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In this article we consider strategies for exploiting supercomputer technology in solving the
sparse matrix problems arising in process simulation and optimization. A new multifrontal
solver for use in simulating equilibrium-stage processes and a new parallel frontal solver for
large-grained parallel solution of process simulation and optimization problems are described.
Results for several problems, including large-scale industrial problems, are given.

1. Introduction
The future success of the chemical process industries depends on the ability to design

and operate complex, highly interconnected plants that are profitable and that meet
quality, safety, environmental and other standards. Towards this goal, process simulation
and optimization tools are increasingly being used industrially in every step of the design
process and in subsequent plant operations. To perform realistic process simulation for
very large scale industrial processes, however, requires adequate computational resources.
Today, parallel/vector supercomputers provide the computational power to realistically
model, simulate, design, and optimize complex chemical manufacturing processes, steady-
and unsteady-state. To better use this leading edge technology in process simulation
requires the use of techniques that efficiently exploit vector and parallel processing. Since
most currently used techniques for solving such problems were developed for use on
conventional serial machines, it is often necessary to rethink problem solving strategies
in order to take full advantage of the supercomputing power.

A key step in solving complex process simulation problems is the solution of a large,
sparse system of linear equations. In fact, this step may account for as much as 90%
of the computation time on industrial-scale problems. Thus, any reduction in the linear
system solution time will result in a significant reduction of the total simulation time.
The matrices that arise, however, do not have any of the desirable structural or numerical
properties, such as numerical or structural symmetry, positive definiteness, and diagonal
dominance, often associated with sparse matrices, and usually exploited in developing
efficient algorithms for parallel/vector computing. We describe here vector and parallel
algorithms for the solution of linear equation systems arising in process simulation and
optimization on supercomputers.

2. Frontal Method
Consider the solution of a linear equation system Ax = b, where A is a large sparse

n×n matrix and x and b are column vectors of length n. While iterative methods can be
used to solve such systems, the reliability of such methods is questionable in the context
of process simulation (Cofer and Stadtherr, 1996). Thus we concentrate here on direct
methods. Generally such methods can be interpreted as an LU factorization scheme in
which A is factored A = LU , where L is a lower triangular matrix and U is an upper
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triangular matrix. Thus, Ax = (LU)x = L(Ux) = b, and the system can be solved by
a simple forward substitution to solve Ly = b for y, followed by a back substitution to
find the solution vector x from Ux = y.

The frontal method is an LU factorization technique that was originally developed to
solve the banded matrices arising in finite element problems (Irons, 1970; Hood, 1976).
The original motivation was, by limiting computational work to a relatively small frontal
matrix, to be able to solve problems on machines with small core memories. The well-
known code MA32 from the Harwell Subroutine library (Duff, 1984) is a frontal code
for solving finite element problems on vector computers. This method is widely used
for finite element problems on vector supercomputers because, since the frontal matrix
can be treated as dense, most of the computations involved can be performed by using
very efficient vectorized dense matrix kernels. Stadtherr and Vegeais (1985) extended
this idea to the solution of process simulation problems on supercomputers, and later
(Vegeais and Stadtherr, 1990) demonstrated its potential. An implementation of the
frontal method developed specifically for use in the process simulation context has been
described by Zitney (1992), Zitney and Stadtherr (1993), and Zitney et al. (1995),
and is now incorporated in supercomputer versions of popular process simulation and
optimization codes.

The frontal elimination scheme can be outlined briefly as follows:
(1) Assemble a row into the frontal matrix.
(2) Determine if any columns are fully summed in the frontal matrix. A column is

fully summed if it has all of its nonzero elements in the frontal matrix.
(3) If there are fully summed columns, then perform partial pivoting in those columns,

eliminating the pivot rows and columns and doing an outer-product update on the re-
maining part of the frontal matrix.

