Reliable Computation of Codimension-1 and Codimension-2 Bifurcations Using Interval Analysis

Ryan Gwaltney Mark Stadtherr University of Notre Dame Department of Chemical and Biomolecular Engineering

AIChE 2003 Annual Meeting

Outline

- Motivating Example
- Bifurcation Types and Test Functions
- Interval Newton/Generalized Bisection
- Results

Predator/Prey Systems

- Systems of ordinary differential equations that describe the rates of change in species biomass
- Model parameters have real-life, physical meaning
- These models can exhibit rich mathematical behavior including varying numbers and stability of equilibria

Example Model

$$\frac{dx_1}{dt} = x_1 r \left(1 - \frac{x_1}{K} \right) - \frac{a_2 x_1 x_2}{b_2 + x_1}$$

Tri-trophic model with a hyperbolic predator and a sigmoidal superpredator

$$\frac{dx_2}{dt} = e_2 \frac{a_2 x_1 x_2}{b_2 + x_1} - \frac{a_3 x_2^2 x_3}{b_3 + x_2^2} - d_2 x_2$$

 x_1 : prey x_2 : predator x_3 : superpredator

$$\frac{dx_3}{dt} = e_3 \frac{a_3 x_2^2 x_3}{b_3 + x_2^2} - d_3 x_3$$

r : prey growth rate*K* : prey carrying capacity

 a_i : max predation rate b_i : half saturation constant d_i : death rate e_i : efficiency

Bifurcations of Equilibria

- Goal locate equilibrium points and bifurcations in predator/prey models
- A bifurcation is a change in the topological type of the phase portrait as one or more system parameters are varied
 - One parameter allowed to vary codimension-one bifurcation
 - Two parameters allowed to vary codimension-two bifurcation
- Bifurcations are located by solving a nonlinear algebraic system consisting of the equilibrium conditions along with one or more augmenting (test) functions

Codim-1 Bifurcations and Test Functions

- Fold and transcritical bifurcations
 - Collision of equilibria that results in annihilation or an exchange in stability
 - The Jacobian, $J(x, \alpha)$, of the model has a single zero eigenvalue
 - Product of all eigenvalues must be zero: $\lambda_1 \lambda_2 \lambda_3 = 0$
 - Convenient test function (avoiding calculation of eigenvalues):

 $\det \left(\mathbf{J}(\boldsymbol{x},\boldsymbol{\alpha}) \right) = 0$

Codim-1 Bifurcations and Test Functions

- Hopf bifurcation
 - $J(x, \alpha)$ has a pair of imaginary complex conjugate eigenvalues that cross the imaginary axis
 - Product of all possible pair sums must be zero:

 $(\lambda_1 + \lambda_2)(\lambda_1 + \lambda_3)(\lambda_2 + \lambda_3) = 0$

- Convenient test function based on bialternate product det $(2J(x, \alpha) \otimes I) = 0$
- Can produce false-positives
- Must screen solutions by checking if eigenvalues are imaginary conjugates

Codim-2 Bifurcations and Test Functions

- Fold-Fold: Two eigenvalues that are zero
- Fold-Hopf: One eigenvalue that is zero and a pair of purely imaginary complex conjugate eigenvalues
- Located by using both augmenting functions $det (J(\mathbf{x}, \alpha, \beta)) = 0$ $det (2J(\mathbf{x}, \alpha, \beta) \otimes I) = 0$

Locating Bifurcations

- Must solve equilibrium conditions and augmenting function(s) for x and α (and β)
- Equation system may have multiple solutions
- Typically these systems are solved using a continuation-based strategy (e.g., Kuznetsov, 1991)
 - Initialization dependent
 - No guarantee of locating all branches
- Interval mathematics provides a method that is:
 - Initialization *independent*
 - Capable of locating *all* branches *with certainty*

Interval Newton/Generalized Bisection Method (IN/GB)

- Given a system of equations, an initial interval (bounds on all variables), and a solution tolerance:
 - IN/GB can find (enclose), with mathematical and computational certainty, all solutions to the equation system, or it can determine that no solutions exist (Moore, 1966; Kearfott, 1996)
 - The equation system must have a finite number of real roots in the initial interval
 - No strong assumptions or simplifications to the equation system are needed

IN/GB Method

Problem: Solve f(x) = 0 for all roots in the interval $X^{(0)}$

Basic iteration scheme: For a particular subinterval (box), $X^{(k)}$, perform root inclusion test:

- Range test: Compute an interval extension (bounds on range) for each function in the system
 - If any element of the interval extension does not contain zero, delete the box. Otherwise continue.
- Interval Newton test: Compute the image, N^(k), of the box by solving the linear interval equation system

$$\mathbf{F}'(\mathbf{X}^{(\mathbf{k})}) \ (\mathbf{N}^{(\mathbf{k})} - \mathbf{x}^{(k)}) = -f\left(\mathbf{x}^{(k)}\right)$$

