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Objective

Test performance of new parallel multiple front 
solver (HSL routine MP43) on process 

engineering matrices using a cluster of 
workstations.
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Process Engineering Problems

• Realistically complex process simulation and optimization problems 

typically require large-scale computation.

• When an equation-based problem formulation is used, a key 
computational bottleneck is often the solution of large, sparse linear 

equation systems (may be as much as 80-90% of total simulation time).

• Properties of process engineering matrices:

– Very sparse

– Very unsymmetric (structurally)

– Numerically indefinite

– Not diagonally dominant

– May be ill-conditioned
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Process Engineering Problems (cont’d)

• Solve Ax = b, where A is large, sparse and has highly asymmetric 

structure.

• General-purpose direct solvers (e.g., the HSL routine MA48 of Duff and 
Reid, 1993) typically used

– Factor: PAQ = LU     (P and Q represent row and column permutations)

– Solve: Ly = Pb

Uz = y

x = Qz

using row- or column-oriented Gaussian elimination with threshold 

pivoting to obtain LU factors.

• Frontal elimination is an attractive alternative for a wide range of 

modern computer architectures.
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Frontal Method (Irons, 1970; Hood, 1976; Duff, 1979, 1980)

• Basic idea:  Restrict computations to a relatively small front (or frontal 

matrix).

– Allows use of high-level BLAS optimized for machine architecture

– If desired, can be implemented to use only small amount of main memory

• Applied to process engineering problems on vector/parallel machines 

by Vegeais and Stadtherr (1985,1990).

• FAMP code (Zitney and Stadtherr, 1993) was used in CRAY versions

of commercial process simulation codes (e.g. SPEEDUP, ASPEN 

PLUS).

• Today, the mathematical subroutine library HSL provides MA42 (Duff 

and Scott, 1992), a general-purpose frontal solver for elements or 

assembled problems.
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Frontal Method (cont’d)

• Frontal matrix sizes, and thus overall computational performance, 

depend strongly on row ordering.

• Recent advances in row ordering techniques have greatly improved the 

performance of frontal solvers on general highly unsymmetric 
problems.

– RMCD algorithm (Camarda and Stadtherr, 1998)

– MSRO algorithm (Scott, 1999, 2000) is highly effective on most problems

• MRSO is implemented in HSL routine MC62, which is used here with

MA42 and MP43.
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Parallel Multiple Front Solver

• Use singly-bordered block-diagonal (BoBD) form

A11

A22

ANN

A =

C1

C2

CN

... ...

Aii are mi × ni

Ci are mi × k

• Variations based on using bottom border or double border are also 

possible.

• Recent advances in ordering to BoBD form

– GPA-SUM (Camarda and Stadtherr, 1999)

– MONET (Hu et al., 2000); available in HSL 2002 as routine MC66
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Parallel Multiple Front Solver (cont’d)

• Frontal elimination can be applied to each ( Aii Ci ) independently and 

in parallel.

• After parallel frontal elimination, contributions from each of the N 

subproblems are assembled into a k × k “interface matrix” F.

• After factorization of F, do block forward elimination and back 

substitution (in parallel) to complete solution.
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MP43 (Scott, 2001 – to appear in Comput. Chem. Eng.)

Software for implementing parallel multiple front method.

• Fortran 90

• MPI for message passing

• One processor designated as the “host”

• Highly portable:  shared or distributed memory

• Use for general unsymmetric sparse linear systems that have been put 
into BoBD form

• Available in HSL 2000
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Outline of MP43 algorithm (Scott, 2001)

• Initialize (serial):  Host processor distributes each subproblem to one of P 

processors.

• Analyze (parallel, optional): Generate row ordering (MC62) for subproblems 
and send approximate FLOP count to host.  Host may redistribute workload 

for better balance.

• Factor

– (parallel) Perform frontal elimination (MA42) with partial pivoting, storing computed 

columns of L and rows of U and sending contribution to F to host.

– (serial) Host performs frontal elimination on interface matrix F (MA42).

• Solve

– (parallel) Forward elimination on subproblems.

– (serial) Forward elimination and back substitution on interface problem.

– (parallel) Back substitution on subproblems.
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Numerical Experiments

• Hardware:  Cluster of Sun Ultra 2/2400 nodes (2 CPUs/node) connected by 

100 Mbps switched Ethernet.  Experiments done using both 1 CPU/node 
and 2 CPUs/node.

• Test problems:  Several process simulation matrices from various sources.  

Results given here for 5 typical problems.

• Software: 

– MA48:  default control parameters

– MA42:  default control parameters; MC62 row ordering; min. pivot block size = 8

– MP43:  default control parameters (min. pivot block size = 8); MC62 row 

ordering; MONET ordering to BoBD form with 8 blocks (not included in timings)

• All timings are wallclock times in seconds for complete Analyze, Factor and 

Solve (A/F/S).