This procedure begins with the assembly of row 1 into the initially empty frontal
matrix, and proceeds sequentially row by row until all are eliminated, thus completing
the LU factorization. To see this in mathematical terms, consider the submatrix A(k)

remaining to be factored after the (k − 1)-th pivot:

A(k) =
[
F (k) 0
A

(k)
ps A

(k)
ns

]
. (2.1)

Here F (k) is the frontal matrix, A
(k)
ps contains columns that are partially summed (some

but not all nonzeros in the frontal matrix), and A
(k)
ns contains columns that are not

summed (no nonzeros in the frontal matrix). Assembly of rows into the frontal matrix
then proceeds until gk ≥ 1 columns become fully summed:

A(k) =



F̄

(k)
11 F̄

(k)
12 0

F̄
(k)
21 F̄

(k)
22 0

0 Ā
(k)
ps Ā

(k)
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
 . (2.2)

F̄ (k) is now the frontal matrix and F̄
(k)
11 and F̄

(k)
21 comprise the columns that have become

fully summed, which are now eliminated using rows chosen during partial pivoting and
which are shown as belonging to F̄

(k)
11 here. This amounts to the factorization F̄

(k)
11 =

L
(k)
11 U

(k)
11 of the order-gk block F̄

(k)
11 , resulting in:
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where the new frontal matrix F (k+gk) is the Schur complement F (k+gk) = F̄
(k)
22 −L

(k)
21 U

(k)
12 ,

which is computed using an efficient full-matrix outer-product update kernel, A
(k+gk)
ps =

Ā
(k)
ps and A

(k+gk)
ns = Ā

(k)
ns . Note that operations are done within the frontal matrix only.

At this point L
(k)
11 and L

(k)
21 contain columns k through k + gk − 1 of L and U

(k)
11 and

U
(k)
12 contain rows k through k + gk − 1 of U . The computed columns of L and rows of U

are saved and the procedure continues with the assembly of the next row into the new
frontal matrix F (k+gk).

2.1. Application of frontal method in process simulation
The outer-product updates in the innermost loops of the frontal code are done using read-
ily vectorizable BLAS2 or BLAS3 dense matrix kernels (BLAS indicates Basic Linear Al-
gebra Subroutines: BLAS2 covers matrix-vector operations and BLAS3 matrix-matrix).
However, for process simulation problems the frontal matrices are often relatively large
and sparse. Thus, while a high computational rate can be achieved when operating on
frontal matrices, a large number of unnecessary operations on zeros may be performed,
potentially lowering overall performance. In most cases, however, the time spent on
wasted operations is more than made up for by the faster computational rate achievable.

FAMP has now been incorporated in CRAY versions of popular commercial simula-
tion codes, such as ASPEN PLUS, SPEEDUP, RATEFRAC, and BATCHFRAC (Aspen
Technology, Inc.). Zitney (1992) and Zitney et al. (1994) give several examples showing
how the use of the frontal solver (as opposed to conventional solvers) has led to dra-
matic improvements in the performance of ASPEN PLUS and SPEEDUP. Zitney et al.
(1995) describe a dynamic simulation problem at Bayer AG requiring 18 hours of CPU
time on a CRAY C90 supercomputer when solved with the standard implementation of
SPEEDUP. With a CRAY optimized version of SPEEDUP, which contains the frontal
code FAMP and an improved residual evaluator CRAYRES, this simulation now takes
only 21 CPU minutes, with most of the improvement due to the frontal solver. As a
result, Bayer engineers can run this simulation many times per day instead of only once
per day. This improves engineering productivity and let users consider more alternatives
in a shorter time while not sacrificing model size and/or complexity.