- $x^{(k)}$ is any point in $X^{(k)}$
- $F'(X^{(k)})$ is the interval extension of the Jacobian matrix of f(x) over the interval $X^{(k)}$

IN/GB Method: Interval Newton Test

 \bullet There is no solution in $X^{(k)}$

IN/GB Method: Interval Newton Test

- \bullet There is a *unique* solution in $X^{(k)}$ that is also in $N^{(k)}$
- Additional interval-Newton steps will tightly enclose the solution with quadratic convergence

IN/GB Method: Interval Newton Test

- \bullet Any solutions in $X^{(k)}$ are in the intersection of $X^{(k)}$ and $N^{(k)}$
- If the intersection is sufficiently small, repeat the root inclusion test
- Otherwise, bisect the intersection and apply the root inclusion test to each resulting subinterval

Example Problems

- IN/GB was used to solve the equilibrium conditions and appropriate augmenting function(s) for *x* and the bifurcation parameter(s) of interest
- To generate codim-one bifurcation diagram (say *r* vs. *K*)
 - Set *r*, solve for bifurcation(s) with *K* as parameter
 - Increment *r* and repeat
 - Set *K*, solve for bifurcation(s) with *r* as parameter
 - Increment *K* and repeat

Rosenzweig-MacArthur Model

$$\frac{dx_1}{dt} = x_1 r \left(1 - \frac{x_1}{K} \right) - \frac{a_2 x_1 x_2}{b_2 + x_1}$$

Tri-trophic model with a hyperbolic predator and superpredator

 x_1 : prey

 x_2 : predator

$$\frac{dx_2}{dt} = e_2 \frac{a_2 x_1 x_2}{b_2 + x_1} - \frac{a_3 x_2 x_3}{b_3 + x_2} - d_2 x_2$$

$$\frac{dx_3}{dt} = e_3 \frac{a_3 x_2 x_3}{b_3 + x_2} - d_3 x_3$$

 x_3 : superpredator

r : prey growth rate*K* : prey carrying capacity

 a_i : max predation rate b_i : half saturation constant d_i : death rate e_i : efficiency

Rosenzweig-MacArthur Model *K* vs. *r* Bifurcation Diagram

Rosenzweig-MacArthur Model d_2 vs. *r* Bifurcation Diagram

Example Model

$$\frac{dx_1}{dt} = x_1 r \left(1 - \frac{x_1}{K} \right) - \frac{a_2 x_1 x_2}{b_2 + x_1}$$

Tri-trophic model with a hyperbolic predator and a sigmoidal superpredator

$$\frac{dx_2}{dt} = e_2 \frac{a_2 x_1 x_2}{b_2 + x_1} - \frac{a_3 x_2^2 x_3}{b_3 + x_2^2} - d_2 x_2$$

$$x_1$$
: prey
 x_2 : predator
 x_3 : superpredator

$$\frac{dx_3}{dt} = e_3 \frac{a_3 x_2^2 x_3}{b_3 + x_2^2} - d_3 x_3$$

r : prey growth rate*K* : prey carrying capacity

 a_i : max predation rate b_i : half saturation constant d_i : death rate e_i : efficiency

Example Model *K* vs. *r* Bifurcation Diagram

Tri-trophic Model with Sigmoidal Functional Responses

$$\frac{dx_1}{dt} = x_1 r \left(1 - \frac{x_1}{K} \right) - \frac{a_2 x_1^2 x_2}{b_2 + x_1^2}$$

Tri-trophic model with a sigmoidal predator and superpredator

$$\frac{dx_2}{dt} = e_2 \frac{a_2 x_1^2 x_2}{b_2 + x_1^2} - \frac{a_3 x_2^2 x_3}{b_3 + x_2^2} - d_2 x_2$$

 x_1 : prey x_2 : predator x_3 : superpredator

$$\frac{dx_3}{dt} = e_3 \frac{a_3 x_2^2 x_3}{b_3 + x_2^2} - d_3 x_3$$

r : prey growth rate*K* : prey carrying capacity

 a_i : max predation rate b_i : half saturation constant d_i : death rate e_i : efficiency

Sigmoidal Model *K* vs. *r* Bifurcation Diagram

Summary

- Interval Newton/Generalized Bisection method is a robust, reliable method to find all solutions to an equation or equation system
- IN/GB can be applied to reliably locate bifurcations of equilibria without *a priori* knowledge of system behavior
 - Initialization independent
 - Capable of locating all branches with mathematical and computational certainty

Acknowledgements

- Department of Education Graduate Assistance in Areas of National Need (GAANN) grant
- Arthur J. Schmitt Foundation
- State of Indiana 21st Century Research and Technology Fund

Questions?