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Summary

� In modeling high pressure phase behavior,
computational problems due to multiple roots
or multiple local optima are well known
(e.g., convergence to trivial or incorrect roots;
convergence to a local but not global optimum).

� Many clever techniques have been devised to
alleviate such diÆculties, but there has been
no general-purpose, model-independent, and
completely reliable method for solving all phase
behavior problems.

� Interval analysis provides a mathematically and

computationally guaranteed method for reliably
solving phase behavior problems.

� This is demonstrated using example problems in
phase stability and equilibrium and in computing
critical points, and can be applied to a variety of
other problems, such as computation of azeotropes.
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Background|Interval Analysis

� A real interval X = [a; b] = fx 2 < j a � x � bg is
a segment on the real number line and an interval
vector X = (X1;X2; :::;Xn)

T is an n-dimensional
rectangle or \box".

� Basic interval arithmetic for X = [a; b] and Y =
[c; d] is X op Y = fx op y j x 2 X; y 2 Y g
where op 2 f+;�;�;�g. For example, X + Y =
[a+ c; b+ d].

� Computed endpoints are rounded out to guarantee
the enclosure.

� Interval elementary functions (e.g. exp(X), log(X),
etc.) are also available.

� The interval extension F (X) encloses the range (all
values) of f(x) for x 2 X.

� Interval extensions can be computed using interval
arithmetic (the \natural" interval extension), or with
other techniques.
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Interval Approach

� Interval Newton/Generalized Bisection (IN/GB)

{ Given a system of equations to solve, an initial
interval (bounds on all variables), and a solution
tolerance

{ IN/GB can �nd (enclose)

with mathematical and computational certainty

either all solutions or determine that no solutions
exist. (e.g., Kearfott 1987,1996; Neumaier 1990)

� A general purpose approach : requires no simplifying
assumptions or problem reformulations

� Details of algorithm given by Schnepper and
Stadtherr (1996)

� Implementation based on modi�cations of routines
from INTBIS and INTLIB packages (Kearfott and
coworkers)
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Interval Approach (Cont'd)

Problem: Solve f(x) = 0 for all roots in interval X(0).

Basic iteration scheme: For a particular subinterval
(box), X(k), perform root inclusion test:

� Compute the interval extension (range) of each
function in the system.

� If 0 is not an element of each range, delete the box.

� If 0 is an element of each range, then compute the
image, N(k), of the box by solving

F 0(X(k))(N(k) � x
(k)) = �f(x(k))

� x
(k) is some point in the interior of X(k).

� F 0
�
X

(k)
�
is an interval extension of the Jacobian

of f(x) over the box X(k).
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x1

x2

X
(k) N

(k)

There was no solution in X
(k)
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x1

x2

X
(k)

N
(k)

Unique solution in X

Point Newton method will converge to it

(k)

This solution is in N
(k)
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x1

x2

X
(k)

N
(k)

Any solutions in X      are in

intersection of X      and N

(k)

(k) (k)

If intersection is suÆciently small, repeat root inclusion
test; otherwise bisect the result of the intersection and
apply root inclusion test to each resulting subinterval.
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Example{Phase Stability Analysis

Gibbs energy formulation T and P constant:

min
x;v

D(x; v) = Ĝ� Ĝz �
nX
i=1

 
@Ĝ

@xi

!
z

(xi � zi)

subject to

1�
nX
i=1

xi = 0

EOS(x; v) = 0

� Trivial local optimum (minimum or maximum) at
the feed composition x = z; may be multiple
nontrivial optima. Need technique guaranteed to
�nd the global minimum.

� If global minimum of D is negative, mixture may
split (unstable or metastable feed).
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Example{Phase Stability Analysis (cont.)

� Stationary points of the optimization problem can
be found by solving the nonlinear equation system

" 
@Ĝ

@xi

!
�
 
@Ĝ

@xn

!#
�
" 

@Ĝ

@xi

!
�
 
@Ĝ

@xn

!#
z

= 0;

i = 1; : : : ; n� 1

1�
nX
i=1

xi = 0

EOS(x; v) = 0

� Trivial root at the feed composition x = z; may
be multiple nontrivial roots. Need technique
guaranteed to �nd all the roots.

