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Summary

� In modeling phase behavior for process design,
computational problems due to multiple roots
or multiple local optima are well known
(e.g., convergence to trivial or incorrect roots;
convergence to a local but not global optimum).

� Many clever techniques have been devised to
alleviate such diÆculties, but there has been
no general-purpose, model-independent, and
completely reliable method for solving all phase
behavior problems.

� Interval analysis provides a mathematically and

computationally guaranteed method for reliably
solving phase behavior problems.

� This is demonstrated using example problems in
phase stability analysis and in �nding homogeneous
azeotropes, and can be applied to a variety of other
problems.
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Background|Interval Analysis

� A real interval X = [a; b] = fx 2 < j a � x � bg is
a segment on the real number line and an interval
vector X = (X1;X2; :::;Xn)

T is an n-dimensional
rectangle or \box".

� Basic interval arithmetic for X = [a; b] and Y =
[c; d] is X op Y = fx op y j x 2 X; y 2 Y g
where op 2 f+;�;�;�g. For example, X + Y =
[a+ c; b+ d].

� Computed endpoints are rounded out to guarantee
the enclosure.

� Interval elementary functions (e.g. exp(X), log(X),
etc.) are also available.

� The interval extension F (X) encloses all values of
f(x) for x 2 X. That is, F (X) � ff(x) j x 2 Xg.

� Interval extensions can be computed using interval
arithmetic (the \natural" interval extension), or with
other techniques.
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Interval Newton Method

� For a system of nonlinear equations f(x) = 0, �nd
(enclose) all roots in a given initial interval X(0) or
determine that there are none.

� At iteration k, given the interval X(k), if 0 2
F(X(k)) solve the linear interval equation system

F 0(X(k))(N(k) � x
(k)) = �f(x(k))

for the \image" N(k), where F 0(X(k)) is an interval
extension of the Jacobian of f(x) over the current
interval X(k), and x(k) is a point inside X(k).

� Any root x� 2 X
(k) is also contained in the image

N
(k), suggesting the iteration scheme X

(k+1) =
X

(k) \ N
(k) (Moore, 1966).

� It follows that if X(k) \ N
(k) = ;, then there

is no root in X
(k). This is also the conclusion if

0 =2 F(X(k)):
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Interval Newton Method (continued)

� Interval Newton provides an existence and
uniqueness test: If N(k) � X

(k), then:

{ There is a unique zero of f(x) in X(k).
{ The interval Newton iteration X

(k+1) = X
(k)

\ N
(k) will converge quadratically to a tight

enclosure of the root.
{ The point Newton method will converge
quadratically to the root starting from any point
in X(k).

� If a unique root cannot be con�rmed (N(k) � X
(k))

or ruled out (X(k) \ N
(k) = ;), then either:

{ Continue with the next iterate X
(k+1) if it is

suÆciently smaller than N(k), or
{ Bisect X(k+1) and perform interval Newton on
the resulting intervals.

This is the interval Newton/generalized bisection
(IN/GB) approach.
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6



x1

x2

X
(k) N

(k)

There was no solution in X
(k)
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(k)
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Interval Newton Method (continued)

� For f(x) = 0, this method can enclose with

mathematical and computational certainty any
and all solutions in a given initial interval, or can
determine that there are none.

� A preconditioned interval Gauss-Seidel-like technique
is often used to solve for the image N(k) (Hansen
and coworkers).

� Our implementation is based on modi�cations of
routines taken from the packages INTBIS and
INTLIB (Kearfott and coworkers).

� The interval Newton procedure can be performed
on multiple intervals independently and in parallel.

� IN/GB was �rst implemented for process modeling
problems by Schnepper and Stadtherr (1990).
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Phase Stability Problem

� Will a mixture (feed) at a given T , P , and
composition z split into multiple phases?

� A key subproblem in determination of phase
equilibrium, and thus in the design and analysis
of separation operations.

� Using tangent plane analysis, can be formulated as a
minimization problem, or as an equivalent nonlinear
equation solving problem.

� Equation system to be solved may have trivial
and/or multiple roots (optimization problem has
multiple local optima).

� Conventional techniques may fail to converge, or
converge to false or trivial solutions.
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Tangent Plane Analysis

� A phase at T , P , and feed composition z is unstable
if the Gibbs energy of mixing vs. composition
surface

m(x; v) = �gmix = �Ĝmix=RT

ever falls below a plane tangent to the surface at z

mtan(x) = m(z; vz) +
nX
i=1

�
@m

@xi

�����
z

(xi � zi)

� That is, if the tangent plane distance

D(x; v) = m(x; v)�mtan(x)

is negative for any composition x, the phase is
unstable.

� In this context, \unstable" refers to both the
metastable and classically unstable cases.
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Optimization Formulation

� To determine if D ever becomes negative, determine
the minimum of D and examine its sign

min
x;v

D(x; v)

subject to

1�
nX
i=1

xi = 0

EOS(x; v) = 0

� Trivial local optimum (minimum or maximum) at
the feed composition x = z; may be multiple
nontrivial optima. Need technique guaranteed to
�nd the global minimum.
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Equation Solving Formulation

� Stationary points of the optimization problem can
be found be solving the nonlinear equation system

��
@m

@xi

�
�

�
@m

@xn

��
�

��
@m

@xi

�
�

�
@m

@xn

��
z

= 0;

i = 1; : : : ; n� 1

1�
nX
i=1

xi = 0

EOS(x; v) = 0

� Trivial root at the feed composition x = z; may
be multiple nontrivial roots. Need technique
guaranteed to �nd all the roots.
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Some Current Solution Methods

� Various local methods | Fast, but initialization
dependent (may use multiple initial guesses), and
not always reliable.

