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Motivation

e In process modeling, chemical engineers frequently
need to solve nonlinear equation systems in which
the variables are constrained physically within upper
and lower bounds; that is, to solve:

e These problems may:

— Have multiple solutions
— Have no solution
— Be difficult to converge to any solution



Motivation (continued)

e There is also frequent interest in globally minimizing
a nonlinear function subject to nonlinear equality
and/or inequality constraints; that is, to solve

(globally):
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e These problems may:

— Have multiple local minima (in some cases, it
may be desirable to find them all)

— Have no solution (infeasible NLP)

— Be difficult to converge to any local minima



Motivation (continued)

One approach for dealing with these issues is
interval analysis.

Interval analysis can

— Provide the engineer with tools needed to
solve modeling and optimization problems with
complete certainty.

— Provide problem-solving reliability not available
when using standard local methods.

— Deal automatically with rounding error, thus
providing both mathematical and computational
guarantees.



Motivation (continued)

e At Notre Dame, we have successfully applied
interval methods for

— General process modeling problems (Schnepper
and Stadtherr, 1996).

— Phase stability and equilibrium  problems
using several different thermodynamic models
(Stadtherr et al.,, 1994; Hua et al,
1996,1998,1999; Xu et al., 1998).

— Computation of azeotropes of multicomponent
mixtures (Maier et al., 1998,1999).

— Computation of mixture critical points (Stradi et
al., 1998)

—> Parameter estimation in vapor-liquid equilibrium
models (Gau and Stadtherr, 1998,1999).



Background—Interval Analysis

A real interval X = [a,b] ={x e R|a <z <b}is
a segment on the real number line and an interval
vector X = (X, X,,...,X,)! is an n-dimensional
rectangle or “box".

Basic interval arithmetic for X = [a,b] and Y =
lc,dlis X op Y ={ropyl|xzeX, yeVY}
where op € {4+, —, X, +}. For example, X +Y =
la 4 ¢, b+ d].

Computed endpoints are rounded out to guarantee
the enclosure.

Interval elementary functions (e.g. exp(X), log(X),
etc.) are also available.

The interval extension F'(X) encloses all values of
f(x) for x € X. Thatis, F(X) D {f(x) | x € X}.

Interval extensions can be computed using interval
arithmetic (the “natural” interval extension), or with
other techniques.



Background—Parameter Estimation

e Observations y,; of ¢ = 1,...,q responses from
1w=1,...,p experiments are available.

e Responses are to be fit to a model y,; = fi(x,,0)
with independent variables x, = (z,1,--.,%um)?
and parameters @ = (04,...,0,)". Measurement
errors in x,, can either be neglected or treated using
the “error-in-variable” approach.

e Various objective functions ¢(@) can be used to
determine the parameter values that provide the
"best” fit, e.g.

— Maximum likelihood
— Relative or weighted least squares

The latter will be used here.

e Optimization problem to determine parameters can
usually be formulated as either a constrained
or unconstrained problem.  The unconstrained
formulation is used here.



Parameter Estimation

Assuming a relative least squares objective and using
an unconstrained formulation, the problem is

min 9(0 izp: [ym fi X )]

A common approach for solving this problem is to
use the gradient of ¢(0) and to seek the stationary
points of ¢(0) by solving g(8) = V¢(8) = 0.
This system may have many roots, including local
minima, local maxima and saddle points.

To insure that the global minimum of ¢(8) is found,
the capability to find all the roots of g(8) = 0 is
needed. This is provided by the interval Newton
technique.

Interval Newton can be combined with branch and
bound so that roots of g(8) = 0 that cannot be
the global minimum need not be found.



