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Computing Reactive Azeotropes

� Why?

{ Identify limitations/bene�ts for reactive distillation
operations

{ Evaluate thermodynamic models
{ Reduce time required for costly experimentation

� How?

{ Solve a system of nonlinear equations derived
from equifugacity and chemical equilibrium
conditions

{ This equation system has an unknown number of
solutions
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Reactive Azeotropy

� Equality of Transformed Mole Fractions (Ung and
Doherty, 1995)

Yi = Xi; 8i 2 CN

Yi =

�
yi � �Ti V

�1yRef
1� �TTOTV

�1yRef

�

Xi =

�
xi � �Ti V

�1xRef
1� �TTOTV

�1xRef

�

{ CN is the set of non-reference components
{ V is the matrix of stoichiometric coeÆcients for
the reference components

{ �i is the vector of stoichiometric coeÆcients for
component i

{ �TOT is the vector of total mole generation for
each non-reference component over all reactions
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Reactive Azeotropy (Cont'd)

� Phase Equilibrium

yiP = xi

L
i (T )P

sat
i (T ) ; 8i 2 C

{ C is the set of all components

� Chemical Equilibrium

Kr (T ) =
Y
i2C

a�rii ; 8r 2 R

{ R is the set of independent chemical reactions

� Summation Constraints

X
i2CN

Xi =
X
i2CN

Yi = 1

X
i2C

xi =
X
i2C

yi = 1
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Formulation

� Need to choose a set of independent variables and
equations

� Solve phase equilibrium relations for yi, and
substitute into equations for Yi

� Independent variables are the liquid phase mole
fractions and temperature

� Formulation is

Xi (x; T ) = Yi (x; T ) ; 8i 2 CN

Kr (T ) =
Y
i2C

a�rii (x; T ) ; 8r 2 R

X
i2C

xi = 1
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Formulation (cont'd)

� All homogeneous reactive azeotropes are solutions

� Stability of solutions solved for separately, using the
same solution technique

� Need solution method guaranteed to �nd all
solutions, or to determine with certainty that there
are none.
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Some Current Solution Methods

� Various local methods | Fast, but initialization
dependent and hard to �nd all roots

� Ung and Doherty (1995) derived transformed
composition variables

{ Reduced the number of degrees of freedom
{ Convenient statement of reactive azeotropy
( Xi = Yi )

� Okasinski and Doherty (1997) used arc-length
continuation with the equilibrium constant as the
homotopy parameter
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Interval Approach

� Interval Newton/Generalized Bisection (IN/GB)

{ Given a system of equations to solve, an initial
interval (bounds on all variables), and a solution
tolerance

{ IN/GB can �nd (enclose)

with mathematical and computational certainty

either all solutions or that no solutions exist. (e.g.,
Kearfott 1987,1996; Neumaier 1990)

� A general purpose approach : requires no simplifying
assumptions or problem reformulations

� Details of algorithm given by Schnepper and
Stadtherr (1996)

� Implementation based on modi�cations of routines
from INTBIS and INTLIB packages (Kearfott and
coworkers)
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Interval Approach (Cont'd)

Problem: Solve f(x) = 0 for all roots in interval X(0).

Basic iteration scheme: For a particular subinterval
(box), X(k), perform root inclusion test:

� Compute the range of each function in the system.

� If 0 is not an element of each range, delete the box.

� If 0 is an element of each range, then compute the
image, N(k), of the box by solving

F 0(X(k))(N(k)
� x

(k)) = �f(x(k))

� x(k) is some point in the interior of X(k).

� F 0
�
X

(k)
�
is an interval extension of the Jacobian

of f(x) over the box X(k).
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x1

x2

X
(k) N

(k)

There was no solution in X
(k)
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x1

x2

X
(k)

N
(k)

Unique solution in X

Point Newton method will converge to it

(k)

This solution is in N
(k)
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x1

x2

X
(k)

N
(k)

Any solutions in X      are in

intersection of X      and N

(k)

(k) (k)

If intersection is suÆciently small, repeat root inclusion
test; otherwise bisect the result of the intersection and
apply root inclusion test to each resulting subinterval.
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Example Problems

� First 2 examples previously solved by Barbosa and
Doherty (1988)

� Third example previously solved by Okasinski and
Doherty (1997)

� Vapor phase modeled as ideal

� Full temperature dependence of 
i is included

� Times reported for Sun Ultra 30 workstation
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Results - Problem 1

� A+B $ C

� 1 atm, 10-200 ÆC

� �GÆ

f = �8314J=mol, ideal liquid phase

Reactive Azeotrope
xi yi

A 0.07 0.17
B 0.50 0.55
C 0.43 0.28

T = 121:7ÆC

� XA = YA = 0:35

� XB = YB = 0:65

� CPU time = 2.1 sec
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Results - Problem 2

� A+B $ C +D

� 1 atm, 10-200 ÆC

� �GÆ

f = �831:4J=mol, ideal liquid phase

Reactive Azeotrope
xi yi

A 0.19 0.07
B 0.36 0.24
C 0.21 0.33
D 0.24 0.36

T = 89:5ÆC

� XA = YA = 0:43

� XB = YB = 0:60

� XC = YC = �0:03

� CPU time = 12.2 sec
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Results - Problem 3

� Isobutene+Methanol $MTBE

� 8 atm, 10-200 ÆC

� Keq = 49:0, Wilson Activity CoeÆcient Model

Reactive Azeotropes
xi yi xi yi

i� C4 0.01 0.07 0.04 0.17
MeOH 0.40 0.44 0.12 0.24
MTBE 0.59 0.49 0.84 0.59

T = 118:0ÆC T = 119:1ÆC

� XI1 = YI1 = 0:38

� XMe1 = YMe1 = 0:62

� XI2 = YI2 = 0:48

� XMe2 = YMe2 = 0:52

� CPU time (total) = 5.6 sec
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Concluding Remarks

� Interval analysis provides a general-purpose
approach for solving reactive azeotrope problems,
providing a mathematical and computational
guarantee of reliability

� Can be used in conjunction with other activity
coeÆcient models and EOS.

� Can also be used with multiple reactions and in the
presence of inerts.

� Interval analysis is also a general-purpose approach
for solving other types of azeotrope problems:
nonreactive, homogeneous (Maier et al., 1998) or
heterogeneous.

� Interval analysis provides powerful problem solving
techniques with many other applications in the
modeling of phase behavior and in other process
modeling problems (e.g., Schnepper and Stadtherr,
1996; Hua et al., 1998)
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