Global Nonlinear Parameter Estimation Using Interval Analysis: Parallel Computing Strategies

Chao-Yang Gau and Mark A. Stadtherr¹ Department of Chemical Engineering University of Notre Dame Notre Dame, IN 46556 USA

AIChE Annual Meeting, Miami, FL, November 15–20, 1998 Session Number 244: High Performance Computing

¹Author to whom all correspondence should be addressed. Phone: (219)631-9318; Fax: (219)631-8366; E-mail: markst@nd.edu

Outline

- Background
 - Parameter Estimation
 - Interval Newton Method
- Sequential Example
- Parallel Computing Strategies
- Parallel Examples

Background—Parameter Estimation

- Observations $y_{\mu i}$ of $i = 1, \ldots, q$ responses from $\mu = 1, \ldots, p$ experiments are available.
- Responses are to be fit to a model $y_{\mu i} = f_i(\mathbf{x}_{\mu}, \boldsymbol{\theta})$ with independent variables $\mathbf{x}_{\mu} = (x_{\mu 1}, \dots, x_{\mu m})^T$ and parameters $\boldsymbol{\theta} = (\theta_1, \dots, \theta_n)^T$.
- Various objective functions $\phi(\theta)$ can be used to determine the parameter values that provide the "best" fit, e.g.
 - Relative least squares
 - Maximum likelihood
- Optimization problem to determine parameters can be formulated as either a constrained or unconstrained problem. In the unconstrained case, the experimental observations are substituted directly into the objective function. The unconstrained formulation is used here.

Background—Parameter Estimation (continued)

• Assuming a relative least squares objective and using an unconstrained formulation, the problem is

$$\min_{\boldsymbol{\theta}} \phi(\boldsymbol{\theta}) = \sum_{i=1}^{q} \sum_{\mu=1}^{p} \left[\frac{y_{\mu i} - f_i(\mathbf{x}_{\mu}, \boldsymbol{\theta})}{y_{\mu i}} \right]^2$$

- Equation-solving approach:
 - A common approach for solving this problem is to use the gradient of $\phi(\theta)$ and to seek the stationary points of $\phi(\theta)$ by solving $\mathbf{g}(\theta) \equiv$ $\nabla \phi(\theta) = \mathbf{0}$.
 - Interval Newton technique can provide the capacity to find all roots, and insure that the global minimum is found.
- Optimization approach:
 - Interval Newton can be combined with an upper bound test so that roots of $g(\theta) = 0$ that cannot be the global minimum need not be found.

Interval Newton Method

- For the system of nonlinear equations g(θ) = 0, find (enclose) with mathematical and computational certainty all roots in a given initial interval Θ⁽⁰⁾ or determine that there are none.
- At iteration k, given the interval $\Theta^{(k)}$, if $0 \in \mathbf{G}(\Theta^{(k)})$ solve the linear interval equation system

$$G'(\mathbf{\Theta}^{(k)})(\mathbf{N}^{(k)} - \boldsymbol{\theta}^{(k)}) = -\mathbf{g}(\boldsymbol{\theta}^{(k)})$$

for the "image" $\mathbf{N}^{(k)}$, where $\mathbf{G}(\mathbf{\Theta}^{(k)})$ is an interval extension of $\mathbf{g}(\boldsymbol{\theta})$ and $G'(\mathbf{\Theta}^{(k)})$ an interval extension of its Jacobian over the current interval $\mathbf{\Theta}^{(k)}$, and $\boldsymbol{\theta}^{(k)}$ is a point inside $\mathbf{\Theta}^{(k)}$.

- Any root $\theta^* \in \Theta^{(k)}$ is also contained in the image $\mathbf{N}^{(k)}$, suggesting the iteration scheme $\Theta^{(k+1)} = \Theta^{(k)} \cap \mathbf{N}^{(k)}$ (Moore, 1966).
- Interval Newton also provides an existence and uniqueness test:

Interval Newton Method (continued)

- True: If N^(k) ⊂ Θ^(k), then there is a unique zero of g(θ) in Θ^(k), and the point Newton method will converge quadratically to the root starting from any point in Θ^(k).
- False: If $\Theta^{(k)} \cap \mathbf{N}^{(k)} = \emptyset$ or $0 \notin \mathbf{G}(\Theta^{(k)})$, then there is no root in $\Theta^{(k)}$.
- *Unknown*: Otherwise, then either:
 - Continue with the next iterate $\Theta^{(k+1)}$ if it is sufficiently smaller than $\mathbf{N}^{(k)}$, or
 - **Bisect** $\Theta^{(k+1)}$ and perform interval Newton on the resulting intervals.

