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Abstract

Multicomponent separation calculations, whether
single columns or complexly interlinked systems of
multiple columns, represent large scale computational
problems and are thus attractive applications for the
parallel computing architectures of machines such as
the Cray-2 supercompuler and the Alliant FX/S.
Frequently, these problems are formulated as a large

set of nonlinear cquations solved by a Newton-.

Raphson or comparative successive linearization
technique, They thus require the solution of a very
large systetir of sparse linear equations which often
represents a large fraction of the overall computing
time. We present an efficient parallel technique for

the solution of sisch large sparse systems, based on an

ordering of equations by plate. The resulling linear *
systems take on an almost block tridiagonal (BID)
Jorm, with off-BTD blocks resulling from recycle
streams or tower sidestreams, We present extensions
to current multiprocessor scliemes for BTD systems
which permit a straightforward solution for single or
interlinked distillation columns. Pivoting schemes and

strategies for efficlent matrix partitioning during the -
solution stage are also outlined.

.

' lntrodncuon

The solution of the lnrgc sparse linear equation
systems ‘which arise in the solution of systems of
interlinked distillation  columins, or c¢ven single

_colummns, is a critical factor in determining

computational efficiency. We present an efficient

- - parallel technique for the solution of such large

sparse systems on multiprocessor machines such as
the Cray-2 and the Alliant FX/8. "An cquation-bascd
solution procedure for single distillation columns
based on ordering the equations by plate leads to a
sparse, narrow-banded system of linearized equations.
Such .an approach was proposed by Napthali and
Sandholm (1971) and has proven very successful,
This formulation may also be used-as the basis for
solution methods for interlinked systems of columns,
as shown by Hofeling and Seader (1978) and
Stadtherr and Malachowski (1982)..

~Single Columns-

. Consider the case of an »u. plate column
scparating ¢ components, with plate 1. a condenser
and plate n the reboiler. For a single column. with
no sidestreams the matrix of partial derivatives that
arises takes the shape of a block tridingonal matrix

" (sce Figure 1). ‘The structure of the blocks is known .

and shown here, Here X represents & nonzero
submatrix within the blocks, whereas 1 stands for the
identity matrix and 0 for a zero submatrix, The A,
matrix is the matrix of derivatives of the functions of
plate n with respect to the variables on plate n-1, and
thus Is zero beJow the diagonul. More importantly

: for the purpose of avoiding fill-in during the
" computation, the partial derivatives of the equilibrium

functions on plate n with respect to the components
on plate n-1 are all zero, resulting in zero values in
all columns left of the center column, 'l‘hus the A -
matux has size and structure ,

Here the numbers and letters above and to the left

= of the matrix indicate the sizes of the individual sub-

blocks, and c again represents the number of

- components. The first row represents the partial
. derivatives - for the material balance, followed by

rows for the enfahlpy balance derivative and

- equilibrium relationship derivatives, reapectively,
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Figure 1: BTD Jacobian Matrix for Single
Distillation Column

This is a departure from the original formulation of
Napthali and Sandholm, in that the component material
balance derivatives are now evaluated and stored prior
to the enthalpy derivative. This is to ensure diagonal
dominance of the overall matrix. o
Sameh (1983) has developed a mwultiprocessor
algorithm for solving BTD systems with small off-
diagonal blocks, in which matrices arc partitioned

according to the number of available processors and:
the workload distributed as cvenly as possible between -

each processor. Consider the system
Ax =Tl
whercé A is dingonally dominant, The matrix A may

be partitioned and cach A, can be factored and solved
in parallel without pivoting. :

We write
A = diag(A,,...A,)S
= DS ‘

where

Here S has been partitioned for four processors,
Note that ¢ach of the partitions have colunns of fill-
in, represented by the stars, which arise during the
solution stage as a result of the blocks immedintely
off the diagonal, The columns of fill-in to the left of
the diagonal arc grouped as the Y, vector, while
those to the right are identified as the W, vector, As

a result of these vectors, each partition contains

- either one or two more columns than rows and

cannot be solved independently without coupling of
information,
We write further

' D*Ax = D'f
' Sx = DIf

Before proceeding immediately to the solution by
solving each partition independently, a reduced
system which contains the necessary coupling
information for the partitions must be fomulated and

- solved.. This reduced system R contains the row

blocks jmmediately above and below cach pastition

~(Figure 2). When this system is solved the number

of unknowns in each pastition now equates to the

‘number of equations, and the pmtllcl solution of the

matrix A may now proceed. :

