
Global Nonlinear Parameter

Estimation Using Interval Analysis:

Parallel Computing Strategies

Chao-Yang Gau and Mark A. Stadtherr1

Department of Chemical Engineering
University of Notre Dame

Notre Dame, IN 46556 USA

AIChE Annual Meeting, Miami, FL, November 15{20, 1998

Session Number 244: High Performance Computing

1Author to whom all correspondence should be addressed. Phone:
(219)631-9318; Fax: (219)631-8366; E-mail: markst@nd.edu

Outline

� Background

{ Parameter Estimation
{ Interval Newton Method

� Sequential Example

� Parallel Computing Strategies

� Parallel Examples

2

Background|Parameter Estimation

� Observations y�i of i = 1; : : : ; q responses from
� = 1; : : : ; p experiments are available.

� Responses are to be �t to a model y�i = fi(x�;�)
with independent variables x� = (x�1; : : : ; x�m)

T

and parameters � = (�1; : : : ; �n)
T .

� Various objective functions �(�) can be used to
determine the parameter values that provide the
"best" �t, e.g.

{ Relative least squares
{ Maximum likelihood

� Optimization problem to determine parameters
can be formulated as either a constrained or
unconstrained problem. In the unconstrained
case, the experimental observations are substituted
directly into the objective function. The
unconstrained formulation is used here.

3

Background|Parameter Estimation

(continued)

� Assuming a relative least squares objective and using
an unconstrained formulation, the problem is

min
�

�(�) =

qX
i=1

pX
�=1

�
y�i � fi(x�;�)

y�i

�2

� Equation-solving approach:

{ A common approach for solving this problem is
to use the gradient of �(�) and to seek the
stationary points of �(�) by solving g(�) �
r�(�) = 0.

{ Interval Newton technique can provide the
capacity to �nd all roots, and insure that the
global minimum is found.

� Optimization approach:

{ Interval Newton can be combined with an upper
bound test so that roots of g(�) = 0 that cannot
be the global minimum need not be found.

4

Interval Newton Method

� For the system of nonlinear equations g(�) = 0, �nd
(enclose) with mathematical and computational

certainty all roots in a given initial interval �(0) or
determine that there are none.

� At iteration k, given the interval �(k), if 0 2

G(�(k)) solve the linear interval equation system

G0(�(k))(N(k) � �(k)) = �g(�(k))

for the \image" N(k), where G(�(k)) is an
interval extension of g(�) and G0(�(k)) an interval
extension of its Jacobian over the current interval
�(k), and �(k) is a point inside �(k).

� Any root ��
2 �(k) is also contained in the image

N(k), suggesting the iteration scheme �(k+1) =
�(k) \ N(k) (Moore, 1966).

� Interval Newton also provides an existence and
uniqueness test:

5

Interval Newton Method (continued)

� True: If N(k) � �(k), then there is a unique zero
of g(�) in �(k), and the point Newton method will
converge quadratically to the root starting from any
point in �(k).

� False: If �(k) \ N(k) = ; or 0 =2 G(�(k)), then
there is no root in �(k).

� Unknown: Otherwise, then either:

{ Continue with the next iterate �(k+1) if it is
suÆciently smaller than N(k), or

{ Bisect �(k+1) and perform interval Newton on
the resulting intervals.

This is the interval Newton/generalized bisection
(IN/GB) approach.

� Basically, it follows a branch-and-prune scheme :

{ If test is true or false, then prune node.
{ If test is unknown and bisect, then branch (bisect
node), generating a binary tree structure.

6

Interval Newton Method (continued)

� For optimization problems, a node is pruned if the
interval extension �(�) of the objective �(�) has
a lower bound greater than the current best (least)
upper bound.

� Best upper bound is determined and updated by:

{ Upper bound of �(�), and/or
{ Point function evaluations with interval
arithmetic in each interval tested, and/or

{ Running a local optimizer.
{ Verify local methods with interval arithmetic.

7

Sequential Example Problem :

Parameter Estimation in VLE Modeling

� Goal: Determine energy parameter values in the
Wilson model for the binary system water(1) and
formic acid(2) using the relative least squares
objective (Gau and Stadtherr, FOCAPO 98).

� Twelve problems, each a di�erent data set from the
DECHEMA VLE Data Collection (Gmehling et al.,
1977-1990) were solved using IN/GB approach to
determine the globally optimal value of parameters.

� Using the interval approach, the global minimum
was found for all problems.

