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Motivation

� In process modeling, chemical engineers frequently
need to solve nonlinear equation systems in which
the variables are constrained physically within upper
and lower bounds; that is, to solve:

f(x) = 0

xL � x � xU

� These problems may:

{ Have multiple solutions
{ Have no solution
{ Be diÆcult to converge to any solution
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Motivation (continued)

� There is also frequent interest in globally minimizing
a nonlinear function subject to nonlinear equality
and/or inequality constraints; that is, to solve
(globally):

min
x

�(x)

subject to
h(x) = 0

g(x) � 0

xL � x � xU

� These problems may:

{ Have multiple local minima (in some cases, it
may be desirable to �nd them all)

{ Have no solution (infeasible NLP)
{ Be diÆcult to converge to any local minima
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Motivation (continued)

� One approach for dealing with these issues is
interval analysis.

� Interval analysis can

{ Provide the engineer with tools needed to
solve modeling and optimization problems with
complete certainty.

{ Provide problem-solving reliability not available
when using standard local methods.

{ Deal automatically with rounding error, thus
providing both mathematical and computational
guarantees.
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Motivation (continued)

� At Notre Dame, we have successfully applied
interval methods for

{ General process modeling problems (Schnepper
and Stadtherr, 1996).

{ Phase stability and equilibrium problems
using several di�erent thermodynamic models
(Stadtherr et al., 1994; Hua et al.,
1996,1998,1999; Xu et al., 1998).

{ Computation of azeotropes of multicomponent
mixtures (Maier et al., 1998,1999).

{ Computation of mixture critical points (Stradi et
al., 1998)

=) Parameter estimation in vapor-liquid equilibrium
models (Gau and Stadtherr, 1998,1999).
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Background|Interval Analysis

� A real interval X = [a; b] = fx 2 < j a � x � bg is
a segment on the real number line and an interval
vector X = (X1;X2; :::;Xn)

T is an n-dimensional
rectangle or \box".

� Basic interval arithmetic for X = [a; b] and Y =
[c; d] is X op Y = fx op y j x 2 X; y 2 Y g
where op 2 f+;�;�;�g. For example, X + Y =
[a+ c; b+ d].

� Computed endpoints are rounded out to guarantee
the enclosure.

� Interval elementary functions (e.g. exp(X), log(X),
etc.) are also available.

� The interval extension F (X) encloses all values of
f(x) for x 2 X. That is, F (X) � ff(x) j x 2 Xg.

� Interval extensions can be computed using interval
arithmetic (the \natural" interval extension), or with
other techniques.
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Background|Parameter Estimation

� Observations y�i of i = 1; : : : ; q responses from
� = 1; : : : ; p experiments are available.

� Responses are to be �t to a model y�i = fi(x�;�)
with independent variables x� = (x�1; : : : ; x�m)

T

and parameters � = (�1; : : : ; �n)
T . Measurement

errors in x� can either be neglected or treated using
the \error-in-variable" approach.

� Various objective functions �(�) can be used to
determine the parameter values that provide the
"best" �t, e.g.

{ Maximum likelihood
{ Relative or weighted least squares

The latter will be used here.

� Optimization problem to determine parameters can
usually be formulated as either a constrained
or unconstrained problem. The unconstrained
formulation is used here.
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Parameter Estimation

� Assuming a relative least squares objective and using
an unconstrained formulation, the problem is

min
�

�(�) =

qX
i=1

pX
�=1

�
y�i � fi(x�;�)

y�i

�2

� A common approach for solving this problem is to
use the gradient of �(�) and to seek the stationary
points of �(�) by solving g(�) � r�(�) = 0.
This system may have many roots, including local
minima, local maxima and saddle points.

� To insure that the global minimum of �(�) is found,
the capability to �nd all the roots of g(�) = 0 is
needed. This is provided by the interval Newton

technique.

� Interval Newton can be combined with branch and

bound so that roots of g(�) = 0 that cannot be
the global minimum need not be found.
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Background{Interval Newton Method

� For the system of nonlinear equations g(�) = 0,
�nd (enclose) all roots in a given initial interval
�(0) or determine that there are none.