9



Example{Phase Stability Analysis (cont.)

Alternative formulation (Nagarajan et al., 1991) for
constant T and P based on Helmholtz energy density
E(d), where d is the mole density vector:

min
d

D(d) = E �Ez �
nX
i=1

�
@E

@di

�
z

(di � dz;i)

� Unconstrained optimization with one less variable.

� Attractive for dealing with new equations of state
(e.g. SAFT) which are presented naturally in the
form E(d).

� Again may have multiple local minima.
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Example{Phase Stability Analysis (cont.)

� Equation system for stationary points in Helmholtz
energy density formulation:

�
@E

@di

�
�
�
@E

@di

�
z

= 0

i = 1; : : : ; n

� Again trivial root at feed, and may have multiple
solutions.

� Interval approach has been applied previously to the
Gibbs energy formulation (Hua et al., 1996,1998),
but not to the Helmholtz energy formulation.
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Example{Alternative Mixing Rules

� Previous applications of the interval method to
phase stability and equilibrium problems used
standard mixing rules | quadratic for a, linear
for b.

� Can the interval approach be used in connection
with more complex mixing rules?

� In the example, the interval method is used to
compute phase equilibrium when the Wong-Sandler
mixing rules are used.
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Wong-Sandler Mixing Rules

a =
RTQwsDws

1�Dws

= RTDwsb

b =
Qws

1�Dws

where

Dws =
AE
1

cRT
+

nX
i=1

xiaii

RTbi

Qws =

nX
i=1

nX
j=1

xixj

�
bi + bj

2
�
p
aiiajj

RT
(1� kij)

�

and
AE
1

RT
=
X
i

xi

 P
j xj�jigjiP
k xkgki

!

(NRTL equation)
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Problem 3

CO2 (1), H2O (2), T = 550 K, Feed: z1 = 0:2,
z2 = 0:8, PRSV EOS with Wong-Sandler mixing rules
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← p=25000 bar

← p=3000 bar

← p=200 bar

← p=8000 bar

Feed Point Tested
Equilibrium Curve by IN/GB
Estimated Critical Curve
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Example{Computing Critical Points

� Formulation as system of nonlinear equations

{ Determinants
{ Method of Heidemann and Khalil (1979)

� Nonlinear equation system to be solved for critical
points has unknown number of roots

� Interval method provides an approach guaranteed
to �nd all roots, or to determine with certainty that
there are none.

� Example problem computes critical point(s) for
mixture of CH4 and H2S at various compositions

� Temperature range searched is 110{800 K; Volume
range searched is 1:1b� 4:0b.
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Concluding Remarks

Interval analysis is a general-purpose and
model-independent approach for solving phase
behavior problems, providing a mathematical and

computational guarantee of reliability

� Phase stability and equilibrium

{ Gibbs energy formulation (e.g., Hua et al., 1998)
{ Helmholtz energy density formulation
{ Any EOS and mixing rule
{ Or any activity coeÆcient model (e.g., Stadtherr

et al., 1995)

� Critical Points

{ Any EOS and mixing rule

� Azeotropes

{ Homogeneous (Maier et al., 1998a)
{ Heterogeneous
{ Reactive (Maier et al., 1998b)
{ From any EOS or activity coeÆcient model

21



Concluding Remarks (Cont.)

� Interval analysis provides powerful problem solving
techniques with many other applications in the
modeling of thermodynamics and phase behavior
and in other process modeling problems.

� Continuing advances in computing hardware and
software (e.g., compiler support for interval
arithmetic) will make this approach even more
attractive.

22



� Acknowledgments

{ ACS PRF 30421-AC9
{ NSF CTS95-22835
{ NSF DMI96-96110
{ NSF EEC97-00537-CRCD
{ EPA R824731-01-0
{ DOE DE-FG07-96ER14691
{ Sun Microsystems, Inc.

� For more information:

{ Contact Prof. Stadtherr at markst@nd.edu
{ See also

http://www.nd.edu/~markst

23


