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Abstract

Recently, a robust new computational technique, based on interval analysis, has been de-

veloped for solving the difficult nonlinear problems arising in the modeling of phase behavior.

This technique can be used, with mathematical and computational guarantees of certainty, to

find the global optimum of a nonlinear function or to enclose any and all roots of a system of

nonlinear equations. As shown in the applications here to phase stability analysis and to the

location of homogeneous azeotropes, it provides a method that can guarantee that the correct

result is found, thus eliminating computational problems that may potentially be encountered

with currently available techniques. The method is initialization independent; it is also model

independent, straightforward to use, and can be applied in connection with any equation of state

or activity coefficient model.



1 Introduction

Computational problems such as convergence to a trivial or incorrect root, or to a local

rather than global optimum, or failure to converge to a physically feasible solution at all [e.g.,

1], are not uncommon difficulties in thermodynamic calculations. Since, in the modeling and

design of separation processes, such failures can be critical, many techniques have been devel-

oped in attempts to provide increased reliability. However, until now, there has been no general

purpose technique that could provide complete reliability for computations of phase behavior.

In this paper we review recent work on the development and use of a robust new computational

technique, based on interval analysis, for solving the difficult nonlinear problems arising in

thermodynamics. This technique can be used, with mathematical and computational guarantees

of certainty, to find the global optimum of a nonlinear function or to find (more precisely to

enclose, as discussed in [2]) any and all roots of a system of nonlinear equations. While this

technique has the potential to be applied to a wide variety of thermodynamic calculations im-

portant in chemical process design, in this paper we will concentrate on phase stability analysis,

using both cubic equation of state models and excess Gibbs energy models, and on the location

of homogeneous azeotropes. Since the technique is model independent and completely general,

its use can be readily extended to any thermodynamic model in any equilibrium situation.
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2 Methodology

2.1 Interval Computations

A real interval,X, is defined as the set of real numbers lying between (and including) given

upper and lower bounds; i.e.,X = [a; b] = fx 2 < j a � x � bg. A real interval vector

X = (X1; X2; :::; Xn)
T hasn real interval components and can be interpreted geometrically as

ann-dimensional rectangle. Note that in this section lower case quantities are real numbers and

upper case quantities are intervals. Several good introductions to computation with intervals are

available [3,4,5].

Of particular interest here are interval Newton/generalized bisection (IN/GB) methods. These

techniques provide the power to find, with confidence, enclosures of all solutions of a system

of nonlinear equations [3,5], and to find with total reliability the global minimum of a nonlinear

objective function [4], provided only that upper and lower bounds are available for all variables.

For a system of nonlinear equationsf(x) = 0 with x 2 X
(0), the basic iteration step in

interval Newton methods is, given an intervalX
(k), to solve the linear interval equation system

F 0(X(k))(N(k) � x
(k)) = �f(x(k)) (1)

for a new intervalN(k), wherek is an iteration counter,F 0(X(k)) is an interval extensionof

the Jacobian off(x) over the current intervalX(k), andx(k) is a point in the interior ofX(k).

The interval extensionF(X(k)) of a real functionf(x) over an intervalX(k) is an enclosure

of the range of the function over that interval; that isF(X(k)) � ff(x) j x 2 X
(k)g. An

interval extension can be computed by substituting interval quantities for the corresponding
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real quantities and using interval arithmetic, or in other ways. In the interval extension of the

Jacobian, each matrix element is an interval extension of the corresponding element in the real

Jacobian. It can be shown that any rootx
� 2X(k) is also contained in the imageN(k), suggesting

the iteration schemeX(k+1) = X(k) \ N(k). While this iteration scheme can be used to tightly

enclose a solution, what is also of significance here is the power of Eq. (1) as an existence and

uniqueness test. It can be proven (e.g., [3,5]) that ifN
(k) � X

(k), then there is auniquezero of

f(x) in X(k), and that Newton’s method with real arithmetic can be used to find it, starting from

any point inX(k). This suggests a root inclusion test forX(k):

1. (Range Test) Compute an interval extensionF(X(k)) containing the range off(x) over

X
(k) and test to see whether it contains zero. Clearly, if0 =2 F(X(k)) � ff(x) j x 2 X(k)g

then there can be no solution off(x) = 0 in X
(k) and this interval need not be further

tested.

