Reliable Process Modeling and Optimization Using Interval Analysis

Chao-Yang Gau, Robert W. Maier, Gang Xu and Mark A. Stadtherr¹

> Department of Chemical Engineering University of Notre Dame Notre Dame, IN 46556 USA

6th SIAM Conference on Optimization Atlanta, GA, May 10–12, 1999

¹Author to whom all correspondence should be addressed. Phone: (219)631-9318; Fax: (219)631-8366; E-mail: markst@nd.edu

Outline

- Motivation
- Background
- Examples: Parameter Estimation in Modeling Vapor-Liquid Equilibrium (VLE)
- Results
- Summary and Concluding Remarks

Motivation

• In process modeling, chemical engineers frequently need to solve nonlinear equation systems in which the variables are constrained physically within upper and lower bounds; that is, to solve:

 $\begin{aligned} \mathbf{f}(\mathbf{x}) &= \mathbf{0} \\ \mathbf{x}^L \leq \mathbf{x} \leq \mathbf{x}^U \end{aligned}$

- These problems may:
 - Have multiple solutions
 - Have no solution
 - Be difficult to converge to any solution

Motivation (continued)

 There is also frequent interest in globally minimizing a nonlinear function subject to nonlinear equality and/or inequality constraints; that is, to solve (globally):

$$\min_{\mathbf{x}} \phi(\mathbf{x})$$

subject to

 $egin{aligned} \mathbf{h}(\mathbf{x}) &= \mathbf{0} \ \mathbf{g}(\mathbf{x}) &\geq \mathbf{0} \ \mathbf{x}^L &\leq \mathbf{x} \leq \mathbf{x}^U \end{aligned}$

• These problems may:

- Have multiple local minima (in some cases, it may be desirable to find them *all*)
- Have no solution (infeasible NLP)
- Be difficult to converge to any local minima

Motivation (continued)

- One approach for dealing with these issues is *interval analysis*.
- Interval analysis can
 - Provide the engineer with tools needed to solve modeling and optimization problems with complete certainty.
 - Provide problem-solving reliability not available when using standard local methods.
 - Deal automatically with rounding error, thus providing both mathematical and computational guarantees.

Motivation (continued)

- At Notre Dame, we have successfully applied interval methods for
 - General process modeling problems (Schnepper and Stadtherr, 1996).
 - Phase stability and equilibrium problems using several different thermodynamic models (Stadtherr et al., 1994; Hua et al., 1996,1998,1999; Xu et al., 1998).
 - Computation of azeotropes of multicomponent mixtures (Maier et al., 1998,1999).
 - Computation of mixture critical points (Stradi et al., 1998)
- \implies Parameter estimation in vapor-liquid equilibrium models (Gau and Stadtherr, 1998,1999).

Background—Interval Analysis

- A real interval $X = [a, b] = \{x \in \Re \mid a \le x \le b\}$ is a segment on the real number line and an interval vector $\mathbf{X} = (X_1, X_2, ..., X_n)^T$ is an *n*-dimensional rectangle or "box".
- Basic interval arithmetic for X = [a, b] and Y = [c, d] is X op $Y = \{x \text{ op } y \mid x \in X, y \in Y\}$ where $\text{op} \in \{+, -, \times, \div\}$. For example, X + Y = [a + c, b + d].
- Computed endpoints are **rounded out** to guarantee the enclosure.
- Interval elementary functions (e.g. $\exp(X)$, $\log(X)$, etc.) are also available.
- The interval extension $F(\mathbf{X})$ encloses all values of $f(\mathbf{x})$ for $\mathbf{x} \in \mathbf{X}$. That is, $F(\mathbf{X}) \supseteq \{f(\mathbf{x}) \mid \mathbf{x} \in \mathbf{X}\}$.
- Interval extensions can be computed using interval arithmetic (the "natural" interval extension), or with other techniques.