3. Multifrontal Method
The multifrontal method is a generalization of the frontal method, and was originally

developed for symmetric matrices. Like the frontal method, it also exploits low-level
parallelism and vectorization through the use of dense matrix kernels on frontal matri-
ces. However, the frontal matrices are generally smaller and denser than in the frontal
method. The classical multifrontal approach (Duff and Reid, 1984) has met with only
limited success when the pattern of nonzeros is highly unsymmetric. However, recently a
new unsymmetric-pattern multifrontal algorithm has been described by Davis and Duff
(1993,1996) and implemented in the code UMFPACK (Davis and Duff, 1995). In this
method, a frontal matrix, consisting of pivot row(s) and column(s), their entries from
the original matrix A, and contributions to them from previous frontal matrices, is as-
sembled at each stage of the factorization process. The frontal matrix Ek for steps k
through k + gk − 1 of the LU factorization, where gk is the number of pivots performed
in Ek can be represented as

Ck C′
k

Rk

R′
k

[
Fk Bk

Tk Dk

]
.

(3.4)
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Ek is labeled with the ordered sets Rk and Ck, representing the pivot rows and columns,
respectively, and with the sets R′

k and C′
k, representing the non-pivotal rows and columns.

The blocks Fk, Bk, and Tk are all fully assembled with contributions from both the
original matrix and from previous frontal matrices; however contributions to Dk may be
only partially assembled or not assembled at all. The pivot block Fk is now factored
(Fk = LkUk) thus determining a block-column L′

k of L and a block-row U ′
k of U. An

outer-product update D′
k = Dk − L′

kU ′
k is then performed to complete the elimination

operations on this frontal matrix, thus resulting in

Ck C′
k

Rk

R′
k

[
LkUk U ′

k

L′
k D′

k

]
.

(3.5)

Lk and L′
k can be written into an array for L factors. Similarly, Uk and U ′

k can be
written into an array for U factors. The contribution block D′

k is saved since some of
its elements may need to be assembled into future frontal matrices. This interwoven
assembly-elimination process confines the arithmetic operations to the frontal matrices,
and so permits the use of efficient dense matrix vector operations during the factorization
of Fk and the update of Dk.

Zitney et al. (1996) have compared the performance of the general-purpose
unsymmetric-pattern multifrontal approach (UMFPACK) with that of the frontal code
(FAMP), as well as with that of the conventional code MA28. Results on a set of six
chemical process simulation problems and five other engineering problems show that the
frontal and multifrontal methods are significantly faster than MA28, reflecting in part
the use of vectorized dense matrix kernels. Comparing the frontal and multifrontal meth-
ods, the frontal method is most effective on problems with good initial matrix orderings,
while the multifrontal method is most attractive for problems without a good initial
ordering. For process simulation problems, good initial orderings are not uncommon if
the equations describing each unit (or equilibrium stage) in a process are kept together,
and if adjacent units and streams are numbered consecutively, thus resulting in a nearly
block-banded matrix corresponding to the unit-stream nature of the problem. In the
general-purpose multifrontal approach, a pivot element is chosen using a Markowitz-
style strategy to preserve sparsity. Additional pivots may then be chosen to form a pivot
block if they do not cause growth of the assembled frontal matrix beyond a preset limit.
In the context of process simulation, the disadvantage of this approach is that it does
not take advantage of the good initial structure of the matrix, and may in fact destroy
it. The multifrontal algorithm presented below is designed to avoid this difficulty.

3.1. The MFA1P algorithm
MFA1P (MultiFrontal Algorithm, 1 Pivot) is designed to take advantage of good ini-
tial structure in process simulation matrices, especially those that primarily involve
equilibrium-stage operations. The algorithm uses a modified threshold pivot search strat-
egy that attempts to maintain the structure during the factorization process. The basic
MFA1P algorithm is outlined below:

Algorithm MFA1P:
For k = 1 : n

(1) Start the k-th frontal matrix by assembling all contributions to the k-th column
(including entries from the original matrix and contributions from previous frontal ma-
trices). This is the pivot column. Store as a column of L.

