461

• Average number of neighbors in GR is 190.7 for ethylene-1, and 128.1
for meg1.  Meg1 has a much shorter pseudodiameter (7) than other

problems.



Results:   Highlights IV

• Factorization times ( tF ) using frontal solver MA42 reflect improved row

orderings, but improvement is not as dramatic as in average front size.

• Examples:

Problem:  hydr1 (n = 5308) lhr14c (n = 14270)

 Original Ordering  tF (sec.)  = 1.7 23.9

 MSRO/spec 0.7 8.1

 MSRO/pd 0.8 9.2

 MSRO/NMNC 1.7 12.6

 NMNC 1.4 13.1

• CPU times on Sun Ultra 1/140.

• For most problems, savings from MSRO row orderings are at least 50%

and as much as 80%.



Results:   Highlights V

• MA42 with new row ordering was compared with MA48 on the Sun

Ultra 1/140.

• MA48 is a widely-used, general-purpose sparse solver for asymmetric

systems.  It is based on Gaussian elimination with Markowitz pivoting
for sparsity and threshold partial pivoting for numerical stability.

• For half of the test problems, row ordering time plus MA42 factor time

was less than MA48 analyze plus factor time.

• For several problems, MA42 factor time was less than MA48 factor

time.

• For a few problems, MA42 factor time was also less than MA48 fast

factor time.



Results:   Highlights VI

• Examples (times in seconds on Sun Ultra 1/140):

Problem:  lhr34c (n = 35152) 10cols (n = 29496)

MA42: row ordering        21.6 2.1

factor 158 7.6

solve 2.09 0.91

MA48: analyze 148 15.0

 factor 231 4.7

fast factor 225 3.2

solve 0.77 0.20

• Solve-only times for single right-hand side are always less with MA48.

• For solving with multiple right-hand sides simultaneously, use of BLAS3

in MA42 may overcome sparser LU factors of MA48.



Results:   Highlights VII

• Numerical experiments were also run on a CRAY J932.

• FAMP (Zitney and Stadtherr, 1993) was used as the frontal solver

instead of MA42, since FAMP is highly tuned for the CRAY

architecture.

• Row ordering performance is poor on the CRAY due to its slow integer
arithmetic.   Row orderings can be done faster on the Sun and passed

to the CRAY.

• On all problems (except one tie), FAMP factor time is less than MA48

factor time.

• For many problems (10), FAMP factor time is also less than MA48 fast

factor time.

• Solve-only times (one right-hand side) are always less with MA48.



Results:   Highlights VIII

• Examples (times in seconds on CRAY J932):

Problem:  lhr34c 10cols bayer04

 (n = 35152)  (n = 29496) (n = 20545)

FAMP: factor 8.8 2.41 2.18

solve 0.59 0.42 0.27

MA48: factor 34.8 9.03 4.33

fast factor 16.1 3.47 1.59

solve 0.29 0.16 0.11



Concluding Remarks

• The MRSO algorithm (Scott, 1998) is available in the new code MC62,

which will be included in next release of Harwell Subroutine Library

(HSL 2000).

• MC62 also offers RMCD reordering (Camarda and Stadtherr, 1998),
since it can outperform MRSO when pseudodiameter of row graph is

short.

• MRSO usually provides a substantial improvement over original

ordering and earlier RMCD and NMNC orderings.

• With a good row ordering, frontal solvers can provide a powerful and

competitive alternative to general-purpose sparse solvers for chemical
process applications.