This is the interval Newton/generalized bisection (IN/GB) approach.

- Basically, it follows a **branch-and-prune** scheme :
 - If test is true or false, then prune node.
 - If test is unknown and bisect, then branch (bisect node), generating a binary tree structure.

Interval Newton Method (continued)

- For optimization problems, a node is pruned if the interval extension Φ(Θ) of the objective φ(θ) has a lower bound greater than the current best (least) upper bound.
- Best upper bound is determined and updated by:
 - Upper bound of $\Phi(\Theta)$, and/or
 - Point function evaluations with interval arithmetic in each interval tested, and/or
 - Running a local optimizer.
 - Verify local methods with interval arithmetic.

Sequential Example Problem : Parameter Estimation in VLE Modeling

- Goal: Determine energy parameter values in the Wilson model for the binary system water(1) and formic acid(2) using the relative least squares objective (Gau and Stadtherr, FOCAPO 98).
- Twelve problems, each a different data set from the DECHEMA VLE Data Collection (Gmehling *et al.*, 1977-1990) were solved using IN/GB approach to determine the globally optimal value of parameters.
- Using the interval approach, the global minimum was found for all problems.
- For several problems the result presented in DECHEMA represents a local not global minimum, and does not achieve the globally best fit.

TABLE 1: IN/GB results vs. DECHEMA values

No. of	Minima	2	2	2	2	ς	2	2	с	2	с	ŝ	2
IN/GB	$\phi(oldsymbol{ heta})$	0.0342	0.0106	0.0151	0.353	0.0257	0.0708	0.0914*	0.0342*	0.111*	0.0819*	0.0372*	0.0502
	$ heta_2$	759	1038	1167	984	1509	-1120	1250	1404	966	1394	1519	-1055
	$ heta_1$	-168	-278	-308	-282	-365	1065	-331	-340	-285	-329	-330	807
DECHEMA	$\phi(oldsymbol{ heta})$	0.0342	0.0106	0.0151	0.353	0.0257	0.0708	0.141	0.0459	0.165	0.151	0.0399	0.0502
	$ heta_2$	759	1038	1181	985	1513	-1122	-985	-608	-718	-663	-762	-1058
	$ heta_1$	-195	-278	-310	-282	-366	1067	892	370	539	450	558	812
P	(mm Hg)	260	760	760	760	760	760	200	200	100	100	70	25
Data	Set	1	7	m	4	ß	9	7*	*∞	*6	10*	11*	12

*New globally optimal parameters found!

Parallel Computing and IN/GB

- For practical problems, the binary tree that needs to be searched may be quite large.
- Multiple processors can be used to concurrently perform IN/GB in disjoint parts (intervals) of the binary tree.
- The binary trees may be highly irregular, and can result in highly uneven distribution of work among processors and thus poor overall performance.
- Need an effective load scheduling and load balancing scheme to do parallel tree search efficiently.
- Three types of algorithms designed for networkbased parallel computing were studied.
 - Synchronous Work Stealing (SWS)
 - Synchronous Diffusive Load Balancing (SDLB)
 - Asynchronous Diffusive Load Balancing (ADLB)

Work Scheduling and Load Balancing

- Objective: Schedule the workload among processors to minimize communication delays and execution, and maximize computing resource utilization.
- Use Dynamic Scheduling
 - Redistribute workload concurrently at runtime.
 - Transfer workload from a heavily loaded processor to a lightly loaded one, performing load balancing.
- Use Distributed Load Balancing
 - Each processor locally makes a workload placement decision to maintain a local interval stack and prevent itself from becoming idle.
 - Alleviate bottleneck effects presented in the centralized policy (manager/worker).
 - Improvements in communication overhead could provide high scalability for the multi-processor computation.