Background—Parameter Estimation

- Observations $y_{\mu i}$ of $i = 1, \ldots, q$ responses from $\mu = 1, \ldots, p$ experiments are available.
- Responses are to be fit to a model y_{µi} = f_i(x_µ, θ) with independent variables x_µ = (x_{µ1},..., x_{µm})^T and parameters θ = (θ₁,..., θ_n)^T. Measurement errors in x_µ can either be neglected or treated using the "error-in-variable" approach.
- Various objective functions $\phi(\theta)$ can be used to determine the parameter values that provide the "best" fit, e.g.
 - Maximum likelihood
 - Relative or weighted least squares

The latter will be used here.

• Optimization problem to determine parameters can usually be formulated as either a constrained or unconstrained problem. The unconstrained formulation is used here.

Parameter Estimation

• Assuming a relative least squares objective and using an unconstrained formulation, the problem is

$$\min_{\boldsymbol{\theta}} \phi(\boldsymbol{\theta}) = \sum_{i=1}^{q} \sum_{\mu=1}^{p} \left[\frac{y_{\mu i} - f_i(\mathbf{x}_{\mu}, \boldsymbol{\theta})}{y_{\mu i}} \right]^2$$

- A common approach for solving this problem is to use the gradient of φ(θ) and to seek the stationary points of φ(θ) by solving g(θ) ≡ ∇φ(θ) = 0. This system may have many roots, including local minima, local maxima and saddle points.
- To insure that the global minimum of $\phi(\theta)$ is found, the capability to find **all** the roots of $\mathbf{g}(\theta) = \mathbf{0}$ is needed. This is provided by the **interval Newton** technique.
- Interval Newton can be combined with **branch and bound** so that roots of $g(\theta) = 0$ that cannot be the global minimum need not be found.

Background–Interval Newton Method

- For the system of nonlinear equations $\mathbf{g}(\boldsymbol{\theta}) = \mathbf{0}$, find (enclose) all roots in a given initial interval $\boldsymbol{\Theta}^{(0)}$ or determine that there are none.
- At iteration k, given the interval $\Theta^{(k)}$, if $0 \in \mathbf{G}(\Theta^{(k)})$ solve the linear interval equation system

$$G'(\mathbf{\Theta}^{(k)})(\mathbf{N}^{(k)} - \boldsymbol{\theta}^{(k)}) = -\mathbf{g}(\boldsymbol{\theta}^{(k)})$$

for the "image" $\mathbf{N}^{(k)}$, where $\mathbf{G}(\mathbf{\Theta}^{(k)})$ is an interval extension of $\mathbf{g}(\boldsymbol{\theta})$ and $G'(\mathbf{\Theta}^{(k)})$ an interval extension of its Jacobian over the current interval $\mathbf{\Theta}^{(k)}$, and $\boldsymbol{\theta}^{(k)}$ is a point inside $\mathbf{\Theta}^{(k)}$.

- Any root $\theta^* \in \Theta^{(k)}$ is also contained in the image $\mathbf{N}^{(k)}$, suggesting the iteration scheme $\Theta^{(k+1)} = \Theta^{(k)} \cap \mathbf{N}^{(k)}$ (Moore, 1966).
- It follows that if $\Theta^{(k)} \cap \mathbf{N}^{(k)} = \emptyset$, then there is no root in $\Theta^{(k)}$. This is also the conclusion if $0 \notin \mathbf{G}(\Theta^{(k)})$.

Interval Newton Method (continued)

- Interval Newton provides an existence and uniqueness test: If $\mathbf{N}^{(k)} \subset \mathbf{\Theta}^{(k)}$, then:
 - There is a **unique** zero of $\mathbf{g}(\boldsymbol{\theta})$ in $\boldsymbol{\Theta}^{(k)}$.
 - The interval Newton iteration $\Theta^{(k+1)} = \Theta^{(k)}$ $\cap \mathbf{N}^{(k)}$ will converge quadratically to a tight enclosure of the root.
 - The point Newton method will converge quadratically to the root starting from any point in $\Theta^{(k)}$.
- If a unique root cannot be confirmed (N^(k) ⊂ Θ^(k)) or ruled out (Θ^(k) ∩ N^(k) = ∅), then either:
 - Continue with the next iterate $\Theta^{(k+1)}$ if it is sufficiently smaller than $\mathbf{N}^{(k)}$, or
 - **Bisect** $\Theta^{(k+1)}$ and perform interval Newton on the resulting intervals.

