Reliable Computation of Equilibrium States and Bifurcations in Nonlinear Dynamics

C. Ryan Gwaltney Mark A. Stadtherr

University of Notre Dame Department of Chemical and Biomolecular Engineering Notre Dame, Indiana, USA

> PARA '04 June 22, 2004

Motivation

• Nonlinear dynamic systems are of frequent interest in engineering and science

$$\dot{x} = \frac{dx}{dt} = f(x, p);$$
 $x = \text{state variables};$ $p = \text{parameters}$

- Common problems include computing
 - Equilibrium states $(\dot{x} = 0)$
 - Limit cycles
 - Bifurcations of equilibria
 - Bifurcations of cycles
- Of specific interest here are food chain/web models
 - Used to predict impact on ecosystems of introducing new materials (ionic liquids) into the environment

Motivation – Ionic Liquids

- Ionic liquids (ILs) are salts that are liquid at or near room temperature
- Many attractive properties
 - No measurable vapor pressure ILs do not evaporate
 - Many potential applications, including replacement for volatile organic compounds (VOCs) currently used as solvents
 - Eliminates a major source of air pollution
- Could enter the environment via aqueous waste streams
 - Very little environmental toxicity information available
 - Single species toxicity information is not sufficient to predict ecosystem impacts
- Need for ecological risk assessment

Example Ionic Liquids

imidazolium

tetra alkylammonium

pyrrolidinium

pyridinium

tetra alkylphosphonium

 $X = PF_6 CI$ $BF_4 NO_3$ $CF_3SO_3 CH_3CO_2$ $(CF_3SO_2)_2N CF_3CO_2$

Example: 1-n-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF₆]

Ecological Risk Assessment

- Aim to predict a variety of different consequences, e.g.,
 - Bioaccumulation and biomagnification
 - Contaminant transport and fate
 - Ecosystem toxicity effects
- Use a variety of different strategies and tools, e.g.,
 - Toxicology
 - Microbiology
 - Hydrology
 - Ecological Modeling
- Currently, food chain/web models are used to link single species toxicity tests to ecosystem toxicity effects
 - Results indicate that modeling can provide a conservative estimate of allowable contaminate concentrations (e.g., Naito *et al.*, 2002)

Food Chain/Web Models

- Systems of ordinary differential equations that describe the rates of change in species biomass in an ecosystem
- Model parameters have real-life, physical meaning
- Though often simple in form, these models can exhibit rich mathematical behavior, including varying numbers and stability of equilibria
- Many different ecosystem models possible, depending on individual models of growth, predation, etc.
- Focus of this presentation is Canale's model: Tritrophic system in a chemostat with a hyperbolic predator and superpredator

Canale's Chemostat Model

Canale's Chemostat Model

$$\frac{dx_{0}}{dt} = D(x_{n} - x_{0}) - \frac{a_{1}x_{0}x_{1}}{b_{1} + x_{0}}$$

$$x_{0}: \text{ nutrient}$$

$$\frac{dx_{1}}{dt} = x_{1} \left[e_{1} \frac{a_{1}x_{0}}{b_{1} + x_{0}} - \frac{a_{2}x_{2}}{b_{2} + x_{1}} - d_{1} - \varepsilon_{1}D \right]$$

$$x_{0}: \text{ nutrient}$$

$$x_{1}: \text{ prey}$$

$$x_{2}: \text{ predator}$$

$$x_{3}: \text{ superpredator}$$

$$\frac{dx_{2}}{dt} = x_{2} \left[e_{2} \frac{a_{2}x_{1}}{b_{2} + x_{1}} - \frac{a_{3}x_{3}}{b_{3} + x_{2}} - d_{2} - \varepsilon_{2}D \right]$$

$$x_{n}: \text{ inflow nutrient}$$

$$\frac{dx_{3}}{dt} = x_{3} \left[e_{3} \frac{a_{3}x_{2}}{b_{3} + x_{2}} - d_{3} - \varepsilon_{3}D \right]$$

$$D: \text{ inflow rate}$$

 a_i : max predation rate; b_i : half saturation constant; d_i : death rate; e_i : efficiency; $\mathcal{E}_i D$: washout rate

Model Computations

- Locate equilibrium points and bifurcations of equilibria in the food chain/web model
- A bifurcation is a change in the topological type of the phase portrait as one or more system parameters are varied
 - Codimension one: One parameter (α) can be varied
 - Codimension two: Two parameters (α, β) can be varied
- Bifurcations of equilibria are located by solving a nonlinear algebraic system consisting of the equilibrium conditions along with one or more augmenting (test) functions

Codim-1 Bifurcations and Test Functions

- Fold and transcritical bifurcations
 - As α is varied, two equilibria collide, resulting in annihilation (fold) or exchange of stability (transcritical)
 - The Jacobian, $J(x, \alpha)$, of the model has a single zero eigenvalue
 - Product of all eigenvalues must be zero: $\lambda_1 \lambda_2 \lambda_3 \lambda_4 = 0$
 - Convenient test function (avoiding calculation of eigenvalues):