• Similar studies done by Scott (2001) on SGI Origin 2000, Cray T3E-1200E, 
Compaq DS20.
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Results:   Problem bayer01

• n = 57,735 nz = 159,082

• Source:  Bayer AG

• MONET ordering:  N = 8;  k = 295 (0.51%);  imbalance = 3.80%

• Timing results (1 CPU/node)
MP43

MA48 MA42 P=1 2 4 8

6.97 5.96 4.18 2.53 1.86 1.53

P= 2 4 8
1 CPU/node 1.65 2.25 2.73
2 CPU/node 1.77 2.39 2.90
SGI Origin 2000 1.77 2.69 4.43

(Scott, 2001)

• Parallel speedup
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Results:   Problem lhr71c

• n = 70,304 nz = 1,528,092

• Source:  SEQUEL simulation

• MONET ordering:  N = 8;  k = 1251 (1.78%);  imbalance = 2.09%

• Timing results (1 CPU/node)
MP43

MA48 MA42 P=1 2 4 8

62.73 29.68 29.48 17.51 11.94 9.80

P= 2 4 8
1 CPU/node 1.68 2.47 3.01
2 CPU/node 1.80 2.69 3.12
SGI Origin 2000 1.83 3.23 4.94

(Scott, 2001)

• Parallel speedup
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Results:   Problem 10cols

• n = 29,496 nz = 109,588

• Source:  ASCEND simulation

• MONET ordering:  N = 8;  k = 315 (1.07%);  imbalance = 1.03%

• Timing results (1 CPU/node)
MP43

MA48 MA42 P=1 2 4 8

8.22 1.59 2.02 1.20 0.86 1.35

P= 2 4 8
1 CPU/node 1.68 2.35 1.50
2 CPU/node 1.82 2.49 2.92
SGI Origin 2000 1.72 3.03 4.54

(Scott, 2001)

• Parallel speedup
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Results:   Problem bayer04

• n = 20,545 nz = 159,082

• Source:  Bayer AG

• MONET ordering:  N = 8;  k = 439 (2.14%);  imbalance = 15.49%

• Timing results (1 CPU/node)
MP43

MA48 MA42 P=1 2 4 8

3.32 2.38 2.33 1.61 1.14 1.57

P= 2 4 8
1 CPU/node 1.44 2.04 1.38
2 CPU/node 1.62 2.20 2.56
SGI Origin 2000 1.74 2.86 4.56

(Scott, 2001)

• Parallel speedup
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Results:   Problem ethylene-1

• n = 10,673 nz = 80,904

• Source:  NOVA simulation

• MONET ordering:  N = 8;  k =162 (1.52%);  imbalance = 13.93%

• Timing results (1 CPU/node)
MP43

MA48 MA42 P=1 2 4 8

0.80 6.88 1.11 0.73 0.57 0.45

P= 2 4 8
1 CPU/node 1.52 1.95 2.47
2 CPU/node 1.68 2.22 2.84
SGI Origin 2000 1.65 2.70 4.60

(Scott, 2001)

• Parallel speedup
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Discussion 

• With good row ordering (MC62), frontal solvers (MA42, MP43) are 

competitive with MA48 for A/F/S on one processor.

• Speedups limited by
– Solution of interface problem (serial)
– Any workload imbalance
– Communication overhead

• MONET is remarkably effective in producing a very small interface 

problem.

• Lower communication speed in workstation cluster (relative to Origin 

2000) leads to lower speedups.

• For problems of this size, up to 4 processors can be used effectively on 

this cluster, and up to 4-8 processors on the Origin 2000.

• MONET reordering time must be amortized over several factorizations.
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Discussion (cont’d)

• Timings for solve only (with previously computed L and U factors) were 

also obtained.

• For single processor, MA48 is almost always fastest for solve only (due 

to sparser L and U factors compared to frontal factorization).

• For this cluster, speedups for solve only with MP43 are typically poor.  
Ratio of communication to computation is much higher than in A/F/S.

• For Origin 2000, useful speedups for solve only with MP43 are 
observed (Scott, 2001), but are less than for A/F/S. 
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Concluding Remarks

• With a good row ordering, frontal solvers can provide a powerful and 

competitive alternative to general-purpose sparse solvers for chemical 
process applications.

• MP43 is a general-purpose, highly portable, multiple front code for 

solving large sparse unsymmetric linear systems in parallel.

• For problems of the size tested, MP43 provides good speedup on up to 

4 processors for the cluster used, and up to 8 processors for an Origin 
2000.

• With increasingly affordable gigabit connectivity (1000 Mbps) for 
clusters, improved speedups for workstation clusters is likely.
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Concluding Remarks (cont’d)

• Information on obtaining HSL routines is available from 

http://www.cse.clrc.ac.uk/Activity/HSL

• A copy of these slides will be available after the conference at

http://www.nd.edu/~markst/presentations.html


