Reliable Computation of Codimension-1 and Codimension-2 Bifurcations Using Interval Analysis

Ryan Gwaltney
Mark Stadtherr
University of Notre Dame
Department of Chemical and Biomolecular Engineering

AIChE 2003 Annual Meeting

Outline

- Motivating Example
- Bifurcation Types and Test Functions
- Interval Newton/Generalized Bisection
- Results

Predator/Prey Systems

- Systems of ordinary differential equations that describe the rates of change in species biomass
- Model parameters have real-life, physical meaning
- These models can exhibit rich mathematical behavior including varying numbers and stability of equilibria

Example Model

$$
\frac{d x_{1}}{d t}=x_{1} r\left(1-\frac{x_{1}}{K}\right)-\frac{a_{2} x_{1} x_{2}}{b_{2}+x_{1}}
$$

Tri-trophic model with a hyperbolic predator and a sigmoidal superpredator

$$
\begin{aligned}
& \frac{d x_{2}}{d t}=e_{2} \frac{a_{2} x_{1} x_{2}}{b_{2}+x_{1}}-\frac{a_{3} x_{2}^{2} x_{3}}{b_{3}+x_{2}^{2}}-d_{2} x_{2} \quad \begin{array}{l}
x_{1}: \text { prey } \\
x_{2}: \text { predator } \\
x_{3}: \text { superpredator }
\end{array} \\
& \frac{d x_{3}}{d t}=e_{3} \frac{a_{3} x_{2}^{2} x_{3}}{b_{3}+x_{2}^{2}}-d_{3} x_{3} \quad \begin{array}{l}
r: \text { prey growth rate } \\
K: \text { prey carrying capacity }
\end{array}
\end{aligned}
$$

a_{i} : max predation rate b_{i} : half saturation constant $d_{i}:$ death rate $\quad e_{i}:$ efficiency

Bifurcations of Equilibria

- Goal - locate equilibrium points and bifurcations in predator/prey models
- A bifurcation is a change in the topological type of the phase portrait as one or more system parameters are varied
- One parameter allowed to vary - codimension-one bifurcation
- Two parameters allowed to vary - codimension-two bifurcation
- Bifurcations are located by solving a nonlinear algebraic system consisting of the equilibrium conditions along with one or more augmenting (test) functions

Codim-1 Bifurcations and Test Functions

- Fold and transcritical bifurcations
- Collision of equilibria that results in annihilation or an exchange in stability
- The Jacobian, $\mathrm{J}(\boldsymbol{x}, \alpha)$, of the model has a single zero eigenvalue
- Product of all eigenvalues must be zero: $\lambda_{1} \lambda_{2} \lambda_{3}=0$
- Convenient test function (avoiding calculation of eigenvalues):

$$
\operatorname{det}(\mathrm{J}(\boldsymbol{x}, \alpha))=0
$$

Codim-1 Bifurcations and Test Functions

- Hopf bifurcation
- $\mathrm{J}(\boldsymbol{x}, \alpha)$ has a pair of imaginary complex conjugate eigenvalues that cross the imaginary axis
- Product of all possible pair sums must be zero:

$$
\left(\lambda_{1}+\lambda_{2}\right)\left(\lambda_{1}+\lambda_{3}\right)\left(\lambda_{2}+\lambda_{3}\right)=0
$$

- Convenient test function based on bialternate product

$$
\operatorname{det}(2 \mathrm{~J}(\boldsymbol{x}, \alpha) \otimes \mathrm{I})=0
$$

- Can produce false-positives
- Must screen solutions by checking if eigenvalues are imaginary conjugates

Codim-2 Bifurcations and Test Functions

- Fold-Fold: Two eigenvalues that are zero
- Fold-Hopf: One eigenvalue that is zero and a pair of purely imaginary complex conjugate eigenvalues
- Located by using both augmenting functions

$$
\begin{gathered}
\operatorname{det}(\mathrm{J}(\boldsymbol{x}, \alpha, \beta))=0 \\
\operatorname{det}(2 \mathrm{~J}(\boldsymbol{x}, \alpha, \beta) \otimes \mathrm{I})=0
\end{gathered}
$$