� At iteration k, given the interval �(k), if 0 2
G(�(k)) solve the linear interval equation system

G0(�(k))(N(k) � �
(k)) = �g(�(k))

for the \image" N(k), where G(�(k)) is an
interval extension of g(�) and G0(�(k)) an interval
extension of its Jacobian over the current interval
�(k), and �

(k) is a point inside �(k).

� Any root �� 2 �(k) is also contained in the image
N(k), suggesting the iteration scheme �(k+1) =
�(k) \ N(k) (Moore, 1966).

� It follows that if �(k) \ N(k) = ;, then there
is no root in �(k). This is also the conclusion if
0 =2 G(�(k)):
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Interval Newton Method (continued)

� Interval Newton provides an existence and
uniqueness test: If N(k) � �(k), then:

{ There is a unique zero of g(�) in �(k).
{ The interval Newton iteration �(k+1) = �(k)

\ N(k) will converge quadratically to a tight
enclosure of the root.

{ The point Newton method will converge
quadratically to the root starting from any point
in �(k).

� If a unique root cannot be con�rmed (N(k) � �(k))
or ruled out (�(k) \ N(k) = ;), then either:

{ Continue with the next iterate �(k+1) if it is
suÆciently smaller than N(k), or

{ Bisect �(k+1) and perform interval Newton on
the resulting intervals.

This is the interval Newton/generalized bisection
(IN/GB) approach.
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θ1

θ2

Θ(k)
N

(k)

Any solutions in

intersection of

(k)

(k) (k)
Θ are also in

Θ and N
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θ1

θ2

Θ(k)
N

(k)

There was no solution in
(k)

Θ
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θ1

θ2

Θ(k)

N
(k)

Unique solution in

Point Newton method will converge to it

(k)

This solution is in
(k)

Θ

N
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Interval Newton Method (continued)

� For g(�) = 0, this method can enclose with

mathematical and computational certainty any
and all solutions in a given initial interval, or can
determine that there are none.

� A preconditioned interval Gauss-Seidel like
technique is often used to solve for the image N(k)

(Hansen and coworkers).

� Our implementation is based on modi�cations of
routines taken from the packages INTBIS and
INTLIB (Kearfott and coworkers).

� The interval Newton procedure can be performed
on multiple intervals independently and in parallel.

� IN/GB was �rst implemented for process modeling
problems by Schnepper and Stadtherr (1990).
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Parameter Estimation in VLE Modeling

� Goal: Determine parameter values in liquid phase
activity coeÆcient models (e.g. Wilson, van Laar,
NRTL, UNIQUAC):


�i;calc = fi(x�;�)

� The relative least squares objective is commonly
used:

�(�) =

nX
i=1

pX
�=1

�

�i;calc(�)� 
�i;exp


�i;exp

�2
:

� Experimental values 
�i;exp of the activity
coeÆcients are obtained from VLE measurements
at compositions x�; � = 1; : : : ; p.

� Fit is usually made to binary (sometimes ternary)
data. Other types of experimental data may also be
used.
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Example Problem 1

� The binary system water (1) and formic acid (2)
was studied.

� Eleven problems, each a di�erent data set from the
DECHEMA VLE Data Collection (Gmehling et al.,
1977-1990) were considered.

� The model used was the Wilson equation. This has
binary interaction parameters

�12 = (v2=v1) exp(��1=RT ) and
�21 = (v1=v2) exp(��2=RT )

where v1 and v2 are pure component molar volumes.

� The energy parameters �1 and �2 must be estimated.

� Parameter estimation results for �1 and �2 are given
in the DECHEMA Collection for all eleven problems.
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Results{Example 1

� Each problem was solved using the IN/GB approach
to determine the globally optimal values of the �1
and �2 parameters.

� These results were compared to those presented in
the DECHEMA Collection.

� For each problem, the number of local minima in
�(�) was also determined (branch and bound steps
were turned o�).

� Table 1 presents a summary of these results and
comparisons. CPU times are on a Sun Ultra 2/1300
workstation.

� Detailed results for one data set will be shown.
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Results{Example 1 (continued)

� Each problem has multiple local minima.