2. (Interval Newton Test) Compute the imageN(k) by solving Eq. (1).

(a) If X(k) \ N
(k) = ;, then there is no root inX(k).

(b) If N(k) � X
(k), then there is exactly one root inX(k) .

(c) If neither of the above is true, then no further conclusion can be drawn.

In the last case, one could then repeat the root inclusion test on the next interval Newton it-

erateX(k+1), assuming it is sufficiently smaller thanX(k), or one could bisectX(k+1) and re-

peat the root inclusion test on the resulting intervals. This is the basic idea of interval New-

ton/generalized bisection methods. A detailed step-by-step description of the basic IN/GB al-

gorithm used here is given by Schnepper and Stadtherr [6], and additional details are provided
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by Huaet al. [2]. Our implementation of the IN/GB method for the phase stability problem is

based on appropriately modified routines from the packages INTBIS [7] and INTLIB [8]. In

this paper, we review the application of the interval method to solve problems in phase stability

analysis and in locating homogeneous azeotropes.

2.2 Phase Stability Analysis

The determination of phase stability, i.e., whether or not a given mixture can split into

multiple phases, is a key step in phase equilibrium calculations, and thus in the simulation and

design of a wide variety of processes, especially those involving separation operations such

as distillation and extraction. The determination of phase stability is often done using tangent

plane analysis. A phase at specified temperatureT , pressureP , and feed mole fractionz is

unstable (in this context, unstable refers to both the metastable and classically unstable cases)

if the reduced molar Gibbs energy of mixing surfacem = �Ĝmix=RT ever falls below a plane

tangent to the surface atz. That is, if the tangent plane distance

D = m�m0 �
nX
i=1

 
@m

@xi

!
0

(xi � zi) (2)

is negative for any compositionx, the phase is unstable. The subscript zero indicates evaluation

atx = z, andn is the number of components. A common approach for determining ifD is ever

negative is to minimizeD subject to the mole fractions summing to one. It is readily shown

that the stationary points in this optimization problem can be found by solving the system of

nonlinear equations:
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1�
nX
i=1

xi = 0 (4)

If an equation of state model EOS(x; v) = 0 is used to determinem, then the EOS provides an

additional equation and an additional variable, the molar volumev.

Then � n system given by Eqs. (3)–(4) above, or the(n + 1) � (n + 1) system that re-

sults when an EOS model is used, has a trivial root at the feed composition and frequently

has multiple nontrivial roots as well. Thus conventional equation solving techniques may fail

by converging to the trivial root or give an incorrect answer to the phase stability problem by

converging to a stationary point that is not the global minimum ofD. Standard methods (e.g.,

[9]) for solving the phase stability problem typically rely on the use of multiple initial guesses.

However, these methods offer no guarantee that the global minimum in the tangent plane dis-

tance has been found. Because of the difficulties that thus arise, there has been significant recent

interest in the development of more reliable methods for solving the phase stability problem.

For example, Sun and Seider [10] apply a homotopy-continuation method, which will often

find all the stationary points, and is easier to initialize than Michelsen’s approach. However,

their technique is still initialization dependent and provides no theoretical guarantees that all

stationary points have been found. McDonald and Floudas [11] show that for certain activity

coefficient models, the phase stability problem can be reformulated to make it amenable to so-

lution by powerful global optimization techniques. This method does provide a mathematical

guarantee that the global minimum of the tangent plane distance has been found.

An alternative approach for solving the phase stability problem is to use the interval method

described above to solve Eqs. (3)–(4) for the stationary points ofD. This was originally sug-
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gested by Stadtherret al. [12], who applied it in connection with activity coefficient models,

as later done also by McKinnonet al. [13]. This technique, is initialization independent and

can solve the phase stability problem with mathematical certainty, while also dealing automat-

ically with rounding error. Recently Huaet al. [2,14,15] extended this method to problems

modeled with cubic equation of state (EOS) models, in particular the Van der Waals (VDW),

Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) models with standard mixing rules.