(2) Choose as a pivot the element in the pivot column closest to (preferably on) the
diagonal that satisfies a threshold pivot tolerance. This determines the pivot row.
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Name n NZ as FAMP UMFPACK MA28 MFA1P

v3 1078 16937 0.91 0.114 0.243 2.159 6.01x10−2

v10 1148 15729 0.94 0.109 0.227 1.862 6.10x10−2

v13 834 9713 0.95 6.35x10−2 0.140 0.983 4.20x10−2

mpex2 848 11413 0.96 6.60x10−2 0.176 0.299 4.27x10−2

mpex3 2473 46503 0.94 0.359 0.567 10.598 0.173
mpex4 2478 44075 0.95 0.317 0.559 9.19 0.172

mpmult1 2023 31894 0.95 0.234 0.472 6.131 0.13
rdist1 4134 94408 0.94 0.730 1.854 30.21 0.32
rdist2 3198 56934 0.95 0.392 0.696 16.11 0.22
rdist3 2398 61896 0.85 0.478 1.172 32.87 0.20
sumb 523 4998 0.95 3.22x10−2 8.30x10−2 0.314 2.18x10−2

traycalc 1145 20296 0.88 0.14 0.244 2.649 6.81x10−2

uosb 523 4998 0.95 3.22x10−2 8.29x10−2 0.315 2.19x10−2

userupp 1269 22508 0.89 0.154 0.289 3.310 7.39x10−2

Table 1. Run times (s) for ASPEN PLUS test problems on A + F + S execution path. See
text for definition of column headings.

(3) Assemble all contributions to the pivot row and normalize it. Store as a row of U .
(4) Perform an outer product update of Dk using the pivot column and normalized

pivot row to compute the contribution block D′
k for this frontal matrix. Store this

contribution block for later use.
The key feature of the algorithm is the simple pivot selection scheme used in Step 2.

The pivot row j is chosen to minimize |j − k| subject to the threshold tolerance criterion
|ajk| ≥ t × maxs|ask|, where t is a preset fraction in the range 0 < t ≤ 1.0. This is in
contrast to the frontal method, in which partial pivoting is used and the largest element
in the column is chosen as the pivot (t = 1). It is also in contrast to the general-purpose
unsymmetric-pattern frontal method, in which a global Markowitz-style pivot search
with threshold is used. MFA1P tries to maintain the initial matrix structure by choosing
as the pivot the element closest to and preferably on the diagonal, while maintaining
numerical stability by using the threshold tolerance. In our experiments a threshold
tolerance of t = 0.1 was adequate to maintain numerical stability.

3.2. Results and discussion
Table 1 compares the performance of MFA1P with that of the frontal solver FAMP, the
general-purpose unsymmetric-pattern multifrontal solver UMFPACK, and, to provide
a familiar benchmark, the conventional solver MA28. Version 2.0 of UMFPACK was
used; this version (Davis and Duff, 1995) incorporates features of the frontal method
into the multifrontal solver in order to improve overall efficiency. The default parameter
settings were used for each code. Numerical experiments were carried out on a CRAY
C90 parallel/vector supercomputer at Cray Research, Inc. in Eagan, Minnesota (USA).
The problem set includes 14 steady-state simulation problems solved using ASPEN PLUS
(Aspen Technology, Inc.). These problems use the RADFRAC module of ASPEN PLUS.
This module does rigorous calculations for all types of fractionation, including absorption,
reboiled absorption, stripped, reboiled stripping, and extractive, azeotropic, and three
phase distillation, in addition to ordinary distillation.

In Table 1, each matrix is identified by name and order (n). In addition, statistics are
given for the number of nonzeros (NZ), and for a measure of structural asymmetry (as).
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Figure 1. Average normalized run times for ASPEN PLUS matrices on the analyze +
factorize + solve (A + F + S), factor (F) only, and solve (S) only execution paths.