� In �ve of the problems (data sets 7{11), the result
presented in DECHEMA represents a local not
global minimum.

� Using the interval approach, the global minimum
was found for all problems.

� The parameter estimation results obtained from the
global minimization were more consistent than those
in DECHEMA.

� There are several other systems for which the results
given in the DECHEMA Collection do not represent
the globally best �t.
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Detailed Results{Data Set 10

� This problem has �ve stationary points, including
three minima and two saddles. Details are shown in
Table 2.

� These will not all be found if the branch and bound
steps are turned on, so that only the global minimum
is actually sought.

� The globally optimal parameters found using the
interval approach provide a noticeably better �t to
the experimental data. This is shown by the relative
deviation plots given in Figures 1 and 2.
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FIGURE 1: Example 1{Comparison of Relative Deviation in 
1
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FIGURE 2: Example 1{Comparison of Relative Deviation in 
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

−0.05

0

0.05

0.1

0.15

x
1

(γ
2,

ca
lc

−
γ 2,

ex
p)/

γ 2,
ex

p

DECHEMA
IN/GB

24



Example Problem 2

� The binary system tert-butanol (1) and 1-butanol
(2) was studied.

� Six problems, each a di�erent data set from the
DECHEMA VLE Data Collection (Gmehling et al.,
1977-1990) were considered.

� The model used was the Wilson equation.

� Table 3 compares parameter estimation results for
�1 and �2 with those given in the DECHEMA
Collection. New globally optimal parameter values
are found in all six cases.

� The globally optimal parameters found using the
interval approach provide a noticeably better �t to
the experimental data. This is shown by the relative
deviation plots given in Figures 3 and 4 for data set
6.
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FIGURE 1: Example 2{Comparison of Relative Deviation in 
1
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FIGURE 2: Example 2{Comparison of Relative Deviation in 
2
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Example Problem 3

� The binary system benzene (1) and hexa
uorobenzene
(2) was studied.

� Ten problems, each a di�erent data set from the
DECHEMA VLE Data Collection (Gmehling et al.,
1977-1990) were considered.

� The model used was the Wilson equation.

� Table 4 compares parameter estimation results for
�1 and �2 with those given in the DECHEMA
Collection. New globally optimal parameter values
are found in �ve cases.
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Example Problem 3{Discussion

� Does the use of the globally optimal parameters
make a signi�cant di�erence when the Wilson model
is used to predict vapor-liquid equilibrium (VLE)?

� A common test of the predictive power of a model
for VLE is its ability to predict azeotropes.

� Using the globally optimal parameters, the Wilson
equation predicts two azeotropes, which is correct.

� Using the parameters in DECHEMA that are only
locally optimal, the number of azeotropes predicted
is zero (three data sets) or one (two data sets).

� Using the globally optimal parameters makes the
di�erence between predicting physical reality or not.
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Computational Performance

� With initial parameter intervals of �
(0)
1 = �

(0)
2 =

[�8500; 320000], the computation times required
ranged from roughly 10 to 25 seconds on a Sun
Ultra 2/1300 workstation.

� Initial parameter intervals were chosen based on
physical knowledge of in�nite dilution activity
coeÆcients.

� An inverse midpoint preconditioner was used.
Signi�cant improvements in computation time are
possible using an improved preconditioner.

� Because of the wide initial interval that can be used,
as opposed to an initial point guess, the method is
essentially initialization independent.

� The additional computation time for the interval
approach, as opposed to local methods, is
compensated by the guaranteed global reliability
of the results.
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Concluding Remarks

� Interval analysis is a general-purpose and model-

independent approach for solving parameter
estimation problems in modeling VLE, providing
a mathematical and computational guarantee

that the global optimum is found.

{ Other VLE models could be used.
{ Other objective functions (e.g, maximum
likelihood) could be used.

{ Error-in-variable approach could be used.
{ Other types of data could be used.

� Interval analysis provides powerful problem solving
techniques with many other applications in the
modeling of thermodynamics and phase behavior
and in other process modeling problems.

� Continuing advances in computing hardware and
software (e.g., compiler support for interval
arithmetic) will make this approach even more
attractive.
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