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Abstract

Conventional equation solving and optimization techniques for solving the phase stability problem may
fail to converge or may converge to an incorrect result.  A technique for solving the problem with
mathematical certainty is needed.  One approach to providing such assurance can be found in the use of
interval methods. An interval Newton/generalized bisection technique is applied here to solve the phase
stability problem. Results for two models of liquid-phase systems, using several different feed
compositions, indicate that the technique used is reliable and very efficient.
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Introduction

The determination of phase stability is a recurrent problem
in the computation of phase equilibria, and thus is
especially important in the analysis and design of
separation operations such as distillation and extraction.
The problem is basically to determine whether a phase of
given composition, temperature, and pressure will split
into multiple phases. This problem is frequently
formulated in terms of the tangent plane condition (Baker et
al., 1982).  Minima in the tangent plane distance are
sought, usually by solving a system of nonlinear equations
for the stationary points (Michelsen, 1982).  If any of these
yield a negative tangent plane distance, indicating that the
tangent plane intersects (or lies above) the Gibbs energy of
mixing surface, the phase is unstable.  The difficulty lies
in that, in general, given any arbitrary equation of state or
activity coefficient model, most computational methods
cannot find with complete certainty all the stationary
points, and thus no guarantee of stability can be provided.

What is needed are robust techniques that can find all
solutions to a system of nonlinear equations, and do so
with certainty, or techniques for finding the global
optimum of a function, and do so again with certainty.
Recent advances in the field of interval mathematics make
possible just such techniques.

Interval mathematics involves computation with
intervals as opposed to real numbers.  Interval Newton
methods, when combined with a generalized bisection
approach, provide the power to find with confidence all
solutions of a system of nonlinear equations (Neumaier,
1990; Kearfott and Novoa, 1990), and to find with total
reliability the global minimum of a nonlinear objective
function (Hansen, 1992), provided only that upper and
lower bounds are available for all variables.  Efficient
techniques for implementing interval Newton/generalized
bisection are a relatively recent development, and thus such
methods have not yet been widely applied.  Schnepper and
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Stadtherr (1990) suggested the use of this method for
solving chemical process modeling problems, and recently
described an implementation (Schnepper and Stadtherr,
1994).  The technique proved very efficient on a number of
small to moderate size problems, including a vapor-liquid
equilibrium problem with multiple roots, and was made
even more efficient by taking advantage of the fact that the
technique is amenable to parallel computing.

For the phase stability problem various approaches
have been proposed recently.  For example, Sun and Seider
(1992,1993) apply a homotopy-continuation method,
which will often find all stationary points, but may be
initialization dependent and provides no theoretical
guarantees that all solutions have been found.  Also,
McDonald and Floudas (1993,1994) show that for certain
activity coefficient models, the problem can be
reformulated to make it amenable to solution by global
optimization techniques, which do guarantee the correct
answer.  However, in general there appears to be a need for
an efficient general-purpose method that can perform phase
stability calculations with complete reliability for any
arbitrary equation of state or activity coefficient model.

In this paper, we demonstrate the use of interval
methods for phase stability computations.  These methods
can be applied in connection with any equation of state or
activity coefficient model, and when properly implemented
are completely reliable.

Phase Stability Analysis

The determination of phase stability is often done
using tangent plane analysis (Baker et al., 1982;
Michelsen, 1982).  A phase at specified temperature,
pressure, and feed composition z is unstable if the Gibbs
energy of mixing versus composition surface
m(x)Ê=ÊDgM(x)/RT ever falls below a plane tangent to the
surface at z.  That is, if the tangent plane distance

       D(x) = m(x) - m0 - å
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is negative for any composition x, the phase is unstable.
The subscript zero indicates evaluation at x = z, and n is
the number of components.  A common approach for
determining if D is ever negative is to minimize D subject
to the mole fractions summing to one.  It is readily shown
that the stationary points in this optimization problem can
be found by solving the system of nonlinear equations:
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The n ´ n system (2) has a trivial root at x = z, and
frequently has multiple nontrivial roots as well.  Thus
conventional equation solving techniques such as Newton's
method may fail by converging to the trivial root or give
an incorrect answer to the phase stability problem by
converging to a stationary point that is not the global
minimum of D .  This is aptly demonstrated by the
experiments of Green et al. (1993), who show that the
pattern of convergence from different initial guesses
demonstrates a complex fractal-like response for even the
simple liquid phase model used as an example below.