2.3 Location of Homogeneous Azeotropes

The determination of the existence and composition of homogeneous azeotropes is impor-

tant both from both theoretical and practical standpoints in the analysis of phase behavior and

in the synthesis and design of separation systems. The nonlinear form of the thermodynamic

equations for phase equilibrium makes the computation of azeotropes a particularly difficult

problem. It has thus attracted significant attention, as reviewed recently by Widagdo and Seider

[16]. Fidkowskiet al. [17] have presented a homotopy continuation method for this purpose.

While this method is very reliable, a drawback is that it cannot guarantee that all azeotropes

have been found. More recently, Hardinget al. [18] have used a global optimization procedure,

which, assuming no explicit temperature dependence in the liquid phase activity coefficient

models, does provide a mathematical guarantee that all azeotropes have been enclosed. Maier

et al. [19] have discussed how the interval method described above can be used to solve the

homogeneous azeotrope problem, providing a mathematical and computational guarantee that

all azeotropes have been enclosed, even in the case of explicit temperature dependence in the

liquid phase activity coefficient models.
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At a homogeneous azeotrope, vapor and liquid phases of the same composition are in equi-

librium. For a set ofk nonzero components in a system ofn components, with the assumptions

of ideal vapor behavior and Poynting correction factors of one, and use of the azeotropy con-

dition xi = yi, wherexi andyi are the liquid and vapor phase compositions, respectively, the

equilibrium condition (equifugacity equations) can be written as

lnP � lnP sat

i
(T )� ln 
L

i
(T ) = 0; 8i 2 Cnz: (5)

whereCnz is the set ofk nonzero components in question, and we have emphasized the tem-

perature dependence of the pure component vapor pressuresP sat

i
and liquid phase activity co-

efficients
L
i

. This equation, and the constraint that the mole fractions sum to one constitute

a (k + 1) � (k + 1) set of nonlinear equations that can be solved for azeotropic composi-

tion(s) and temperature(s). Solving this system, we will obtain allk-ary azeotropes for the

chosen component setCnz. To find all the azeotropes in the overalln component system, a se-

quence (unordered) of such systems must be solved, one for each combination ofk components,

k = 2; : : : ; n. These equation systems may have multiple roots or no roots at all. A solution

method is required that is guaranteed to enclose all roots and that is also capable of verifying

when none exist. The interval approach discussed above is very well suited to this difficult task

[19].

To model the temperature dependence ofP sat

i
(T ) we use the Antoine equation. In many

cases, the temperature dependence ofP sat

i
(T ) is significantly stronger than the temperature

dependence of
L
i
(T ), which arises only in the temperature dependence of the binary interaction

parameters in the activity coefficient model used. Thus, as done by Hardinget al. [18], it
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is not unreasonable to evaluate
L
i
(T ) at some reference temperatureTREF and then treat it

as independent of temperature, instead of using a fully temperature dependent
L
i
(T ) model.

Assuming a good guess ofTREF is made, this approach may provide good estimates for the

azeotropes in the fully temperature dependent model. However, there is no guarantee of this,

and it is possible that the number of azeotropes found in theTREF -based model will not be the

same as the number of azeotropes that exist in the fully temperature dependent model, even if

a relatively good guess ofTREF has been made [19]. Finally, it should be noted that because

solutions of the equifugacity equations may not be stable phases (the liquid may split), any

solutions enclosed should next be checked for phase stability, as described above.

3 Results

3.1 Phase Stability

Huaet al. [2,14,15] have applied the interval approach to solve several phase stability prob-

lems using various cubic equation of state models. We consider two such problems here. The

first, which has not been presented previously, involves the binary system of carbon dioxide and

trans-2-hexen-1-ol. The second is a ternary system of nitrogen, methane and ethane. Stadtherr

et al. [12] have also used the interval technique to solve phase stability problems for excess

Gibbs energy models. One such problem, not presented previously, is considered here. It is the

quaternary system ofn-propanol,n-butanol, benzene and water.

Problem 1.This is a binary mixture composed of carbon dioxide (1) and trans-2-hexen-1-ol

(2) at 303.15 K and 69.7016 bar. The PR model was used with parameters calculated fromTc1
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= 304.2 K,Pc1 = 73.8 bar,!1 = 0.225,Tc2 = 601.76 K,Pc2 = 36.73 bar,!1 = 0.7241, and a

binary interaction parameterk12 = 0.084. These conditions are very close to a three-phase line.