Background—Interval Newton Method

e For the system of nonlinear equations g(6@) = 0,
find (enclose) all roots in a given initial interval
© () or determine that there are none.

e At iteration k, given the interval Ok if 0 ¢
G (®)) solve the linear interval equation system

G'(OF)INE) — gk))y = _g(gP))

for the “image” N  where G(O®W®) is an
interval extension of g(@) and G'(®(¥)) an interval

extension of its Jacobian over the current interval
O®®) and 8 is a point inside O@*).

e Any root 8* € ®() s also contained in the image
N suggesting the iteration scheme @1 —=
Ok N N® (Moore, 1966).

e It follows that if ®%) N N®&) — () then there

is no root in ®%)_ This is also the conclusion if
0¢ G(OW®),
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Interval Newton Method (continued)

e Interval Newton provides an existence and

uniqueness test: If N c @) then:

— There is a unique zero of g(8) in O,

— The interval Newton iteration ®@*+) = @(*)
N N®) will converge quadratically to a tight
enclosure of the root.

— The point Newton method will converge

quadratically to the root starting from any point
in @),

If a unique root cannot be confirmed (N(*) ¢ @(¥))
or ruled out (@) N N() = (), then either:

— Continue with the next iterate ®@*+D if it is
sufficiently smaller than N(¥)| or

— Bisect ®*t1D and perform interval Newton on
the resulting intervals.

This is the interval Newton/generalized bisection
(IN/GB) approach.
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Interval Newton Method (continued)

For g(@) = 0, this method can enclose with
mathematical and computational certainty any
and all solutions in a given initial interval, or can
determine that there are none.

A preconditioned interval Gauss-Seidel like
technique is often used to solve for the image N(*)
(Hansen and coworkers).

Our implementation is based on modifications of
routines taken from the packages INTBIS and
INTLIB (Kearfott and coworkers).

The interval Newton procedure can be performed
on multiple intervals independently and in parallel.

IN/GB was first implemented for process modeling
problems by Schnepper and Stadtherr (1990).
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Parameter Estimation in VLE Modeling

Goal: Determine parameter values in liquid phase

activity coefficient models (e.g. Wilson, van Laar,
NRTL, UNIQUAC):

Yui,cale = fi(X,ua 9)

The relative least squares objective is commonly
used:

2

H(0) = Z Z [’Y,ui,calc(o) — Yyi.exp

Yui,exp

Experimental values 7y, xp of the activity
coefficients are obtained from VLE measurements
at compositions x,,,u=1,...,p.

Fit is usually made to binary (sometimes ternary)
data. Other types of experimental data may also be
used.
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Example Problem 1

The binary system water (1) and formic acid (2)
was studied.

Eleven problems, each a different data set from the
DECHEMA VLE Data Collection (Gmehling et al.,

1977-1990) were considered.

The model used was the Wilson equation. This has
binary interaction parameters

A12 = (1}2/1}1) GXp(—Hl/RT) and
A1 = (v1/v2) exp(—02/RT)

where v1 and vy are pure component molar volumes.

The energy parameters 61 and 65 must be estimated.

Parameter estimation results for #; and 65 are given
in the DECHEMA Collection for all eleven problems.
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Results—Example 1

e Each problem was solved using the IN/GB approach
to determine the globally optimal values of the 6,
and 65 parameters.

e These results were compared to those presented in
the DECHEMA Collection.

e For each problem, the number of local minima in
¢(0) was also determined (branch and bound steps
were turned off).

e Table 1 presents a summary of these results and
comparisons. CPU times are on a Sun Ultra 2/1300
workstation.

e Detailed results for one data set will be shown.
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Results—Example 1 (continued)

Each problem has multiple local minima.

In five of the problems (data sets 7-11), the result
presented in DECHEMA represents a local not
global minimum.

Using the interval approach, the global minimum
was found for all problems.

The parameter estimation results obtained from the
global minimization were more consistent than those

in DECHEMA.

There are several other systems for which the results
given in the DECHEMA Collection do not represent
the globally best fit.
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Detailed Results—Data Set 10

e This problem has five stationary points, including
three minima and two saddles. Details are shown in

Table 2.

e [hese will not all be found if the branch and bound
steps are turned on, so that only the global minimum
is actually sought.

e The globally optimal parameters found using the
interval approach provide a noticeably better fit to
the experimental data. This is shown by the relative
deviation plots given in Figures 1 and 2.
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FIGURE 1: Example 1-Comparison of Relative Deviation in ~;
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FIGURE 2: Example 1-Comparison of Relative Deviation in ~,
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Example Problem 2

The binary system tert-butanol (1) and 1-butanol
(2) was studied.