Locating Bifurcations

- Must solve equilibrium conditions and augmenting function(s) for \boldsymbol{x} and α (and β)
- Equation system may have multiple solutions
- Typically these systems are solved using a continuation-based strategy (e.g., Kuznetsov, 1991)
- Initialization dependent
- No guarantee of locating all branches
- Interval mathematics provides a method that is:
- Initialization independent
- Capable of locating all branches with certainty

Interval Newton/Generalized Bisection Method (IN/GB)

- Given a system of equations, an initial interval (bounds on all variables), and a solution tolerance:
- IN/GB can find (enclose), with mathematical and computational certainty, all solutions to the equation system, or it can determine that no solutions exist (Moore, 1966; Kearfott, 1996)
- The equation system must have a finite number of real roots in the initial interval
- No strong assumptions or simplifications to the equation system are needed

IN/GB Method

Problem: Solve $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$ for all roots in the interval $\mathbf{X}^{(\boldsymbol{0})}$
Basic iteration scheme: For a particular subinterval (box),
$\mathbf{X}^{(\mathbf{k})}$, perform root inclusion test:

- Range test: Compute an interval extension (bounds on range) for each function in the system
- If any element of the interval extension does not contain zero, delete the box. Otherwise continue.
- Interval Newton test: Compute the image, $\mathbf{N}^{(\mathbf{k})}$, of the box by solving the linear interval equation system

$$
\mathrm{F}^{\prime}\left(\mathbf{X}^{(\mathbf{k})}\right)\left(\mathbf{N}^{(\mathbf{k})}-\boldsymbol{x}^{(k)}\right)=-\boldsymbol{f}\left(\boldsymbol{x}^{(k)}\right)
$$

- $\boldsymbol{x}^{(k)}$ is any point in $\mathbf{X}^{(\mathbf{k})}$
- $\mathrm{F}^{\prime}\left(\mathbf{X}^{(\mathbf{k})}\right)$ is the interval extension of the Jacobian matrix of $\boldsymbol{f}(\boldsymbol{x})$ over the interval $\mathbf{X}^{(\mathbf{k})}$

IN/GB Method: Interval Newton Test

- There is no solution in $\mathbf{X}^{(\mathbf{k})}$

IN/GB Method: Interval Newton Test

- There is a unique solution in $\mathbf{X}^{(\mathbf{k})}$ that is also in $\mathbf{N}^{(\mathbf{k})}$
- Additional interval-Newton steps will tightly enclose the solution with quadratic convergence

IN/GB Method: Interval Newton Test

- Any solutions in $\mathbf{X}^{(\mathbf{k})}$ are in the intersection of $\mathbf{X}^{(\mathbf{k})}$ and $\mathbf{N}^{(\mathbf{k})}$
- If the intersection is sufficiently small, repeat the root inclusion test
- Otherwise, bisect the intersection and apply the root inclusion test to each resulting subinterval

Example Problems

- IN/GB was used to solve the equilibrium conditions and appropriate augmenting function(s) for \boldsymbol{x} and the bifurcation parameter(s) of interest
- To generate codim-one bifurcation diagram (say r vs. K)
- Set r, solve for bifurcation(s) with K as parameter
- Increment r and repeat
- Set K, solve for bifurcation(s) with r as parameter
- Increment K and repeat

Rosenzweig-MacArthur Model

$$
\frac{d x_{1}}{d t}=x_{1} r\left(1-\frac{x_{1}}{K}\right)-\frac{a_{2} x_{1} x_{2}}{b_{2}+x_{1}} \quad \begin{aligned}
& \text { Tri-trophic model with } \\
& \begin{array}{l}
\text { a hyperbolic predator } \\
\text { and superpredator }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d x_{2}}{d t}=e_{2} \frac{a_{2} x_{1} x_{2}}{b_{2}+x_{1}}-\frac{a_{3} x_{2} x_{3}}{b_{3}+x_{2}}-d_{2} x_{2} \begin{array}{l}
x_{1}: \text { prey } \\
x_{2}: \text { predator } \\
x_{3}: \text { superpredator }
\end{array} \\
& \frac{d x_{3}}{d t}=e_{3} \frac{a_{3} x_{2} x_{3}}{b_{3}+x_{2}}-d_{3} x_{3} \quad \begin{array}{l}
r: \text { prey growth rate } \\
K: \text { prey carrying capacity }
\end{array}
\end{aligned}
$$

a_{i} : max predation rate b_{i} : half saturation constant
$d_{i}:$ death rate $\quad e_{i}$: efficiency