This is the interval Newton/generalized bisection (IN/GB) approach.

There was no solution in $\Theta^{(k)}$

θ_2

Interval Newton Method (continued)

- For g(θ) = 0, this method can enclose with mathematical and computational certainty any and all solutions in a given initial interval, or can determine that there are none.
- A preconditioned interval Gauss-Seidel like technique is often used to solve for the image $\mathbf{N}^{(k)}$ (Hansen and coworkers).
- Our implementation is based on modifications of routines taken from the packages INTBIS and INTLIB (Kearfott and coworkers).
- The interval Newton procedure can be performed on multiple intervals independently and in parallel.
- IN/GB was first implemented for process modeling problems by Schnepper and Stadtherr (1990).

Parameter Estimation in VLE Modeling

 Goal: Determine parameter values in liquid phase activity coefficient models (e.g. Wilson, van Laar, NRTL, UNIQUAC):

$$\gamma_{\mu i, \mathrm{calc}} = f_i(\mathbf{x}_{\mu}, \boldsymbol{\theta})$$

• The relative least squares objective is commonly used:

$$\phi(\boldsymbol{\theta}) = \sum_{i=1}^{n} \sum_{\mu=1}^{p} \left[\frac{\gamma_{\mu i, \text{calc}}(\boldsymbol{\theta}) - \gamma_{\mu i, \text{exp}}}{\gamma_{\mu i, \text{exp}}} \right]^{2}$$

- Experimental values $\gamma_{\mu i, \exp}$ of the activity coefficients are obtained from VLE measurements at compositions $\mathbf{x}_{\mu}, \mu = 1, \dots, p$.
- Fit is usually made to binary (sometimes ternary) data. Other types of experimental data may also be used.

Example Problem 1

- The binary system water (1) and formic acid (2) was studied.
- Eleven problems, each a different data set from the DECHEMA VLE Data Collection (Gmehling *et al.*, 1977-1990) were considered.
- The model used was the Wilson equation. This has binary interaction parameters

$$\Lambda_{12} = (v_2/v_1) \exp(-\theta_1/RT)$$
 and
 $\Lambda_{21} = (v_1/v_2) \exp(-\theta_2/RT)$

where v_1 and v_2 are pure component molar volumes.

- The energy parameters θ_1 and θ_2 must be estimated.
- Parameter estimation results for θ_1 and θ_2 are given in the DECHEMA Collection for all eleven problems.

Results–Example 1

- Each problem was solved using the IN/GB approach to determine the globally optimal values of the θ_1 and θ_2 parameters.
- These results were compared to those presented in the DECHEMA Collection.
- For each problem, the number of local minima in $\phi(\theta)$ was also determined (branch and bound steps were turned off).
- Table 1 presents a summary of these results and comparisons. CPU times are on a Sun Ultra 2/1300 workstation.
- Detailed results for one data set will be shown.