� For several problems the result presented in
DECHEMA represents a local not global minimum,
and does not achieve the globally best �t.

8

T
A
B
L
E
1
:
IN
/
G
B
re
su
lt
s
vs
.
D
E
C
H
E
M
A
v
a
lu
e
s

D
at
a

P

D
E
C
H
E
M
A

IN
/
G
B

N
o
.
o
f

S
et

(m
m
H
g)

�
1

�
2

�
(�
)

�
1

�
2

�
(�
)

M
in
im
a

1

76
0

-1
95

75
9

0.
03
42

-1
68

75
9

0
.0
3
4
2

2

2

76
0

-2
78

10
38

0.
01
06

-2
78

10
3
8

0
.0
1
0
6

2

3

76
0

-3
10

11
81

0.
01
51

-3
08

11
6
7

0
.0
1
5
1

2

4

76
0

-2
82

98
5

0.
35
3

-2
82

98
4

0
.3
5
3

2

5

76
0

-3
66

15
13

0.
02
57

-3
65

15
0
9

0
.0
2
5
7

3

6

76
0

10
67

-1
12
2

0.
07
08

10
65

-1
12
0

0
.0
7
0
8

2

7*

20
0

89
2

-9
85

0.
14
1

-3
3
1

1
2
5
0

0
.0
9
1
4
*

2

8*

20
0

37
0

-6
08

0.
04
59

-3
4
0

1
4
0
4

0
.0
3
4
2
*

3

9*

10
0

53
9

-7
18

0.
16
5

-2
8
5

9
9
6

0
.1
1
1
*

2

10
*

10
0

45
0

-6
63

0.
15
1

-3
2
9

1
3
9
4

0
.0
8
1
9
*

3

11
*

70

55
8

-7
62

0.
03
99

-3
3
0

1
5
1
9

0
.0
3
7
2
*

3

12

25

81
2

-1
05
8

0.
05
02

80
7

-1
05
5

0
.0
5
0
2

2

*N
ew
gl
ob
al
ly
op
ti
m
al
p
ar
am
et
er
s
fo
u
n
d
!

9

Parallel Computing and IN/GB

� For practical problems, the binary tree that needs
to be searched may be quite large.

� Multiple processors can be used to concurrently
perform IN/GB in disjoint parts (intervals) of the
binary tree.

� The binary trees may be highly irregular, and can
result in highly uneven distribution of work among
processors and thus poor overall performance.

� Need an e�ective load scheduling and load balancing
scheme to do parallel tree search eÆciently.

� Three types of algorithms designed for network-
based parallel computing were studied.

{ Synchronous Work Stealing (SWS)
{ Synchronous Di�usive Load Balancing (SDLB)
{ Asynchronous Di�usive Load Balancing (ADLB)

10

Work Scheduling and Load Balancing

� Objective: Schedule the workload among processors
to minimize communication delays and execution,
and maximize computing resource utilization.

� Use Dynamic Scheduling

{ Redistribute workload concurrently at runtime.
{ Transfer workload from a heavily loaded processor
to a lightly loaded one, performing load balancing.

� Use Distributed Load Balancing

{ Each processor locally makes a workload
placement decision to maintain a local interval
stack and prevent itself from becoming idle.

{ Alleviate bottleneck e�ects presented in the
centralized policy (manager/worker).

{ Improvements in communication overhead could
provide high scalability for the multi-processor
computation.

11

Synchronous Work Stealing

� Periodically update workload information, workflg,
and any improved upper bound value (for
optimization) using synchronous global (all-to-all)
blocking communication.

� Once idle, steal one interval (box) from the
processor with the heaviest work load.

� Major problems

{ Large network overhead (global, all-to-all)
{ Large idle time from process synchronism and
blocking communication

P0 P1 P2 P3

After T tests

 MPI_ALLGATHER
workflg = no. of stack boxes

Make placement decision

Transfer workload

Comm.

Comp.

Comp.

box box

12

Synchronous Di�usive Load Balancing

� Use Local Communication : Processors periodically
exchange workload infomation and units of work
with their immediate neighbors to maintain a
moderate workload , not too heavy or too light.

� Reduce the appearance of idle states.

� Workload adjusting scheme:

u(j) = 1=2(workflg(i)� workflg(j))

i: local processor, j neighbor processor
(a) Positive u(j): send intervals(boxes).
(b) Negative u(j): receive intervals (boxes).