Synchronous Work Stealing

- Periodically update workload information, workflg, and any improved upper bound value (for optimization) using synchronous global (all-to-all) blocking communication.
- Once idle, steal one interval (box) from the processor with the heaviest work load.
- Major problems
 - Large network overhead (global, all-to-all)
 - Large idle time from process synchronism and blocking communication

Synchronous Diffusive Load Balancing

- Use Local Communication : Processors periodically exchange workload infomation and units of work with their immediate neighbors to maintain a moderate workload, not too heavy or too light.
- Reduce the appearance of idle states.
- Workload adjusting scheme:

u(j) = 1/2(workflg(i) - workflg(j))

i: local processor, j neighbor processor (a) Positive u(j): send intervals(boxes). (b) Negative u(j): receive intervals (boxes).

- Major problems
 - Synchronism inefficiency.
 - Termination effects arising from local communication strategy and diffusive message propagation.

Synchronous Diffusive Load Balancing (Continued)

14

Asynchronous Diffusive Load Balancing

- Use asynchronous nonblocking comm., MPI_ISEND, to update workload info. and transfer workload, and break process synchronization.
- Overlap communication and computation
- Just maintain the local workload (number of stack boxes) higher than some threshold.

Test Problem for Parallel Computation

 Parameter estimation for data set-10 of the water and formic acid system using the maximum likehood estimator as the objective function:

$$\phi(\boldsymbol{\theta}, \boldsymbol{V}) = (n + \mu + 1) \log V_1 V_2$$

$$+\sum_{i=1}^{n}\sum_{\mu=1}^{p}\left[\frac{\gamma_{\mu i,\text{calc}}(\boldsymbol{\theta})-\gamma_{\mu i,\text{exp}}}{V_{\mu}}\right]^{2},$$

where V is a diagonal covariance matrix with unknown elements V_{μ} .

- This four-variable problem can also be treated as either an equation-solving or global optimization problem.
- This is a difficult problem with five stationary points.

Testing Environment

- Software: Implemented in Fortran 77 using the portable message-passing interface (MPI) protocol
- Physical Hardware: Sun Ultra 1/140e workstations connected by switched Ethernet

Virtual Network: **Global Communication** Star Network

Used for SWS

Local Communication

1-D Torus Network Ρ Ρ

Used for SDLB and ADLB

Comparison of Three Algorithms for Equation-Solving Problem - Speedup

Comparison of Three Algorithms for Equation-Solving Problem - Efficiency

Results for Optimization Problems Using ADLB

Results for Optimization Problems Using ADLB (continued)

- Superlinear Speedup: Broadcast of least upper bounds results in less work to do in parallel case.
- Speedup Anomaly: Results vary from run to run because of different timing in finding and broadcasting improved upper bound.

Other Applications

- The developed dynamic load balancing algorithms are general-purpose, and are straitforward to apply in solving other problems.
- Example: A six-component phase stability problem (Tessier *et. al.*, 1998) was set up and treated as a global optimization problem solved using IN/GB with upper bound test.
- Parallel runs done using ADLB algorithm.
- Superlinear speedup and speedup anomalies can also be observed in this kind of optimization problem.

Results for Phase Stability Optimization Problem

Concluding Remarks

- Interval analysis is a general-purpose and modelindependent approach for solving parameter estimation problems, providing a mathematical and computational guarantee that the global optimum is found.
 - Other VLE models could be used.
 - Other objective functions (e.g., error-in-variables method) could be used.
 - Other types of data could be used.
- Three dynamic load balancing algorithms have been developed to enhance the parallel computing efficiency of interval approach.
- The best performance was obtained when using asynchronous diffusive load balancing algorithm (ADLB), resulting in nearly linear speedup, for equation-solving problems, and superlinear speedup for optimization problems.

- Acknowledgments
 - ACS PRF 30421-AC9
 - NSF CTS95-22835, DMI96-96110, EEC97-00537-CRCD
 - EPA R824731-01-0
 - DOE DE-FG07-96ER14691
 - Sun Microsystems, Inc.
- For more information:
 - Contact Prof. Stadtherr at markst@nd.edu
 - See also http://www.nd.edu/~markst