In such regions, conventional methods for determining phase stability are prone to difficulty.

For example, on this problem, for the unstable feed ofz1 = 0.9991, Michelsen’s vapor/liquid

flash algorithm, as implemented in LNGFLASH from the IVC-SEP package, a code that in

general we have found to be extremely reliable, incorrectly predicts that this mixture is stable.

Results of using the interval approach for this problem are shown in Table 1. This shows that

we are able to locate all five stationary points for this feed and find the global minimum ofD

as being negative at -0.004239, thus demonstrating instability. Two other pressures and feed

compositions were also considered and correct solutions were efficiently found as shown in

Table 1. It should be noted that the presence of multiple real volume roots at some conditions

in this problem does not present any difficulty, since the solver simply finds enclosures of all

roots for the given system. Thus, nothing needs to be done to select the right volume roots.

Problem 2.This is a mixture of nitrogen (1), methane (2) and ethane (3) at 270 K and 76 bar.

The PR model was used withTc1 = 126.2 K,Pc1 = 33.9 bar,!1 = 0.04,Tc2 = 190.6 K,Pc2 = 46.0

bar,!2 = 0.008,Tc3 = 305.4 K,Pc3 = 48.8 bar,!3 = 0.098, and the binary interaction parameters

k12 = 0:038, k13 = 0:08 andk23 = 0:021. Four feeds were considered, with results shown

in Table 2. The first two feeds are not stable and the other two feeds are stable. The second

and third feeds represent particularly difficult problems, since they are in the vicinity of the

critical point of the mixture, yet the interval algorithm has no problem efficiently determining

the correct solutions.

Problem 3. This is a mixture ofn-propanol(1),n-butanol(2), benzene(3) and water(4) at
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P = 1 atm andT = 298 K modeled using the NRTL equation. Five different feed compositions

were tested using the interval method with the correct results efficiently obtained in each case,

indicating the only the second feed is stable. The interval technique can be applied in connection

with any activity coefficient or EOS model.

In general, four-component problems, such as this one, and binary and ternary problems,

such as the previous two examples, can be routinely solved with good computational efficiency.

However, as the number of components grows, the computational performance becomes less

predictable, with some problems solved efficiently and others requiring unreasonable computa-

tion time. This is because, like any technique (e.g., branch and bound) based on a binary tree,

the worst-case computational complexity of the method described is exponential. This does

not necessarily mean that large problems cannot be solved efficiently (the simplex algorithm

for linear programming also has a worst-case complexity that is exponential), but that excessive

computation time requirements are a possibility when solving large problems. This is consistent

with the previous experience of Schnepper and Stadtherr [6] in applying the interval method to

process modeling problems. Some relatively large (over a hundred variables) problems could

be efficiently solved, while other smaller problems required much greater computational effort.

3.2 Homogeneous Azeotropes

Maier et al. [19] applied the interval algorithm to the solution of several homogeneous

azeotrope problems, involving from two to five components and using the Wilson, NRTL and

UNIQUAC models with explicit temperature dependence. One such problem is considered

here. This is a ternary system modeled using UNIQUAC and consisting of benzene, ethanol,
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and water at 1 atmosphere. Table 4 shows that the interval method can efficiently find all

the homogeneous azeotropes in this system, and also identify when there is no homogeneous

azeotrope. Experimentally, this ternary system is known to have homogeneous azeotropes for

the benzene/ethanol and ethanol/water binary pairs, and no homogeneous ternary azeotrope.

The computed results for this system match the experimental data well in all respects. However,

our computed results differ from those of Hardinget al. [18], in that they compute a ternary

azeotrope, while we do not. Presumably, this is due to some difference in the model parameters

used in [18]. It should be noted that for the benzene/water binary, there is a solution to Eq. (5),

as indicated in Table 4. However, contrary to what was indicated in [19], this solution does not

represent a homogeneous azeotrope, since the liquid phase will split. This emphasizes the need,

discussed above, to check solutions for liquid phase stability.