The asymmetry, as, is the number off-diagonal nonzeros aij (j 6= i) for which aji = 0
divided by the total number of off-diagonal nonzeros (as = 0 is a symmetric pattern,
as = 1 is completely asymmetric). Run times (in CPU seconds) represent the total time
to perform analysis to determine a pivot sequence, to compute the L and U factors of A,
and to perform the forward and backward substitution to solve Ax = b. This execution
path (Analyze + Factor + Solve) is typically used at each iteration in a steady-state
simulation. The fastest run time for each problem is shown in bold. Data for the factor
only and solve only execution paths are given by Mallya and Stadtherr (1996), along
with results for a variety of other problems. Mallya and Stadtherr (1996) also describe
a version (MFA2P) of this multifrontal approach in which two pivots are performed in
each frontal matrix.

Figure 1 shows a summary of the relative performance of the methods for each exe-
cution path. This summary is based on average normalized run time (ANRT). For each
problem and method the run time is normalized by dividing by the run time of the best
method on that problem. This is then averaged over the entire problem set to determine
the ANRT for each method. Thus, an ANRT of one for a method would indicate that
the method was the best method on all problems in the problem set.

For the critical A + F + S execution path, the MFA1P or MFA2P solver is the best
on all problems and on the average is nearly twice as fast as the frontal solver FAMP.
Neither UMFPACK nor MA28 are able to take good advantage of the structure of these
problems and, in fact, spend considerable effort finding a different pivot sequence. Some
savings can be achieved in these codes by turning off the default permutation to block
upper triangular form, which in general is not useful on these problems. It should also
be noted that MA48, the successor to MA28 in the Harwell Subroutine Library, should
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perform better than MA28 on these problems, but still not better than the other codes
on the A+F+S execution path. For instance, on the rdist1 problem, Davis and Duff
(1995) found that UMFPACK was about six times faster than MA48.

4. Parallel Frontal Method
The main deficiency with the frontal code FAMP and multifrontal codes MFA1P and

MFA2P is that there is little opportunity for parallelism beyond that which can be
achieved by microtasking the inner loops or by using higher level BLAS in performing
the outer product update, which unfortunately usually provides relatively little speedup
(Mallya, 1996; Camarda and Stadtherr, 1994). We overcome this problem by using a
coarse-grained parallel approach in which frontal elimination is performed simultaneously
in multiple independent or loosely connected blocks. This can be interpreted as applying
frontal elimination to the diagonal blocks in a bordered block-diagonal matrix form as
described below. It can also be interpreted as a coarse-grained multifrontal approach
(e.g., Davis and Duff, 1996; Zitney et al., 1996) with large independent pivot blocks
factored by frontal elimination. Duff and Scott (1994) have applied this type of approach
in solving finite element problems and referred to it as a “multiple fronts” (as opposed
to multifrontal) approach.

Consider a matrix in singly-bordered block-diagonal form:

A =




A11

A22

. . .
ANN

S1 S2 . . . SN




(4.6)

where the diagonal blocks Aii are mi × ni and in general are rectangular with ni ≥ mi.
Because of the unit-stream nature of the problem, process simulation matrices occur
naturally in this form, as described in detail by Westerberg and Berna (1978). Each
diagonal block Aii comprises the model equations for a particular unit, and equations
describing the connections between units, together with design specifications, constitute
the border (the Si). Of course, not all process simulation codes may use this type of
problem formulation, or order the matrix directly into this form. Thus some matrix
reordering scheme may need to be applied, as discussed further below.

The basic idea in the parallel frontal algorithm (PFAMP) is to use frontal elimination
to partially factor each of the Aii, with each such task assigned to a separate processor.
Since the Aii are rectangular in general, it usually will not be possible to eliminate all
the variables in the block, nor perhaps, for numerical reasons, all the equations in the
block. The equations and variables that remain, together with the border equations,
form a “reduced” or “interface” matrix that must then be factored.

4.1. The PFAMP algorithm
The basic PFAMP algorithm is outlined below, followed by a more detailed explanation
of the key steps. For complete details, see Mallya et al. (1996).