� Major problems

{ Synchronism ineÆciency.
{ Termination e�ects arising from local
communication strategy and di�usive message
propagation.

13

Synchronous Di�usive Load Balancing

(Continued)

P0 P1 P2 P3

After T tests

MPI_SENDRECV
neighbors’ workflg

Make palcement decison

Workload transfer

Concentration before

 after

Comp.

Comm.

Comp.

box box

14

Asynchronous Di�usive Load Balancing

� Use asynchronous nonblocking comm., MPI ISEND,
to update workload info. and transfer workload, and
break process synchronization.

� Overlap communication and computation

� Just maintain the local workload (number of stack
boxes) higher than some threshold.

Before each test

Send out workflg(i)

Receive workflg(j)

Send out boxes

 Receive boxes

Pi

Comp.

Comp.

Comp.

Comp.

Comp.

Comm.

Comm.

Comm.

Comm.

(Flexible sequence)

15

Test Problem for Parallel Computation

� Parameter estimation for data set-10 of the water
and formic acid system using the maximum likehood
estimator as the objective function:

�(�; V) = (n+ �+ 1) log V1V2

+

nX
i=1

pX
�=1

�
�i;calc(�)� �i;exp

V�

�2
;

where V is a diagonal covariance matrix with
unknown elements V�.

� This four-variable problem can also be treated as
either an equation-solving or global optimization
problem.

� This is a diÆcult problem with �ve stationary points.

16

Testing Environment

� Software: Implemented in Fortran 77 using the
portable message-passing interface (MPI) protocol

� Physical Hardware: Sun Ultra 1/140e workstations
connected by switched Ethernet

M
$

M M M

$ $ $P P P P ⋅ ⋅ ⋅⋅ ⋅ ⋅

SWITCHED ETHERNET

� Virtual Network:

P

P

P

P P

P

P P

Star Network 1-D Torus Network

P

P

P

P P

P

P P

Global Communication Local Communication

Used for SWS Used for SDLB and ADLB

17

Comparison of Three Algorithms for

Equation-Solving Problem - Speedup

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Number of Processors

S
pe

ed
up

SWS
SDLB
ADLB
Linear Speedup

18

Comparison of Three Algorithms for

Equation-Solving Problem - EÆciency

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy

SWS
SDLB
ADLB

19

Results for Optimization Problems

Using ADLB

2 4 6 8 10 12 14 16

5

10

15

20

25

30

35

40

45

50

55

Number of Processors

S
pe

ed
up

ADLB
Linear Speedup

20

Results for Optimization Problems

Using ADLB (continued)

� Superlinear Speedup: Broadcast of least upper
bounds results in less work to do in parallel case.

� Speedup Anomaly: Results vary from run to
run because of di�erent timing in �nding and
broadcasting improved upper bound.

21

Other Applications

� The developed dynamic load balancing algorithms
are general-purpose, and are straitforward to apply
in solving other problems.

� Example: A six-component phase stability problem
(Tessier et. al., 1998) was set up and treated as
a global optimization problem solved using IN/GB
with upper bound test.

� Parallel runs done using ADLB algorithm.

� Superlinear speedup and speedup anomalies can also
be observed in this kind of optimization problem.

22

Results for Phase Stability

Optimization Problem

2 4 6 8 10 12 14 16

20

40

60

80

100

120

140

Number of Processors

S
pe

ed
up

ADLB
Linear Speedup

23

Concluding Remarks

� Interval analysis is a general-purpose and model-

independent approach for solving parameter
estimation problems, providing a mathematical

and computational guarantee that the global
optimum is found.

{ Other VLE models could be used.
{ Other objective functions (e.g., error-in-variables
method) could be used.

{ Other types of data could be used.

� Three dynamic load balancing algorithms have
been developed to enhance the parallel computing
eÆciency of interval approach.

� The best performance was obtained when using
asynchronous di�usive load balancing algorithm
(ADLB), resulting in nearly linear speedup, for
equation-solving problems, and superlinear speedup
for optimization problems.

24

� Acknowledgments

{ ACS PRF 30421-AC9
{ NSF CTS95-22835, DMI96-96110,
EEC97-00537-CRCD

{ EPA R824731-01-0
{ DOE DE-FG07-96ER14691
{ Sun Microsystems, Inc.

� For more information:

{ Contact Prof. Stadtherr at markst@nd.edu
{ See also

http://www.nd.edu/~markst

25

