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Predator/Prey Systems

Systems of ordinary differential equations that describe the
rates of change in species biomass

Model parameters have real-life, physical meaning

These models can exhibit rich mathematical behavior
Including varying numbers and stability of equilibria



Example Model

dx, _ X ) XX Tri-trophic model with
ot X ( _j b+ le a hyper bolic predator and
2

K a sigmoidal super predator

B g XX XXy i prey

dt < b,+x b+ X X,. predator
X5 Superpredator

% = a3X %3 d X, I . prey growth rate

at b, + X K : prey carrying capacity

a : max predation rateb; : half saturation constant
d.: death rate e : efficiency



Bifurcations of Equilibria

o (Goal — locate equilibrium points and bifurcations in
predator/prey models

* A Dbifurcation is a change Iin the topological type of the phase
portrait as one or more system parameters are varied

— One parameter allowed to vary — codimension-onedation
— Two parameters allowed to vary — codimension-tvorbation

« Bifurcations are located by solving a nonlinear algebraic
system consisting of the equilibrium conditions along with one
or more augmenting (test) functions



Codim-1 Bifurcations and Test Functions

 Fold and transcritical bifurcations

— Collision of equilibria that results in annihilation or an
exchange in stability

— The Jacobian, ¥(a), of the model has a single zero
eigenvalue

— Product of all eigenvalues must be zeAgd,1; =0

— Convenient test function (avoiding calculation of
eigenvalues):

det (Jk,q)) =0



Codim-1 Bifurcations and Test Functions

* Hopf bifurcation

— JK,a) has a pair of imaginary complex conjugate eigenvalues

that cross the imaginary axis
— Product of all possible pair sums must be zero:

(A1 +A)(A+A3)(A;1A45) = 0
— Convenient test function based on bialternate product
det (2Jk,@) 0 1) =0

— Can produce false-positives

— Must screen solutions by checking if eigenvalues are
Imaginary conjugates



Codim-2 Bifurcations and Test Functions

Fold-Fold: Two eigenvalues that are zero

Fold-Hopf: One eigenvalue that is zero and a pair of purely
Imaginary complex conjugate eigenvalues
Located by using both augmenting functions
det (Jk a.9) =0
det (2Jk,a,0) 1) =0



Locating Bifurcations

Must solve equilibrium conditions and augmenting function(s)
for x anda (andf)

Equation system may have multiple solutions

Typically these systems are solved using a continuation-based
strategy (e.g., Kuznetsov, 1991)

— Initialization dependent

— No guarantee of locating all branches

Interval mathematics provides a method that is:

— Initialization independent
— Capable of locatingll brancheswvith certainty



Interval Newton/Generalized Bisection
Method (IN/GB)

* Given a system of equations, an initial interval (bounds on all
variables), and a solution tolerance:

— IN/GB can find (encloseyyith mathematical and
computational certainty, all solutions to the equation system,
or it can determine that no solutions exist (Moore, 1966;
Kearfott, 1996)

— The equation system must have a finite number of real roots
In the Initial interval

— No strong assumptions or simplifications to the equation
system are needed



IN/GB Method

Problem: Solvd(x) = O for all roots in the intervaX©

Basic iteration scheme: For a particular subinterval (box),
X&) perform root inclusion test:

 Range test: Compute an interval extension (bounds on
range) for each function in the system

— If any element of the interval extension doesauwitain zero,
delete the box. Otherwise continue.

 Interval Newton test: Compute the imad¥), of the box
by solving the linear interval equation system
F (X®) (N® —x®) = —f (xK)
— x®is any point inX )

— F'(X®) is the interval extension of the Jacobian matfik(x) over
the intervalX®



IN/GB Method: Interval Newton Test

N

X% -

e There is no solution iX )



IN/GB Method: Interval Newton Test

NG

X1

e There is ainique solution inX&) that is also iMN®k)
» Additional interval-Newton steps will tightly enclose the solution
with quadratic convergence



IN/GB Method: Interval Newton Test

N
% ®

X1

« Any solutions inXk) are in the intersection o) andN®)

o If the intersection is sufficiently small, repeat the root inclusssh

» Otherwise, bisect the intersection and apply the root inclusiototes
each resulting subinterval



Example Problems

* IN/GB was used to solve the equilibrium conditions and
appropriate augmenting function(s) foand the
bifurcation parameter(s) of interest

e To generate codim-one bifurcation diagram (s&s. K)
— Setr, solve for bifurcation(s) witlK as parameter

— Increment and repeat
— SetK, solve for bifurcation(s) with as parameter

— IncremenK and repeat



Rosenzweig-MacArthur Model

ax, _ wrl1=22 | = 2%% Tri-trophic model with
at . K) b, +x a hyperbolic predator
and super predator

dx, —a A, X X, 43X, X, _d.x. Xaprey

dt b, +x, b,+x, 2 Xipredator
Xg: Superpredator

—d;X, r : prey growth rate
b, + X, K : prey carrying capacity

a : max predation rateb; : half saturation constant
d.: death rate e : efficiency



Prey growth rate (r)
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Rosenzwelig-MacArthur Model
K vs.r Bifurcation Diagram
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Bifurcation diagram matches
results published in literature
(Gragnani, 1998)

TE: Transcritical of Equilibria
FE: Fold of Equilibria

H: Hopf
Hp: Planar Hopf

FH: Fold-Hopf Codimension 2



Prey growth rate (r)
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TE: Transcritical of Equilibria
FE: Fold of Equilibria

H: Hopf
Hp: Planar Hopf

FH: Fold-Hopf Codimension 2



Example Model

dx, X, a, X, X Tri-trophic model with
E =X I (1_Kj - b2 N - a hyperbolic predator and
2 T % a sigmoidal super predator

O _ BXX  BXX L X prey

dt b,+x b+ X2 272 X,. predator
— = X5: Superpredator

4 2 N\
% — A%, Xg - d.X, I . prey growth rate
at b, +x; K : prey carrying capacity

a : max predation rateb; : half saturation constant
d.: death rate e : efficiency



Prey growth rate (r)

Example Model
K vs.r Bifurcation Diagram
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dx, _ A, XX,

ri-trophic Model with Sigmoidal Functional
Responses

dx, ( le faz)/(\fxz\ Tri-trophic model with
— AN AT 2 a sigmoidal predator

+
at K \bz y %y and super predator

dx, _ ajfx a3x2x3 dx, X;: prey

X,: predator
dt b, + X1 b, + X4, superpredator

= d3X3 r . prey growth rate
dt b, + X5 K : prey carrying capacity

a : max predation rateb; : half saturation constant

d

. death rate e : efficiency



Prey growth rate (r)
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Summary

* Interval Newton/Generalized Bisection method is a robust,
reliable method to find all solutions to an equation or
equation system

* IN/GB can be applied to reliably locate bifurcations of
equilibria withouta priori knowledge of system behavior

— Initialization independent

— Capable of locating all branches with mathematical and
computational certainty
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