4 Concluding Remarks

As seen in the applications here to phase stability analysis and to the location of homo-

geneous azeotropes, the interval technique described here can solve phase behavior problems

with complete reliability, providing a method that can guarantee with mathematical certainty

that the correct result is found, thus eliminating computational problems that may potentially

be encountered with currently available techniques. The method is initialization independent;

it is also model independent, straightforward to use, and can be applied in connection with any

equation of state or with activity coefficient model.
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Notation

Cnz, a set of nonzero components.

D, tangent plane distance function.

f , a real function vector.

F, interval extension off .

F 0, interval extension of Jacobian off .

m, reduced Gibbs energy of mixing.

n, number of components.

N, the interval-Newton image, an interval.

P , pressure.

P sat, vapor pressure.

<, the set of real numbers.

T , temperature.

v, molar volume

x, a real number (variable).

x, a real vector; also composition vector.

X, an interval.

X, an interval vector.

z, feed composition vector.

0, used as subscript to indicate evaluation at feed composition.


L
i

, liquid-phase activity coefficient.
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Table 1: Problem 1: PR, carbon dioxide(1) and trans-2-hexen-1-ol(2).

Feed Roots D CPU Time (s)

(P; T; z1; z2) (x1; x2; v) Sun Ultra 2/1300

(69.7016,303.15, (0.9991,0.0009,160.8) 0.0 0.714

0.9991,0.0009) (0.9968,0.0032,106.1) 0.0020

(0.9728,0.0272,61.59) -0.004

(0.8428,0.1572,57.97) 0.0030

(0.7018,0.2982,65.53) 3.6�10�4

(120.0,303.15, (0.85,0.15,56.26) 0.0 0.835

0.85,0.15) (0.7645,0.2355,60.86)-4.1�10�4

(0.9200,0.0800,53.91)-4.7�10�4

(80.0,303.15, (0.7078,0.2922,69.99) -0.003 0.709

0.85,0.15) (0.85,0.15,57.38) 0.0

(0.9600,0.0400,57.76) -0.004

Table 2: Problem 2: PR, N2 (1), CH4 (2) and ethane (3),P = 76 bar,T = 270K.

Feed Roots D CPU Time (s)

(P; T; z1; z2) (x1; x2; v) Sun Ultra 1/170

(0.30,0.10,0.60) (0.312,0.102,0.587,153) -5.8�10�6 1.981

(0.300,0.100,0.600,147) 0.0

(0.133,0.068,0.799,77.5) -0.0148

(0.15,0.30,0.55) (0.150,0.300,0.550,132) 0.0 4.977

(0.147,0.297,0.556,130)3.55�10�7

(0.097,0.245,0.658,90.3) -0.0012

(0.08,0.38,0.54) (0.080,0.380,0.540,120) 0.0 3.626

(0.05,0.05,0.90) (0.050,0.050,0.900,69.6) 0.0 0.768
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Table 3: Problem 3: NRTL,n-Propanol(1),n-Butanol(2), Benzene(3) and Water(4),P = 1
atm,T = 298 K.

Number of CPU Time (s)

Stationary Sun Ultra

Feed (z1; z2; z3; z4) Points Dmin 2/1300

(0.148, 0.052, 0.600, 0.200) 3 -0.340 1.101

(0.25, 0.25, 0.25, 0.25) 3 0.0 1.655

(0.148, 0.052, 0.700, 0.100) 3 -0.311 1.748

(0.25, 0.15, 0.40, 0.20) 3 -0.039 2.615

(0.25, 0.15, 0.35, 0.25) 3 -0.074 2.592

Table 4: Homogeneous azeotropes: UNIQUAC, Benzene(B), Ethanol(E) and Water(W),P =
1.0 atm. CPU time is on a Sun Ultra 1/140.

Components Mole Fraction (B E W) Temperature (ÆC) CPU Time (s)

BE 0.552 0.448 0.000 67.66 0.036

BW (0.572 0.000 0.428)� (61.98)� 0.037

EW 0.000 0.886 0.115 78.11 0.041

BEW no azeotrope 1.21

total 1.32

�This is a solution to Eq. (5), but is not a homogeneous azeotrope, since the liquid phase will
split.
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