Algorithm PFAMP:
Begin parallel computation on P processors
For i = 1 : N , with each task i assigned to the next available processor:

(1) Do symbolic analysis on the diagonal block Aii and the corresponding portion
of the border (Si) to obtain memory requirements and last occurrence information (for
determining when a column is fully summed) in preparation for frontal elimination.
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(2) Assemble the nonzero rows of Si into the frontal matrix.
(3) Perform frontal elimination on Aii, beginning with the assembly of the first row

of Aii into the frontal matrix (see Section 2). The maximum number of variables that
can be eliminated is mi, but the actual number of pivots done is pi ≤ mi. We use a
partial-threshold pivoting strategy to ensure that the pivot row belongs to the diagonal
block Aii. We cannot pick a pivot row from the border Si because border rows may be
shared by more than one diagonal block.

(4) Store the computed columns of L and rows of U . Store the rows and columns
remaining in the frontal matrix for assembly into the interface matrix.
End parallel computation

(5) Assemble the interface matrix from the contributions of Step 4 and factor.
Note that for each block the result of Step 3 is

Ci C′
i

Ri

R′
i

[
LiUi U ′

i

L′
i Fi

]
(4.7)

where Ri and Ci are index sets comprising the pi pivot rows and pi pivot columns,
respectively. Ri is a subset of the row index set of Aii. R′

i contains row indices from
Si (the nonzero rows) as well as from any rows of Aii that could not be eliminated for
numerical reasons. As they are computed during Step 3, the computed columns of L
and rows of U are saved in arrays local to each processor. Once the partial factorization
of Aii is complete, the computed block-column of L and block-row of U are written into
global arrays in Step 4 before that processor is made available to start the factorization
of another diagonal block. The remaining frontal matrix Fi is a contribution block that
is stored in central memory for eventual assembly into the interface matrix in Step 5.
The overall situation at the end of the parallel computation section is:

C1 C2 . . . CN C′

R1

R2

...
RN

R′




L1U1 U ′
1

L2U2 U ′
2

. . .
...

LNUN U ′
N

L′
1 L′

2 . . . L′
N F




(4.8)

where R′ =
N⋃

i=1

R′
i and C′ =

N⋃
i=1

C′
i. F is the interface matrix that can be assembled

from the contribution blocks Fi. Note that, since a row index in R′ may appear in more
than one of the R′

i and a column index in C′ may appear in more than one of the C′
i,

some elements of F may get contributions from more than one of the Fi. As this doubly-
bordered block-diagonal form makes clear, once values of the variables in the interface
problem have been solved for, the remaining triangular solves needed to complete the
solution can be done in parallel using the same decomposition used to do the parallel
frontal elimination. During this process the solution to the interface problem is made
globally available to each processor.

Once factorization of all diagonal blocks is complete, the interface matrix is factored.
This is carried out by using the FAMP solver, with microtasking to exploit loop-level
parallelism for the outer-product update of the frontal matrix. However, as noted above,
this tends to provide little speedup, so the factorization of the interface problem can in
most cases be regarded as essentially serial. This constitutes a computational bottleneck.
Therefore, it is critical to keep the size of the interface problem small to achieve good
speedups for the overall solution process. It should also be noted that depending on the
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Name n NZ as N mi,max mi,min NI P

Ethylene 1 10673 80904 0.99 43 3337 1 708 5
Ethylene 2 10353 78004 0.99 43 3017 1 698 5
Ethylene 3 10033 75045 0.99 43 2697 1 708 5

Hydr1c 5308 23752 0.99 4 1449 1282 180 4
Icomp 69174 301465 0.99 4 17393 17168 1057 4
lhr 17k 17576 381975 0.99 6 4301 1586 581 4
lhr 34k 35152 764014 0.99 6 9211 4063 782 4
lhr 71k 70304 1528092 0.99 10 9215 4063 1495 4

Bigequil.smms 3961 21169 0.97 18 887 12 733 4
Wood 7k.smms 3508 16246 0.96 37 897 6 492 4

4cols.smms 11770 43668 0.99 24 1183 33 2210 4
10cols.smms 29496 109588 0.99 66 1216 2 5143 4

Table 2. Description of PFAMP test problems. See text for definition of column headings.

size and sparsity of the interface matrix, some solver other than FAMP may in fact be
more attractive for performing the factorization.