Rosenzweig-MacArthur Model K vs. r Bifurcation Diagram

Bifurcation diagram matches results published in literature (Gragnani, 1998)

TE: Transcritical of Equilibria FE: Fold of Equilibria

H: Hopf
H_{p} : Planar Hopf

FH: Fold-Hopf Codimension 2

Rosenzweig-MacArthur Model d_{2} vs. r Bifurcation Diagram

TE: Transcritical of Equilibria FE: Fold of Equilibria

H: Hopf
\mathbf{H}_{p} : Planar Hopf

FH: Fold-Hopf Codimension 2

Example Model

$$
\frac{d x_{1}}{d t}=x_{1} r\left(1-\frac{x_{1}}{K}\right)-\frac{a_{2} x_{1} x_{2}}{b_{2}+x_{1}}
$$

Tri-trophic model with a hyperbolic predator and a sigmoidal superpredator

$$
\begin{aligned}
& \frac{d x_{2}}{d t}=e_{2} \frac{a_{2} x_{1} x_{2}}{b_{2}+x_{1}}-\overbrace{\underbrace{\frac{a_{3} x_{2}^{2} x_{3}}{b_{3}+x_{2}^{2}}}-d_{2} x_{2} \quad \begin{array}{l}
x_{1}: \text { prey } \\
x_{2}: \text { predator } \\
x_{3}: \text { superpredator }
\end{array}}^{\frac{d x_{3}}{d t}=e_{3} \underbrace{}_{\underbrace{\frac{a_{3} x_{2}^{2} x_{3}}{b_{3}+x_{2}^{2}}}-d_{3} x_{3} \quad r: \text { prey growth rate }} \quad K: \text { prey carrying capacity }}
\end{aligned}
$$

a_{i} : max predation rate b_{i} : half saturation constant $d_{i}:$ death rate $\quad e_{i}:$ efficiency

Example Model K vs. r Bifurcation Diagram

TE: Transcritical of Equilibria FE: Fold of Equilibria

H: Hopf
\mathbf{H}_{p} : Planar Hopf

FH: Fold-Hopf Codimension 2

Tri-trophic Model with Sigmoidal Functional Responses

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=x_{1} r\left(1-\frac{x_{1}}{K}\right)-\overbrace{\frac{a_{2} x_{1}^{2} x_{2}}{b_{2}+x_{1}^{2}}} \\
& \frac{d x_{2}}{d t}=e_{2} \overbrace{\underbrace{\frac{a_{2} x_{1}^{2} x_{2}}{b_{2}+x_{1}^{2}}}}^{d}-\frac{a_{3} x_{2}^{2} x_{3}}{b_{3}+x_{2}^{2}}-d_{2} x_{2} \quad \begin{array}{l}
x_{1} \text { : prey } \\
x_{2}: \text { predator } \\
x_{3} \text { : superpredator }
\end{array} \\
& \frac{d x_{3}}{d t}=e_{3} \frac{a_{3} x_{2}^{2} x_{3}}{b_{3}+x_{2}^{2}}-d_{3} x_{3} \quad \begin{array}{l}
r: \text { prey growth rate } \\
K: \text { prey carrying capacity }
\end{array} \\
& a_{i} \text { : max predation rate } b_{i} \text { : half saturation constant } \\
& d_{i}: \text { death rate } \quad e_{i}: \text { efficiency }
\end{aligned}
$$

Sigmoidal Model K vs. r Bifurcation Diagram

TE: Transcritical of Equilibria
FE: Fold of Equilibria

Summary

- Interval Newton/Generalized Bisection method is a robust, reliable method to find all solutions to an equation or equation system
- IN/GB can be applied to reliably locate bifurcations of equilibria without a priori knowledge of system behavior
- Initialization independent
- Capable of locating all branches with mathematical and computational certainty

Acknowledgements

- Department of Education Graduate Assistance in Areas of National Need (GAANN) grant
- Arthur J. Schmitt Foundation
- State of Indiana $21^{\text {st }}$ Century Research and Technology Fund

Questions?

