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1 Introduction

Computational problems such as convergence to a trivial or incorrect root, or to a local
rather than global optimum, or failure to converge to a physically feasible solution at all, are
not uncommon diÆculties in the modeling of high pressure phase behavior. Many techniques
have been developed in attempts to provide increased reliability. However, until now, there
has been no general-purpose technique that could provide complete reliability for a wide
variety of phase behavior computations. In this paper we report on the development and use
of a robust new computational technique, based on interval analysis, for solving the diÆcult
nonlinear problems arising in the modeling of high pressure phase behavior. This technique
can be used, with mathematical and computational guarantees of certainty, to �nd the global
optimum of a nonlinear function or to �nd (enclose) any and all roots to a system of nonlinear
equations. This technique has the potential to be applied to a wide variety of phase behavior
calculations. Since the technique is model independent and completely general, its use can
be readily extended to phase behavior computations for any thermodynamic model.

2 Methodology

The technique used here is based on interval analysis, in particular the use of an interval-
Newton/generalized bisection algorithm. The method can enclose with mathematical and

computational certainty all roots to a system of nonlinear equations, and can be used to �nd
with mathematical and computational certainty the global optimum of a nonlinear function.
The technique is general-purpose and can be applied in connection with any thermodynamic
models. No model-speci�c problem reformulations or convex underestimating functions need
be derived.

The solution method used is the interval Newton/generalized bisection technique de-
scribed by Kearfott (1987a,b), and implemented in INTBIS (Kearfott and Novoa, 1990).
The algorithm is also summarized, in the context of chemical process modeling, by Schnep-
per and Stadtherr (1996). For a system of nonlinear equations f(x) = 0 with x 2 X(0), the
basic iteration step in interval Newton methods is, given an interval X(k), to solve the linear
interval equation system

F 0(X(k))(N(k) � x
(k)) = �f(x(k)) (1)

for a new interval N(k), where k is an iteration counter, F 0(X(k)) is an interval extension
of the real Jacobian f 0(x) of f(x) over the current interval X(k), and x(k) is a point in the
interior of X(k), usually taken to be the midpoint. It can be shown (Moore, 1966) that any
root x� 2 X

(k) is also contained in the image N(k), suggesting the iteration scheme X(k+1)

= X
(k) \ N

(k). While this iteration scheme can be used to tightly enclose a solution, what
is also of signi�cance here is the power of equation (1) as an existence and uniqueness test.
For several techniques for �nding N(k) from equation (1), it can be proven (e.g., Neumaier,
1990; Kearfott, 1996) that if N(k) � X

(k), then there is a unique zero of f(x) in X(k), and
that Newton's method with real arithmetic can be used to �nd it, starting from any point
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in X(k). This suggests a root inclusion test for X(k):

1. (Range Test) Compute an interval extension F(X(k)) containing the range of f(x) over
X

(k) and test to see whether it contains zero. Clearly, if 0 =2 F(X(k)) � ff(x) j x 2
X

(k)g then there can be no solution of f(x) = 0 in X(k)and this interval need not be
further tested.

2. (Interval Newton Test) Compute the image N(k) by solving equation (1).

(a) If X(k) \ N
(k) = ;, then there is no root in X(k).

(b) If N(k) � X
(k), then there is exactly one root in X(k) .

(c) If neither of the above is true, then no further conclusion can be drawn.

In the last case, one could then repeat the root inclusion test on the next interval Newton
iterate X(k+1), assuming it is suÆciently smaller than X(k), or one could bisect X(k+1) and
repeat the root inclusion test on the resulting intervals. This is the basic idea of interval
Newton/generalized bisection methods. If f(x) = 0 has a �nite number of real solutions
in the speci�ed initial box, a properly implemented interval Newton/generalized bisection
method can enclose with mathematical and computational certainty any and all solutions to a
speci�ed tolerance, or can determine with mathematical certainty that there are no solutions
in the given box (Kearfott and Novoa, 1990; Kearfott, 1990). The technique can also be
readily applied in the context of global optimization (Hansen, 1992).

3 Discussion

The e�ectiveness of this methodology in solving high pressure phase behavior problems
using equations of state with standard mixing rules has been demonstrated by Hua et al.
(1998), using a problem formulation based on the Gibbs energy. In this presentation, we show
how the technique can be used in problem formulations based on the Helmholtz energy, and
how its applicability can be extended to other mixing rules, in particular the Wong-Sandler
mixing rule. We also consider how the technique can be used with cubic equation of state
models for the calculation of critical points. The technique can also be applied to other
problems, including the computation of azeotropes. Results demonstrate the applicability
and relability of the technique on a wide variety of high-pressure phase behavior problems.
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