4.2. Results and discussion
In this section, we present results for the performance of the PFAMP solver on several
process optimization and simulation problems. We compare the performance of PFAMP
on multiple processors with its performance on one processor and with the performance of
the frontal solver FAMP on one processor. The numerical experiments were performed on
a CRAY C90 parallel/vector supercomputer at Cray Research, Inc., in Eagan, Minnesota.
The timing results presented represent the total time to obtain a solution vector from
one right-hand-side vector, including analysis, factorization, and triangular solves. A
threshold tolerance of t = 0.1 was used in PFAMP to maintain numerical stability, which
was monitored using the 2-norm of the residual b − Ax. FAMP uses partial pivoting.

In Table 2 each matrix is identified by name and order (n). In addition, statistics are
given for the number of nonzeros (NZ), and for a measure of structural asymmetry (as),
as defined above. Also given is information about the bordered block-diagonal form used,
namely the number of diagonal blocks (N), the order of the interface matrix (NI), and
the number of equations in the largest and smallest diagonal blocks, mi,max and mi,min,
respectively. P is the number of processors used for evaluating the parallel performance
of PFAMP.

The first three problems involve the optimization of an ethylene plant using NOVA,
a chemical process optimization package from Dynamic Optimization Technology Prod-
ucts, Inc. NOVA uses an equation-based approach that requires the solution of a series
of large sparse linear systems, which accounts for a large portion of the total computa-
tion time. The linear systems arising during optimization with NOVA are in bordered
block-diagonal form, allowing the direct use of PFAMP for the solution of these systems.
Each problem involves a flowsheet that consists of 43 units, including five distillation
columns. The problems differ in the number of stages in the distillation columns.

The next five problems have been reordered into a bordered block-diagonal form using
the Minimum-Net-Cut (MNC) approach (Coon and Stadtherr, 1995). Two of the prob-
lems (Hydr1c and Icomp) occur in dynamic simulation problems solved using SPEEDUP
(Aspen Technology, Inc.). The Hydr1c problem involves a 7-component hydrocarbon pro-
cess with a de-propanizer and a de-butanizer. The Icomp problem comes from a plantwide



10 Stadtherr and Mallya: Strategies for Process Engineering

Name Source n FAMP PFAMP (1 Proc) PFAMP (P Proc)

Ethylene 1 NOVA 10673 0.697 0.550 0.297
Ethylene 2 NOVA 10353 0.667 0.510 0.290
Ethylene 3 NOVA 10033 0.628 0.505 0.280

Hydr1c SPEEDUP 5308 0.258 0.243 0.139
Icomp SPEEDUP 69174 3.78 4.33 1.72
lhr 17k SEQUEL 17576 3.62 1.77 0.808
lhr 34k SEQUEL 35152 7.18 3.81 1.78
lhr 71k SEQUEL 70304 14.8 7.67 3.04

Bigequil.smms ASCEND 3961 0.235 0.232 0.149
Wood 7k.smms ASCEND 3508 0.208 0.205 0.129

4cols.smms ASCEND 11770 1.14 1.13 0.680
10cols.smms ASCEND 29496 11.3 3.69 1.81

Table 3. FAMP and PFAMP wallclock run times (s). In the last column, P refers to the
values in Table 2.

dynamic simulation of a plant that includes several interlinked distillation columns. The
other three problems are derived from the prototype simulator SEQUEL (Zitney and
Stadtherr, 1988), and are based on light hydrocarbon recovery plants, described by Zit-
ney et al. (1996). Neither of the application codes produces directly a matrix in bordered
block-diagonal form, so a reordering such as provided by MNC is required.