By dividing the large overall matrix into more
conveniently handled blocks, or ‘partitions’, each of
which Is solved in parallel on a single
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Figure 2: Reduced Malrix R for n = 16

processor of a multi-processor machine, a significant
speed-up in the most computationally demanding stnge
of the solution is achieved. Perhaps morc importantly,
fill-in of empty rows which occurs during the reduction
of non-zero elements in off-diagonal blocks is now
contained within each partition, substantially reducing
the number of floating-point operations required during
the reduction. The BTD matrix which arises during the
Napthali-Sandholm formulation is idcally suited for

such a parallel tcchnique as the blocks responsible for

fill-In during the solution stage, for systems with a
reasonable number of components, are demonstrabl;
small. . o
A trade-off cxists between the desire to reduce fill-
in during the calculation stage and the most efficient
use of the available processors. This trade-off occurs

at the partitioning stage. The reduced matrix R, which

is solved on a single processor prior to the parallel
_solution stage, contains 2(p-1) row blocks, where p is

the number of partitions. Thus, if a 12 row matrix is

divided into four partitions, one for each of four
processors, the “reduced” matrix to be solved contains
six rows. The time required to solve this matrix will
_ far exceed that to reduce the partitioned blocks. A
purtitioning scheme which balances the need to reduce
fill-in with the requirement for the most efficient use of

the available processors can easily be coded given a -

priori information on the matrix size and structure.

Interlinked Distillation Columns

“Straightforward maodifications to Samch’s algorithm
that facilitate handling off-dingonal blocks arising from
sidestream and recycle flows permit the extension of
the method to systems of interlinked
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Figure 3: Block Structure of Jacobian Matrix
‘for Interlinked System of 20 Trays

“columns (Rigure 3). Such systems typically contain

a number of blocks far off the diagonal arising from
sidestreams, recycles and pumparounds. In the trivial
case where the off-BTD blocks fall in the columns
defining any of the partitions (cither the Y, or W,
vector), no modification to the method is needed,
These columns are included within the reduced
matrix and a solution retumed before the parallcl
solution of the partitions begins, In the case

of blocks which fall between these columins (i.c.

© within the ' partitions  themselves) no additional

variables are introduced to the sub-systems solved
on each processor and the solution muy proceed
normally.

‘Two options arise when off-diagonal blocks

" occur in positions outside any of the sub-systems

defined by the partitions, In this case, additional
unsolved variables are brought into any partition

_ containing such blocks, and the sub-system can no

longer be solved independently. For systems with a
minimum number of off-BTD blocks it Is
advantageous to modify the reduced matrix R to
include the row and column of the identified block.

‘While this increases the size of the reduced matrix,

it permits the parallel solution of the sub-systems to
continuc unhindered. For systems for which the
number of off-BTD blocks which full into this
category is prohibitively large, the best approach is
to intelligently re-partition the matrix. The criteria
for such partitioning is no longer a preciscly even
division of labor between each processor, but rather
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Figure 4: Re-partitioning of Matrix to
Accomodate Off-Dingonal Blocks

the inclusion of those columns which contain the off-
. diagonal blocks (Figure 4). In the example shown,
four blocks are displaced from the diagonal, only onc
of which would be solved by the reduced matrix in an
even partitioning strategy (A,, as it lies in'the Y, vector
of the fousth partition). The inclusion of the remaining
three columns in the matrix R would produce a
reduced matrix of, order nine, too large to penmit the
method to retain its cconomy. - An advance re-
partitioning of the matrix to accommodate the off-
diagonal blocks, as shown, permits the reduced matrix
to remain small and produces a load imbalance in the
third and forth processor of no more than fifty percent.

Conclusions

Given the availability of multiprocessor machines,

such as the Alliant FX/8, Cray X-MP/48, and Cray 2,
an algorithm to exploit the capabilitics of these

- machines is clearly advantageous, The structure of the
BTD matrix which ariscs during the Napthali-Sanholm

formulation, together with the favorable size of the off-

diagonal blocks, make their algorithm well suited for a
. parallel solution technique. “The case in which blocks
arising from sidestrenms and recycles may be handled,
with little or no loss of efficiency, is an additional
advantage of the method: Pivoting stratcgies, both a
- priori and concurrent with the calculations, are

necessary to ensure diagonal dominance at every stage
of the solution. - :

The development of concrete and general
guldelines for efficient matrix partitioning will permit
the reduced matiix to remain small In most cases of
interest, ensuring an economical solution, A priority
inclusion policy for columns and rows in the reduced
matrix has been coded and demonstrates reasonable
cfficiency for a wide varicty of cases. ,

- Care must be taken in the case of systems with
a large number of off-BTD blocks if the method is

. to remain viable, Load imbalance between the

processors, if excessive, can sabotage efficlency.
When possible any additional .load should be
assigned to the processors handling the first and last
sub-systems (processors 1 and 4 in our example),’
since these pastitions contain one less column (either
a X, or W, vector) requiring solution, As noted by
Barry et al (1989), this inherent imbalance will cuuse -
processors 2 and 3 to perform 33% more
computations than the remaining two during the

retricval phase. In order to facilitate a more
equitable work balance among the four processors
during the retrieval phase, portions of the Y, and W,
vectors could be shared among processor tasks and
thus copicd into global memory,  However,
cxperiments conceming the trade-off between
workload baluncing and the minimization of shared
data on Alliant FX/8 CEDAR prototypes have shown

. little advantage to such techniques for matrices which

are not uncommonly large,
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