Six problems, each a different data set from the
DECHEMA VLE Data Collection (Gmehling et al.,

1977-1990) were considered.
The model used was the Wilson equation.

Table 3 compares parameter estimation results for
61 and 6y with those given in the DECHEMA
Collection. New globally optimal parameter values
are found in all six cases.

The globally optimal parameters found using the
interval approach provide a noticeably better fit to
the experimental data. This is shown by the relative
deviation plots given in Figures 3 and 4 for data set

6.

25



9¢

"punoy sia1awesed [ewindo AjjeqoiS ma:y,

01T Z ITT100 0ThC G98- | €£500 909~  8¥8 092 al %9
29T Z VOTT'0 2GZT €61~ | 00€T0 €0T- €SI 092 A %G
6T Z L€10°0 8IET  v€2- | 2100 196~ 108 00. 6 «
A c 6900°0 G9ZT  8TZ- | 26000 v65- 106 00G 6 %€
T'T1 Z 0ET0'0 929  GZG- | 8ST0°0  8€9-  890T 00¢€ 6 «C
8zl Z €0T0°0 SvZ  89G- | 96100  TO9- 166 00T 6 %1

(s)pwnn | ewiuy | (@) ¢ To (9)¢ ¢ Tg | (8Hww ) | siuiod | 193G
Ndd | 40 ©oN g9/NI VINTHDIA d eleq | eieQ

sanjen YINIHDIA 'SA sHNsas g9 /N|-¢ 2|dwex3 ¢ 319VL




FIGURE 1: Example 2—Comparison of Relative Deviation in ~;
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FIGURE 2: Example 2—Comparison of Relative Deviation in v,
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Example Problem 3

e The binary system benzene (1) and hexafluorobenzene
(2) was studied.

e Ten problems, each a different data set from the
DECHEMA VLE Data Collection (Gmehling et al.,

1977-1990) were considered.
e The model used was the Wilson equation.

e Table 4 compares parameter estimation results for
01 and 6y with those given in the DECHEMA
Collection. New globally optimal parameter values
are found in five cases.
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Example Problem 3—-Discussion

Does the use of the globally optimal parameters
make a significant difference when the Wilson model
is used to predict vapor-liquid equilibrium (VLE)?

A common test of the predictive power of a model
for VLE is its ability to predict azeotropes.

Using the globally optimal parameters, the Wilson
equation predicts two azeotropes, which is correct.

Using the parameters in DECHEMA that are only
locally optimal, the number of azeotropes predicted
is zero (three data sets) or one (two data sets).

Using the globally optimal parameters makes the
difference between predicting physical reality or not.
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Computational Performance

With initial parameter intervals of ('-)go) = @go) =
[—8500, 320000], the computation times required

ranged from roughly 10 to 25 seconds on a Sun
Ultra 2/1300 workstation.

Initial parameter intervals were chosen based on
physical knowledge of infinite dilution activity
coefficients.

An inverse midpoint preconditioner was used.
Significant improvements in computation time are
possible using an improved preconditioner.

Because of the wide initial interval that can be used,
as opposed to an initial point guess, the method is
essentially initialization independent.

The additional computation time for the interval
approach, as opposed to local methods, s
compensated by the guaranteed global reliability
of the results.
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Concluding Remarks

e Interval analysis is a general-purpose and model-
independent approach for solving parameter
estimation problems in modeling VLE, providing
a mathematical and computational guarantee
that the global optimum is found.

— Other VLE models could be used.

— Other objective functions (e.g, maximum
likelihood) could be used.

— Error-in-variable approach could be used.

— Other types of data could be used.

e Interval analysis provides powerful problem solving
techniques with many other applications in the
modeling of thermodynamics and phase behavior
and in other process modeling problems.

e Continuing advances in computing hardware and
software (e.g., compiler support for interval
arithmetic) will make this approach even more
attractive.
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