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Motivation
• Nonlinear dynamic systems are of frequent interest in 

engineering and science

• Common problems include computing
– Equilibrium states

– Limit cycles

– Bifurcations of equilibria

– Bifurcations of cycles

• Of specific interest here are food chain/web models
– Used to predict impact on ecosystems of introducing new materials 

(ionic liquids) into the environment
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Motivation – Ionic Liquids

• Ionic liquids (ILs) are saltsthat are liquid at or near room 
temperature

• Many attractive properties
– No measurable vapor pressure –ILs do not evaporate
– Many potential applications, including replacement for volatile 

organic compounds (VOCs) currently used as solvents
– Eliminates a major source of air pollution

• Could enter the environment via aqueous waste streams
– Very little environmental toxicity information available
– Single species toxicity information is not sufficient to predict

ecosystem impacts

• Need for ecological risk assessment



Example Ionic Liquids

Example:
1-n-butyl-3-methylimidazolium hexafluorophosphate
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Ecological Risk Assessment

• Aim to predict a variety of different consequences, e.g.,
– Bioaccumulation and biomagnification
– Contaminant transport and fate
– Ecosystem toxicity effects

• Use a variety of different strategies and tools, e.g.,
– Toxicology
– Microbiology
– Hydrology
– Ecological Modeling

• Currently, food chain/web models are used to link single 
species toxicity tests to ecosystem toxicity effects
– Results indicate that modeling can provide a conservative estimate 

of allowable contaminate concentrations (e.g., Naito et al., 2002)



Food Chain/Web Models

• Systems of ordinary differential equations that describe the 
rates of change in species biomass in an ecosystem

• Model parameters have real-life, physical meaning

• Though often simple in form, these models can exhibit rich 
mathematical behavior, including varying numbers and 
stability of equilibria

• Many different ecosystem models possible, depending on 
individual models of growth, predation, etc.

• Focus of this presentation is Canale’s model:  Tritrophic 
system in a chemostat with a hyperbolic predator and 
superpredator



Canale’s Chemostat Model
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Canale’s Chemostat Model

x0: nutrient
x1: prey
x2: predator
x3: superpredator

ai : max predation rate;   bi : half saturation constant;   
di : death rate;    ei : efficiency;    εi D : washout rate

xn : inflow nutrient
concentration 

D : inflow rate
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Model Computations

• Locate equilibrium pointsand bifurcations of equilibriain 
the food chain/web model

• A bifurcation is a change in the topological type of the 
phase portrait as one or more system parameters are 
varied

– Codimension one:  One parameter (α) can be varied

– Codimension two:  Two parameters (α, β) can be varied

• Bifurcations of equilibria are located by solving a 
nonlinear algebraic system consisting of the equilibrium 
conditions along with one or more augmenting (test) 
functions



Codim-1 Bifurcations and Test Functions

• Fold and transcritical bifurcations
– As α is varied, two equilibria collide, resulting in 

annihilation (fold) or exchange of stability 
(transcritical)

– The Jacobian, J(x,α), of the model has a single zero 
eigenvalue

– Product of all eigenvalues must be zero:  λ1λ2λ3λ4 = 0

– Convenient test function (avoiding calculation of 
eigenvalues):

det (J(x,α)) = 0



Codim-1 Bifurcations and Test Functions

• Hopf bifurcation

– J(x,α) has a pair of complex conjugate eigenvalues that 
cross the imaginary axis as α is varied:  possible change 
in stability

– Product of all possible pair sums must be zero:
(λ1+λ2)(λ1+λ3)(λ1+λ4)(λ2+λ3)(λ2+λ4)(λ3+λ4) = 0

– Convenient test function based on bialternate product
det (2J(x,α) ⊗ I) = 0

– Can produce false-positives

– Must screen solutions by checking if eigenvalues are 
imaginary conjugates



Codim-2 Bifurcations and Test Functions

• Fold-Fold: Two eigenvalues are zero

• Fold-Hopf: One eigenvalue is zero and a pair of pure 
imaginary complex conjugate eigenvalues

• Located by using both augmenting functions

det (J(x,α,β)) = 0

det (2J(x,α,β) ⊗ I) = 0



Locating Equilibrium States and Bifurcations

• Equilibrium states:  Solve equilibrium conditions for x.