 $\det\left(\mathbf{J}(\boldsymbol{x},\boldsymbol{\alpha})\right)=0$

Codim-1 Bifurcations and Test Functions

- Hopf bifurcation
 - $J(x, \alpha)$ has a pair of complex conjugate eigenvalues that cross the imaginary axis as α is varied: possible change in stability
 - Product of all possible pair sums must be zero: $(\lambda_1 + \lambda_2)(\lambda_1 + \lambda_3)(\lambda_1 + \lambda_4)(\lambda_2 + \lambda_3)(\lambda_2 + \lambda_4)(\lambda_3 + \lambda_4) = 0$
 - Convenient test function based on bialternate product det $(2J(x, \alpha) \otimes I) = 0$
 - Can produce false-positives
 - Must screen solutions by checking if eigenvalues are imaginary conjugates

Codim-2 Bifurcations and Test Functions

- Fold-Fold: Two eigenvalues are zero
- Fold-Hopf: One eigenvalue is zero and a pair of pure imaginary complex conjugate eigenvalues
- Located by using both augmenting functions $\det (J(\boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})) = 0$ $\det (2J(\boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \otimes I) = 0$

Locating Equilibrium States and Bifurcations

- Equilibrium states: Solve equilibrium conditions for *x*.
- Bifurcations of equilibria: Solve augmented equilibrium conditions for x and α (and β)
- These equation systems may have multiple solutions
- Typically these systems are solved using a continuationbased strategy (e.g., Kuznetsov, 1991; AUTO software)
 - Initialization dependent
 - No guarantee of locating all solution branches
- Interval mathematics provides a method that is:
 - Initialization independent
 - Capable of locating all solution branches with certainty

Methodology

- Core methodology is interval-Newton: Solve f(x) = 0 for all roots in the interval $X^{(0)}$
- Basic iteration scheme: For a particular subinterval (box), $\mathbf{X}^{(k)}$, perform root inclusion test:
- Range test: Compute an interval extension (bounds on range) **F**(**X**^(k))
 - If $\mathbf{0} \notin \mathbf{F}(\mathbf{X}^{(k)})$, delete the box
- Interval Newton test: Compute the image, $N^{(k)}$, of the box by solving the linear interval equation system

$$F'(X^{(k)}) (N^{(k)} - x^{(k)}) = -f(x^{(k)})$$

- $x^{(k)}$ is a point in $\mathbf{X}^{(k)}$
- $F'(X^{(k)})$ is the interval extension of the Jacobian matrix of f(x) over the interval $X^{(k)}$

Interval-Newton Test

• There is no solution in $\mathbf{X}^{(k)}$

Interval-Newton Test

- There is a *unique* solution in $\mathbf{X}^{(k)}$ and it is in $\mathbf{N}^{(k)}$
- Additional interval-Newton steps will tightly enclose the solution with quadratic convergene

Interval-Newton Test $\mathbf{N}^{(k)}$ $\mathbf{X}^{(k)}$ \mathcal{X}_{γ} x_1

- Any solutions in $\mathbf{X}^{(k)}$ are in $\mathbf{X}^{(k)} \cap \mathbf{N}^{(k)}$
- If intersection is sufficiently small, repeat root inclusion test
- Otherwise, bisect the intersection and apply root inclusion test to each resulting subinterval

Methodology

Available enhancements to basic methodology:

- LP-based strategy for computing image N^(k) in interval-Newton test (Lin and Stadtherr, 2003, 2004)
 - Exact bounds on $N^{(k)}$ (within roundout)
- Constraint propagation (problem specific)
- Tighten interval extensions using known function properties (problem specific)

Generating Solution Diagrams

- Solution branch diagrams (say x vs. x_n)
 - Set x_n , use interval-Newton to solve equilibrium conditions for x
 - Make small increment in x_n and repeat
- Bifurcation diagrams (say x_n vs. D)
 - Set *D*, solve for values of x_n and x at which bifurcations occur
 - Make small increment in *D* and repeat
 - Set x_n , solve for values of *D* and *x* at which bifurcations occur
 - Make small increment in x_n and repeat

Canale's Chemostat Model x_n vs. *D* Bifurcation Diagram

Canale's Chemostat Model x vs. x_n Solution Branch Diagram (D = 0.09)

Canale's Model with Contaminant

• Can link the death rate parameter in each trophic level with a hypothetical contaminate concentration (Gwaltney and Stadtherr, 2004)

$$d_{i} = d_{i}^{o} + \frac{1}{2C_{i}^{LC50}}C$$

 d_i^0 : base-line death rate C_i^{LC50} : LC50 value d_i : death rateC: Contaminate Concentration

• LC50 value is concentration of contaminant that is lethal to 50% of a population of test animals in a given period of time (measured experimentally)

Canale's Model with Contaminant x_n vs. *C* Bifurcation Diagram

Canale's Model with Contaminant *x* vs. *C* Solution Branch Diagram ($x_n = 200$)

Concluding Remarks

- Computation times (1.7GHz Xeon/Linux) are reasonable
 - Average 0.06 s to solve for equilibrium states
 - Average 15 s to solve for fold/transcritical bifurcations
 - Average 100 s to solve for Hopf bifurcations
- Using interval methodology, can generate solution branch and bifurcation diagrams with confidence, without need for initialization or *a priori* insights
- Diagrams can be generated automatically without user intervention to deal with initialization issues
- Applicable to a wide variety of problems in nonlinear dynamics

Acknowledgements

- U.S. Department of Education GAANN Program (P200A010448)
- Arthur J. Schmitt Foundation
- State of Indiana 21st Century Research and Technology Fund (909010455)
- U.S. NSF DMR Program (00-79747)