The final four problems arise from simulation problems solved using ASCEND (Piela et
al., 1991), and re-ordered to bordered block-diagonal form using the tear drop approach
(Abbott, 1996). Problem Bigequil.smms represents a 9-component, 30-stage distillation
column. Problem Wood 7k is a complex hydrocarbon separation process. Problems
4cols.smms and 10cols.smms involve nine components with four and ten interlinked dis-
tillation columns, respectively.

Table 3 shows the performance of PFAMP. We note first, that the single processor
performance of PFAMP is usually better than that of FAMP. This is due to the difference
in the size of the largest frontal matrix associated with the frontal elimination for each
method. For solution with FAMP, the variables which have occurrences in the border
equations remain in the frontal matrix until the end. The size of the largest frontal matrix
increases due to this reason, as does the number of wasted operations on zeros, thereby
reducing the overall performance. This problem does not arise for solution with PFAMP
because when the factorization of a diagonal block is complete, the remaining variables
and equations in the front are immediately written out as part of the interface problem
and a new front is begun for the next diagonal block. Thus, usually PFAMP is a more
efficient serial solver than FAMP. This reflects the advantages of the multifrontal-type
approach used by PFAMP, namely smaller and less sparse frontal matrices.

In each of the three ethylene plant matrices, there are five large diagonal blocks,
corresponding to the distillation units, with one of these blocks much larger (mi = 3337)
than the others (1185 ≤ mi ≤ 1804). In the computation, one processor ends up working
on the largest block, while the remaining four processors finish the other large blocks
and the several much smaller ones. The load is unbalanced with the factorization of
the largest block being the bottleneck. This, together with the solution of the interface
problem, results in a speedup (relative to PFAMP on one processor) of less than two on
five processors. It is likely that more efficient processor utilization could be obtained by
using a better partition into bordered block-diagonal form.
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For MNC-reordered SPEEDUP and SEQUEL matrices, the speedup is around two.
MNC achieves the best reordering on the Icomp problem, for which it finds four diagonal
blocks of roughly the same size (17168 ≤ mi ≤ 17393) and the size of the interface
problem is relatively small in comparison to n. The speedup observed for PFAMP on
this problem was about 2.5 on four processors. While this represents a substantial savings
in wallclock time, it still does not represent particularly efficient processor utilization. In
this context, it should be remembered that even a relatively small serial component in
a computation can greatly reduce the efficiency of processor utilization [see Vegeais and
Stadtherr (1992) for further discussion of this point].

On ASCEND problems, the moderate task granularity helps spread the load over the
four processors used, but the size of the interface problem tends to be relatively large,
14-19% of n, as opposed to less than about 7% on the previous problems. The best
parallel efficiency was achieved on the largest problem (10cols.smms), with a speedup of
about two on four processors. This was achieved despite the relatively large size of the
interface problem because, for this system, the use of small-grained parallelism within
FAMP for solving the interface problem provided a significant speedup (about 1.7). As
on the previous problems, this represents a substantial reduction in wallclock time, but
is not especially good processor utilization. Overall on 10cols.smms the use of PFAMP
resulted in the reduction of the wallclock time by a factor of six; however only a factor
of two of this was due to multiprocessing.

5. Concluding Remarks
We have shown here how a simple multifrontal approach (MFA1P) can be used to

efficiently solve, in a supercomputing environment, the sparse linear equation systems
that arise in the simulation of equilibrium-stage processes. The solution of such systems
is typically the dominant item in the overall simulation time. By taking advantage of the
problem’s structure, the new approach provides significant improvements over both the
standard frontal solver FAMP and the general-purpose multifrontal solver UMFPACK.

The results presented above demonstrate that the parallel frontal solver PFAMP can
be effective for use in process simulation and optimization on parallel/vector supercom-
puters with a relatively small number of processors. In addition to making better use of
multiprocessing than the standard solver FAMP, on most problems the single processor
performance of PFAMP was better than that of FAMP. The combination of these two
effects led to four- to six-fold performance improvements on some large problems.
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