• Bifurcations of equilibria:  Solve augmented equilibrium 
conditions for x and α (and β)

• These equation systems may have multiple solutions

• Typically these systems are solved using a continuation-
based strategy (e.g., Kuznetsov, 1991; AUTO software)
– Initialization dependent

– No guarantee of locating all solution branches

• Interval mathematics provides a method that is:
– Initialization independent

– Capable of locating all solution branches with certainty



Methodology

Core methodology is interval-Newton:  Solve f(x) = 0 for all 
roots in the interval X(0)

Basic iteration scheme: For a particular subinterval (box), 
X(k), perform root inclusion test:

• Range test: Compute an interval extension (bounds on 
range) F(X(k))

– If 0 ∉ F(X(k)), delete the box

• Interval Newton test: Compute the image, N(k), of the box 
by solving the linear interval equation system

F´(X(k)) (N(k) – x(k)) = – f (x(k))
– x(k) is a point inX(k)

– F´(X(k)) is the interval extension of the Jacobian matrix of f(x) 
over the interval X(k)



Interval-Newton Test

X(k)

N(k)

x1

x2

• There is no solution in X(k)



Interval-Newton Test

x1

X(k)

N(k)

x2

• There is a unique solution in X(k) and it is in N(k)

• Additional interval-Newton steps will tightly enclose the 
solution with quadratic convergene



Interval-Newton Test

X(k)

N(k)

x1

x2

• Any solutions in X(k) are in X(k) ∩ N(k)

• If intersection is sufficiently small, repeat root inclusion test
• Otherwise, bisect the intersection and apply root inclusion 

test to each resulting subinterval



Methodology

Available enhancementsto basic methodology:

• LP-based strategy for computing image N(k) in interval-
Newton test (Lin and Stadtherr, 2003, 2004)

– Exact bounds on N(k) (within roundout)

• Constraint propagation (problem specific)

• Tighten interval extensions using known function 
properties (problem specific)



Generating Solution Diagrams

• Solution branch diagrams(say x vs. xn)
– Set xn , use interval-Newton to solve equilibrium conditions for x

– Make small increment in xn and repeat

• Bifurcation diagrams(say xn vs. D)
– Set D, solve for values of xn and x at which bifurcations occur

– Make small increment in D and repeat 

– Set xn, solve for values of D and x at which bifurcations occur

– Make small increment in xn and repeat 



Canale’s Chemostat Model
xn vs. D Bifurcation Diagram

TE: Transcritical of Equilibria
FE: Fold of Equilibria

H: Hopf
Hp: Planar Hopf

FH: Fold-Hopf Codimension 2

Nutrient concentration of the inflow (xn)
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Canale’s Chemostat Model
x vs. xn Solution Branch Diagram (D = 0.09)

Nutrient concentration of the inflow (xn)
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Canale’s Model with Contaminant

• Can link the death rate parameter in each trophic level with 
a hypothetical contaminate concentration(Gwaltney and 
Stadtherr, 2004)
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di
0 : base-line death rate         Ci

LC50 : LC50 value   
di : death rate                          C: Contaminate Concentration

• LC50 value is concentration of contaminant that is lethal to 
50% of a population of test animals in a given period of 
time (measured experimentally)



Canale’s Model with Contaminant
xn vs. C Bifurcation Diagram

TE: Transcritical of Equilibria
FE: Fold of Equilibria

H: Hopf
Hp: Planar Hopf

FH: Fold-Hopf Codimension 2

D = 0.07

Nutrient concentration of the inflow (xn)
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Canale’s Model with Contaminant
x vs. C Solution Branch Diagram (xn = 200)

Stable
Unstable

D = 0.07
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Concluding Remarks

• Computation times (1.7GHz Xeon/Linux) are reasonable
− Average 0.06 s to solve for equilibrium states
− Average 15 s to solve for fold/transcritical bifurcations
− Average 100 s to solve for Hopf bifurcations

• Using interval methodology, can generate solution branch 
and bifurcation diagrams with confidence, without need for 
initialization or a priori insights

• Diagrams can be generated automatically without user 
intervention to deal with initialization issues

• Applicable to a wide variety of problems in nonlinear 
dynamics
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