� Some more reliable approaches

{ Exhaustive search on grid (Eubank et al., 1992)
{ Homotopy-continuation (Sun and Seider, 1995)
{ Topological degree (Wasylkiewicz et al., 1996)
{ Branch and bound (McDonald and Floudas,
1995, 1997): Guarantee of global optimum when
certain activity coeÆcient models are used.

� Interval analysis

{ Provides a general-purpose, model-independent
method for solving phase stability problem
with complete certainty.

{ Stadtherr et al. (1994,1995), McKinnon et al.

(1995,1996): Activity coeÆcient models
{ Hua et al. (1995,1996,1997): Equation of state
models
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Example 1

CO2 (1), trans-2-hexen-1-ol (2), T = 303.15 K, P =
69.7016 bar, z1 = 0.9991, PR EOS model (standard
mixing rules). Tangent plane distance D vs. x1:
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Example 1 (continued)

� Five stationary points (four minima, one maximum).

� Standard local methods (e.g. Michelsen, 1982)
known to fail (predict stability when system is
actually unstable) because global minimum is not
found.

� Easily solved (see Table 1) using interval method.
Initial interval includes all physically feasible values
of mole fraction and molar volume (no point
initialization needed).

� Many other problems (two to �ve components) also
easily solved using either EOS or excess Gibbs energy
models (NRTL, UNIQUAC).

� Easily combined with fast, local 
ash algorithms
to perform reliable phase equilibrium (split)
calculations. Several two or three phase problems
easily solved.
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Example 1 | Phase Stability

CO2 (1), trans-2-hexen-1-ol (2), T = 303.15 K, P =
69.7016 bar, z1 = 0.9991, PR EOS model

Table 1

Feed (z1; z2) Stationary Points (roots)

and CPU time (x1; x2; v [cm3/mol]) D

(0.9991,0.0009) (0.9991,0.0009,160.8) 0.0

0.71 sec (0.9968,0.0032,106.1) 0.0020

(0.9728,0.0272,61.59) -0.004

(0.8428,0.1572,57.97) 0.0030

(0.7018,0.2982,65.53) 3.6�10�4

� CPU time on Sun Ultra 2/1300.

� All stationary points easily found, showing the feed
to be unstable.

� Presence of multiple real volume roots causes no
diÆculties.
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Computing Homogeneous Azeotropes

� Why

{ Identify limitations in separation operations.
{ Construction of residue curve maps for design and
synthesis of separation operations.

{ Evaluation of thermodynamic models.

� How

{ Solve system(s) of nonlinear equations derived
from equifugacity condition; can use sequential
or simultaneous approach to formulate problem.

{ These equation system(s) often have multiple
and/or trivial roots, or may have no solutions.

{ Account for temperature dependence using
Antoine equation (ideal vapor phase) and
temperature dependent activity coeÆcient model
parameters (or evaluate parameters at a guessed
\reference temperature" TREF assumed close to
the azeotropic T ).
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Formulation : Sequential Approach

� lnP � lnP sat
i (T )� ln 
Li (T ) = 0; i 2 Cnz

1�
X
i2Cnz

xi = 0

� Cnz is a set of k nonzero components out of N total
components.

� All k-ary azeotropes (k � N) for the chosen Cnz are
solutions; there may be no solutions.

� Solve (unordered) sequence of problems :

For k = 2 ! N :

For all combinations of k nonzero components,
solve for all k-ary azeotropes.

� Need solution method guaranteed to �nd all
solutions of all problems, and to determine
with certainty when there are no solutions.
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Some Current Solution Methods

� Various local methods | Fast, but initialization
dependent and hard to �nd all roots.

� Fidkowski et al. (1993) use a homotopy-
continuation method.

{ Simultaneous approach with explicit T-
dependence of 
i.

{ Improved reliability but no guarantee that all
roots are found.

� Harding et al. (1997) use a branch and bound
method.

{ Simultaneous and sequential approaches; TREF
approach for T-dependence of 
i.

{ Reformulation as a global optimization problem
using convex underestimating functions.

{ Mathematical guarantee that all roots are found
in TREF approach.
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Example 2 | Homogeneous Azeotropes

UNIQUAC, Benzene(B), Ethanol(E) and Water(W),
P = 1.0 atm. CPU time is on a Sun Ultra 1/140.

Comps. Mole Fr. (B E W) T (ÆC) CPU (s)

BE 0.552 0.448 0.000 67.66 0.036

BW (0.572 0.000 0.428)� (61.98)� 0.037

EW 0.000 0.886 0.115 78.11 0.041

BEW no azeotrope 1.21

total 1.32

� This is a solution to the equifugacity condition, but is not a

homogeneous azeotrope since the liquid phase will split.

� Explicit T -dependence of activity coeÆcient model
parameters accounted for (no TREF needs to be
guessed).

� Many other problems (two to �ve components)
easily solved, using Wilson, NRTL or UNIQUAC
models, �nding all azeotropes.
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Concluding Remarks

� Interval analysis is a general-purpose and
model-independent approach for solving phase
behavior problems, providing a mathematical and

computational guarantee of reliability

{ Phase stability
{ Phase equilibrium (split)
{ Homogeneous azeotropes

� Interval analysis provides powerful problem solving
techniques with many other applications in the
modeling of thermodynamics and phase behavior
and in other process modeling problems.

� Continuing advances in computing hardware and
software (e.g., compiler support for interval
arithmetic) will make this approach even more
attractive.
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