TABLE 1: Example 1–IN/GB results vs. DECHEMA values

CPU	time(s)	14.7	12.9	17.4	22.0	16.0	21.7	19.5	17.8	24.4	27.4	16.4
No. of	Minima	2	2	2	2	ŝ	2	2	ŝ	2	ŝ	3
IN/GB	$\phi(oldsymbol{ heta})$	0.0342	0.0106	0.0151	0.353	0.0257	0.0708	0.0914	0.0342	0.1114	0.0819	0.0372
	$ heta_2$	759	1038	1167	984	1509	-1120	1250	1404	966	1394	1519
	$ heta_1$	-195	-278	-308	-282	-365	1065	-331	-340	-285	-329	-330
DECHEMA	$\phi(oldsymbol{ heta})$	0.0342	0.0106	0.0151	0.353	0.0257	0.0708	0.1410	0.0459	0.1650	0.1510	0.0399
	$ heta_2$	759	1038	1181	985	1513	-1122	-985	-608	-718	-663	-762
	$ heta_1$	-195	-278	-310	-282	-366	1067	892	370	539	450	558
d	(mmHg)	092	760	760	760	760	760	200	200	100	100	70
Data	points	15	15	12	28	12	15	14	11	16	19	6
Data	Set	1	2	m	4	5	9	7*	*∞	*6	10^{*}	11^{*}

^{*:}New globally optimal parameters found.

19

Results–Example 1 (continued)

- Each problem has multiple local minima.
- In five of the problems (data sets 7–11), the result presented in DECHEMA represents a local not global minimum.
- Using the interval approach, the global minimum was found for all problems.
- The parameter estimation results obtained from the global minimization were more consistent than those in DECHEMA.
- There are several other systems for which the results given in the DECHEMA Collection do not represent the globally best fit.

Detailed Results–Data Set 10

- This problem has five stationary points, including three minima and two saddles. Details are shown in Table 2.
- These will not all be found if the branch and bound steps are turned on, so that only the global minimum is actually sought.
- The globally optimal parameters found using the interval approach provide a noticeably better fit to the experimental data. This is shown by the relative deviation plots given in Figures 1 and 2.

TABLE 2: Stationary Points (Roots) for Data Set 10

Status	minim	saddle	minimum	saddle	global minimum
$\phi(oldsymbol{ heta})$	0.164	0.178	0.151	0.19	0.0819
Eigenvalues of Hessian	7.55E-5, 2.58E-7	6.83E-5, -1.44E-7	6.97E-5, 9.42E-8	9.08E-5, -3.54E-7	1.23E-4, 1.47E-7
$ heta_1, heta_2$	(1658, -1251)	(1165, -1083)	(452, -664)	(-37.8, 38.5)	(-329, 1394)
Root	P1	Ρ2	Р3	P4	P5

Example Problem 2

- The binary system *tert*-butanol (1) and 1-butanol (2) was studied.
- Six problems, each a different data set from the DECHEMA VLE Data Collection (Gmehling *et al.*, 1977-1990) were considered.
- The model used was the Wilson equation.
- Table 3 compares parameter estimation results for θ_1 and θ_2 with those given in the DECHEMA Collection. New globally optimal parameter values are found in all six cases.
- The globally optimal parameters found using the interval approach provide a noticeably better fit to the experimental data. This is shown by the relative deviation plots given in Figures 3 and 4 for data set 6.

TABLE 3: Example 2–IN/GB results vs. DECHEMA values

CPU	time(s)	12.8	11.1	12.4	12.9	16.2	11.0
No. of	Minima	2	2	2	2	2	2
	$\phi(oldsymbol{ heta})$	0.0103	0.0130	0.0069	0.0137	0.1164	0.0111
IN/GB	$ heta_2$	745	626	1265	1318	1757	2420
	$ heta_1$	-568	-525	-718	-734	-793	-865
1A	$\phi(oldsymbol{ heta})$	0.0136	0.0158	0.0097	0.0174	0.1300	0.0333
DECHEN	$ heta_2$	-602	-638	-594	-561	-203	-606
]	$ heta_1$	651	1068	901	801	153	848
P	(mmHg)	100	300	500	200	760	760
Data	points	6	6	6	6	17	14
Data	Set	1*	2*	* °	4*	5*	6*

^{*:}New globally optimal parameters found.

26

Example Problem 3

- The binary system benzene (1) and hexafluorobenzene
 (2) was studied.
- Ten problems, each a different data set from the DECHEMA VLE Data Collection (Gmehling *et al.*, 1977-1990) were considered.
- The model used was the Wilson equation.
- Table 4 compares parameter estimation results for θ_1 and θ_2 with those given in the DECHEMA Collection. New globally optimal parameter values are found in five cases.

