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Summary

In  modeling high pressure phase behavior,
computational problems due to multiple roots
or multiple local optima are well known
(e.g., convergence to trivial or incorrect roots;
convergence to a local but not global optimum).

Many clever techniques have been devised to
alleviate such difficulties, but there has been
no general-purpose, model-independent, and
completely reliable method for solving all phase
behavior problems.

Interval analysis provides a mathematically and
computationally guaranteed method for reliably
solving phase behavior problems.

This is demonstrated using example problems in
phase stability and equilibrium and in computing
critical points, and can be applied to a variety of
other problems, such as computation of azeotropes.



Background—Interval Analysis

A real interval X = [a,b] ={x e R|a <z <b}is
a segment on the real number line and an interval
vector X = (X, X,,...,X,)! is an n-dimensional
rectangle or “box".

Basic interval arithmetic for X = [a,b] and Y =
lc,dlis X op Y ={ropyl|xzeX, yeVY}
where op € {4+, —, X, +}. For example, X +Y =
la 4 ¢, b+ d].

Computed endpoints are rounded out to guarantee
the enclosure.

Interval elementary functions (e.g. exp(X), log(X),
etc.) are also available.

The interval extension F'(X) encloses the range (all
values) of f(x) for x € X.

Interval extensions can be computed using interval
arithmetic (the “natural” interval extension), or with
other techniques.



Interval Approach

e Interval Newton/Generalized Bisection (IN/GB)

— Given a system of equations to solve, an initial
interval (bounds on all variables), and a solution

tolerance
— IN/GB can find (enclose)

with mathematical and computational certainty

either all solutions or determine that no solutions
exist. (e.g., Kearfott 1987,1996; Neumaier 1990)

e A general purpose approach : requires no simplifying
assumptions or problem reformulations

e Details of algorithm given by Schnepper and
Stadtherr (1996)

e Implementation based on modifications of routines
from INTBIS and INTLIB packages (Kearfott and
coworkers)



Interval Approach (Cont’d)

Problem: Solve f(x) = 0 for all roots in interval X(?),

Basic iteration scheme: For a particular subinterval
(box), X*) perform root inclusion test:

e Compute the interval extension (range) of each
function in the system.

e |f 0 is not an element of each range, delete the box.

e If 0 is an element of each range, then compute the
image, N ) of the box by solving

F’(X(k))(N(k) _ X(k)) _ _f(X(k))

e x(¥) is some point in the interior of X (k).

o [ (X(k)) Is an interval extension of the Jacobian
of f(x) over the box X(¥).
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If intersection is sufficiently small, repeat root inclusion
test: otherwise bisect the result of the intersection and
apply root inclusion test to each resulting subinterval.



Example—Phase Stability Analysis

Gibbs energy formulation T' and P constant:

min D(x,v) = G-G,— Z (gf) (s — 2)

1=1

subject to
1 — Z Xr; — 0
i=1
EOS(x,v) =0

e Trivial local optimum (minimum or maximum) at
the feed composition x = z; may be multiple
nontrivial optima. Need technique guaranteed to
find the global minimum.

e If global minimum of D is negative, mixture may
split (unstable or metastable feed).



Example—Phase Stability Analysis (cont.)

e Stationary points of the optimization problem can
be found by solving the nonlinear equation system

6\ (06)] [(oc) (o
Ox; oxy, O0x; Oxy,

1—iazz:0
1=1

EOS(x,v) =0

=0,

z

e Trivial root at the feed composition x = z; may
be multiple nontrivial roots. Need technique
guaranteed to find all the roots.




Example—Phase Stability Analysis (cont.)

Alternative formulation (Nagarajan et al., 1991) for
constant 1" and P based on Helmholtz energy density
E(d), where d is the mole density vector:

) —d i)

min D(d) = E — E, - Z(

e Unconstrained optimization with one less variable.

e Attractive for dealing with new equations of state
(e.g. SAFT) which are presented naturally in the
form E(d).

e Again may have multiple local minima.
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Example—Phase Stability Analysis (cont.)

e Equation system for stationary points in Helmholtz
energy density formulation:

OE\ (0B _
od;) \od;),

1=1,...,n

e Again trivial root at feed, and may have multiple
solutions.

e Interval approach has been applied previously to the
Gibbs energy formulation (Hua et al., 1996,1998),
but not to the Helmholtz energy formulation.
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Example—Alternative Mixing Rules

e Previous applications of the interval method to
phase stability and equilibrium problems used
standard mixing rules — quadratic for a, linear

for b.

e Can the interval approach be used in connection
with more complex mixing rules?

e In the example, the interval method is used to
compute phase equilibrium when the Wong-Sandler
mixing rules are used.
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Wong-Sandler Mixing Rules

RTQ’UJSD’UJS
= = RTD,.b
a D R
Qus
h—
1 — Dws
where .
A DL xia
Dws _ 0O 1Wae
— bi +b;  \/Qii0j;
Qus =2 D it ( >~ Rrr LRy
=1 j7=1
and
AL S, 2.5 TiTjidji
RT 1: X, gk

(NRTL equation)
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Problem 3

C02 (].), HQO (2), T = 550 K, Feed: 21 = 02,
zo = 0.8, PRSV EOS with Wong-Sandler mixing rules

900 T T T T T T T T T

800 .

700

< 600 |
(]
5 - -
CU ~
g_ O- ~ .« p=200 bar
& 500 R )
= « < p=3000 bar ~
| / 7/ N _ N
« p=8000 bar ~
400 ]
° Feed Point Tested
300 - - Equilibrium Curve by IN/GB 1
e Estimated Critical Curve
200 ' L ' L 1 L . .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mole fraction of CO2
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Example—Computing Critical Points

Formulation as system of nonlinear equations
— Determinants

— Method of Heidemann and Khalil (1979)

Nonlinear equation system to be solved for critical
points has unknown number of roots

Interval method provides an approach guaranteed
to find all roots, or to determine with certainty that
there are none.

Example problem computes critical point(s) for
mixture of CHy and HsS at various compositions

Temperature range searched is 110-800 K; Volume
range searched is 1.16 — 4.00.
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Concluding Remarks

Interval analysis is a general-purpose and
model-independent approach for solving phase
behavior problems, providing a mathematical and
computational guarantee of reliability

e Phase stability and equilibrium

— Gibbs energy formulation (e.g., Hua et al., 1998)

— Helmholtz energy density formulation

— Any EOS and mixing rule

— Or any activity coefficient model (e.g., Stadtherr
et al., 1995)

e Critical Points
— Any EOS and mixing rule

e Azeotropes

— Homogeneous (Maier et al., 1998a)
— Heterogeneous

— Reactive (Maier et al., 1998b)
— From any EOS or activity coefficient model
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Concluding Remarks (Cont.)

e Interval analysis provides powerful problem solving
techniques with many other applications in the
modeling of thermodynamics and phase behavior
and in other process modeling problems.

e Continuing advances in computing hardware and
software (e.g., compiler support for interval
arithmetic) will make this approach even more
attractive.

22



Acknowledgments

— ACS PRF 30421-AC9

— NSF CTS595-22835

— NSF DMI96-96110

— NSF EEC97-00537-CRCD
— EPA R824731-01-0

— DOE DE-FG07-96ER14691
— Sun Microsystems, Inc.

For more information:

— Contact Prof. Stadtherr at markst@nd.edu
— See also
http: //www.nd.edu/“markst

23



