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1 Introduction

In recent years, there has been an increasing interest in reactive distillation. Reasons
for this interest include the need to separate close-boiling compounds, to save on equipment
and operating costs, and to reduce environmental emissions (e.g., Barbosa and Doherty,
1988; Venimadhavan et al., 1994). In some cases, compounds that are very expensive to
separate using conventional techniques can be puri�ed more cheaply, cleanly and eÆciently
using reactive distillation processes. An important question when considering the use of
such techniques is whether or not any reactive azeotropes exist for the system. The presence
of these reactive azeotropes may be either a deterrent, or in some cases may be an advan-
tage for the proposed operation. Determining their existence from experiment alone can be
both expensive and time consuming. Thus, it is desirable to have a reliable technique for
computing reactive azeotropes from appropriate thermodynamic models.

There are two main diÆculties in solving the problem. The �rst is the nonlinearity
of the equilibrium conditions derived from most thermodynamic models, which may make
�nding any reactive azeotrope a nontrivial exercise. In addition, there is the question of
whether or not all of the reactive azeotropes have been found, or of being certain that
there are no reactive azeotropes if none have been found. Due to these diÆculties, as well
as the rami�cations of the results on process design, there has been much recent interest
in the reliable computation of reactive azeotropes. For problems involving vapor-liquid
and chemical equilibrium, Ung and Doherty (1995b) provide a methodology for describing
these systems in a transformed composition space, which has the e�ect of reducing the
degrees of freedom for the problem by the number of independent equilibrium reactions
present. The transformation also results in a convenient statement for the condition of
reactive azeotropy, namely that the transformed compositions must be equal in the liquid
and vapor phases, rather than the ordinary mole fractions of each component. Okasinski
and Doherty (1997) used an arc-length continuation method to calculate reactive azeotropes
for various systems. They used the equilibrium constant as a homotopy parameter, and
tracked the value of the reactive azeotrope. They showed that there are ranges for the value
of the equilibrium constant where reactive azeotropes may appear or disappear. Although
continuation techniques have been used with success in many areas, they cannot provide
theoretical or computational guarantees that the correct number of reactive azeotropes have
been found.

2 Methodology

We describe here a new approach for reliably �nding (enclosing) all homogeneous reactive
azeotropes for systems in phase and chemical equilibrium. The technique is based on interval
analysis, in particular the use of an interval-Newton/generalized bisection algorithm. The
method can enclose with mathematical and computational certainty all reactive azeotropes
for any system. The technique is general-purpose and can be applied in connection with
any thermodynamic models. No model-speci�c convex underestimating functions need be
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derived. The methodology used can also be applied to the computation of nonreactive
azeotropes, homogeneous (Maier et al., 1998) or heterogeneous. In this presentation, we
concentrate on the application of the technique to the reactive azeotrope problem, and
describe the results obtained.

2.1 Problem Formulation

The conditions for homogeneous reactive azeotrope are phase equilibrium, chemical equi-
librium, and the reactive azeotropy condition (Ung and Doherty, 1995a) itself, Yi = Xi, where
Yi and Xi are the transformed mole fractions in the vapor and liquid phases, respectively, of
component i. A complete description of the transformed mole fractions and the determina-
tion of reference components is given by Ung and Doherty (1995b). For the computations
presented here, we use Antoine's equation for the calculation of vapor pressures, the fully
temperature dependent Wilson equation for activity coeÆcients and assume an ideal vapor
phase. Note that these choices are arbitrary, there are no restrictions on the choice of the
activity coeÆcient model or vapor pressure model, and the method can be easily extended
to use equation of state models for both the liquid and vapor phases.

2.2 Interval Newton Generalized Bisection

The solution method used is the interval Newton/generalized bisection technique de-
scribed by Kearfott (1987a,b), and implemented in INTBIS (Kearfott and Novoa, 1990).
The algorithm is also summarized, in the context of chemical process modeling, by Schnep-
per and Stadtherr (1996).

For a system of nonlinear equations f(x) = 0 with x 2 X
(0), the basic iteration step

in interval Newton methods is, given an interval X(k), to solve the linear interval equation
system

F 0(X(k))(N(k) � x
(k)) = �f(x(k)) (1)

for a new interval N(k), where k is an iteration counter, F 0(X(k)) is an interval extension
of the real Jacobian f 0(x) of f(x) over the current interval X(k), and x(k) is a point in the
interior of X(k), usually taken to be the midpoint. It can be shown (Moore, 1966) that any
root x� 2 X

(k) is also contained in the image N(k), suggesting the iteration scheme X(k+1)

= X
(k) \ N

(k). While this iteration scheme can be used to tightly enclose a solution, what
is also of signi�cance here is the power of equation (1) as an existence and uniqueness test.
For several techniques for �nding N(k) from equation (1), it can be proven (e.g., Neumaier,
1990; Kearfott, 1996) that if N(k) � X

(k), then there is a unique zero of f(x) in X(k), and
that Newton's method with real arithmetic can be used to �nd it, starting from any point
in X(k). This suggests a root inclusion test for X(k):

1. (Range Test) Compute an interval extension F(X(k)) containing the range of f(x) over
X

(k) and test to see whether it contains zero. Clearly, if 0 =2 F(X(k)) � ff(x) j x 2
X

(k)g then there can be no solution of f(x) = 0 in X(k)and this interval need not be
further tested.
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2. (Interval Newton Test) Compute the image N(k) by solving equation (1).

(a) If X(k) \ N
(k) = ;, then there is no root in X(k).

(b) If N(k) � X
(k), then there is exactly one root in X(k) .

(c) If neither of the above is true, then no further conclusion can be drawn.

In the last case, one could then repeat the root inclusion test on the next interval Newton
iterate X(k+1), assuming it is suÆciently smaller than X(k), or one could bisect X(k+1) and
repeat the root inclusion test on the resulting intervals. This is the basic idea of interval
Newton/generalized bisection methods. If f(x) = 0 has a �nite number of real solutions
in the speci�ed initial box, a properly implemented interval Newton/generalized bisection
method can enclose with mathematical and computational certainty any and all solutions to a
speci�ed tolerance, or can determine with mathematical certainty that there are no solutions
in the given box (Kearfott and Novoa, 1990; Kearfott, 1990).

3 Results and Discussion

We discuss the results from one of our test problems below. This system contains 3
components (isobutene, methanol, and MTBE), and one reaction (isobutene + methanol
$ MTBE). This problem has also been considered by Okasinski and Doherty (1997). This
system is of particular interest as it has been shown to have two reactive azeotropes for some
values of the equilibrium constant. For this particular case, we use 49.0 as the equilibrium
constant value. The other parameters used were the same as those provided by Okasinski
and Doherty (1997).

Table 1 - Computational results for the system isobutene, methanol, and MTBE at 8.0
atm. The equilibrium constant is 49.0. The temperature range for search was 10-200 oC.

x1 x2 x3 y1 y2 y3 T (ÆC) CPU time (sec)
0.014 0.404 0.582 0.076 0.440 0.484 118.0
0.045 0.120 0.835 0.174 0.238 0.588 119.1
Total 5.81

The CPU time is for a Sun Ultra 30 workstation.

The results obtained are in good agreement with the solutions given by Okasinski and
Doherty (1997). We have additional results for many other examples, including those using
the NRTL activity coeÆcient model.
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