TABLE 4: Example 3–IN/GB results vs. DECHEMA values

CPU	time(s)	15.1	13.7	12.3	10.9	9.7	7.9
No. of	Minima	2	2	2	2	2	2
	$\phi(oldsymbol{ heta})$	0.0118	0.0079	0.0058	0.0089	0.0047	0.0032
IN/GB	$ heta_2$	1314	1227	1157	984	1094	1036
	$^{1} heta$	-468	-459	-449	-424	-439	-425
A	$\phi(oldsymbol{ heta})$	0.0382	0.0327	0.0289	0.0428	0.0047	0.0032
DECHEN	$ heta_2$	-437	-405	-374	-342	1096	1035
	θ^1	437	405	374	342	-439	-424
T	(\mathcal{O}_{o})	30	40	50	50	60	70
Data	points	10	10	10	11	10	6
)ata	Set	1*	2*	* °	4*	Ъ	6

CPU	time(s)	17.4	14.3	13.9	20.5
No. of	Minima	2	2	Н	7
	$\phi(oldsymbol{ heta})$	0.0149	0.0083	0.0053	0.0146
IN/GB	$ heta_2$	663	912	908	705
	$ heta_1$	-432	-407	-399	-335
٨A	$\phi(oldsymbol{ heta})$	0.0566	0.0083	0.0057	0.0146
DECHEN	$ heta_2$	-347	906	923	702
	$ heta_1$	344	-405	-407	-333
Р	(mmHg)	300	500	760	760
Data	points	17	16	17	17
Data	Set	7*	ω	6	10

^{*:}New globally optimal parameters found.

Example Problem 3–Discussion

- Does the use of the globally optimal parameters make a significant difference when the Wilson model is used to predict vapor-liquid equilibrium (VLE)?
- A common test of the predictive power of a model for VLE is its ability to predict azeotropes.
- Using the globally optimal parameters, the Wilson equation predicts two azeotropes, which is correct.
- Using the parameters in DECHEMA that are only locally optimal, the number of azeotropes predicted is zero (three data sets) or one (two data sets).
- Using the globally optimal parameters makes the difference between predicting physical reality or not.

Computational Performance

- With initial parameter intervals of $\Theta_1^{(0)} = \Theta_2^{(0)} = [-8500, 320000]$, the computation times required ranged from roughly 10 to 25 seconds on a Sun Ultra 2/1300 workstation.
- Initial parameter intervals were chosen based on physical knowledge of infinite dilution activity coefficients.
- An inverse midpoint preconditioner was used. Significant improvements in computation time are possible using an improved preconditioner.
- Because of the wide initial interval that can be used, as opposed to an initial point guess, the method is essentially **initialization independent**.
- The additional computation time for the interval approach, as opposed to local methods, is compensated by the guaranteed global reliability of the results.

Concluding Remarks

- Interval analysis is a general-purpose and modelindependent approach for solving parameter estimation problems in modeling VLE, providing a mathematical and computational guarantee that the global optimum is found.
 - Other VLE models could be used.
 - Other objective functions (e.g, maximum likelihood) could be used.
 - Error-in-variable approach could be used.
 - Other types of data could be used.
- Interval analysis provides powerful problem solving techniques with many other applications in the modeling of thermodynamics and phase behavior and in other process modeling problems.
- Continuing advances in computing hardware and software (e.g., compiler support for interval arithmetic) will make this approach even more attractive.

- Acknowledgments
 - ACS PRF 30421-AC9
 - NSF CTS95-22835
 - NSF DMI96-96110
 - NSF EEC97-00537-CRCD
 - EPA R824731-01-0
 - DOE DE-FG07-96ER14691
 - Sun Microsystems, Inc.
- For more information:
 - Contact Prof. Stadtherr at markst@nd.edu