We demonstrate here the use of an interval
Newton/generalized bisection method for solving the
system (2). The method requires no initial guess, and will
find with certainty all the stationary points of D.

Interval Computations

A real in terval , X , is defined by X  = [a ,b ] =
{xÊÎ ÊÂ Ê|ÊaÊ£Êx £ b}, where a,b Î  Â  and a £ b.  A real
interval vector X  = (Xi) = (X1,X2,...,Xn)T has n  real
interval components Xi, and since it can be interpreted

geometrically as an n-dimensional rectangle, is frequently
referred to as a box .  Several good introductions to
computation with intervals are available, including recent
monographs by Neumaier (1990) and Hansen (1992).

Of particular interest here are interval Newton
methods. Consider the solution of the system of real
nonlinear equations f(x) = 0, where it is desired to find all
solutions in an specified initial box X(0).  The basic idea
in interval Newton methods is to solve the linear interval
equation system

                  F¢(X(k))(N(k) - x(k)) = -f(x(k)) (3)

for the interval N (k), where k is an iteration counter,
F ¢(X (k)) is a suitable interval extension of the real
Jacobian J(x) of f(x) over the current box X(k), and x(k) is
a point in the interior of X(k), usually taken to be the
midpoint.  It can be shown (Moore, 1966) that any root
x*ÊÎ  X (k) of f(x ) is also contained in N (k).  This
suggests the iteration

                  X(k+1)  = X (k ) Ç N (k ). (4)

There are various interval Newton methods, which differ in
how they determine N(k) from equation (3) and thus in the
tightness with which N(k) encloses the solution set of (3).

While the iteration scheme given by equations (3) and
(4) can be used to tightly enclose a solution (e.g., Shacham
and Kehat, 1973), what is of most significance here is the
power of (3) to provide an existence and uniqueness test.
For several techniques for finding N(k) from (3), it can be
proven (Neumaier, 1990) that if N(k)ÊÌÊX(k), then there
is a unique zero of f(x) in X(k), and furthermore that
Newton's method with real arithmetic will converge to that
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solution starting from any point in X(k). Thus, if N(k) is
determined using one of these techniques, the computation
can be used as a root inclusion test for any interval X(k).Ê
If X (k) Ç  N (k) = Æ , then there is no root in X (k); if
N(k)ÊÌÊX(k), then there is exactly one root and Newton's
method with real arithmetic will find it; otherwise, no
conclusion can be drawn.  In the last case, one could then
repeat the root inclusion test on the next interval Newton
iterate X(k+1), assuming it is sufficiently smaller than
X (k), or one could bisect X (k+1) and repeat the root
inclusion test on the resulting intervals.  This is the basic
idea of interval Newton/generalized bisection methods.  If
f(x) = 0  has a finite number of real solutions in the
specified initial box, a properly implemented interval
Newton/generalized bisection method can find with
mathematical certainty any and all such solutions to a
specified tolerance, or can determine with mathematical
certainty that there are no solutions in the given box
(Kearfott, 1987,1990).

The technique used here for computing N(k) is the
preconditioned Gauss-Seidel-like technique developed by
Hansen and Sengupta (1981) and Hansen and Greenburg
(1983).  Neumaier (1985,1990) has proven the existence
and uniqueness test for this method of determining N(k).

Since all variables are mole fractions, the initial box
X (0) = [0,1] is suitable.  In practice the initial lower
bound is set to an arbitrarily small positive number e
(10-10 was used) to avoid taking the logarithm of zero in
subsequent calculations.  Since it is known (Michelson,
1982) that the roots sought lie in the interior of [0,1], this
can be done without the loss of reliability providing a
sufficiently small value of e is used.

Our implementation of the interval Newton/generalized
bisection method for the phase stability problem is based
on appropriately modified routines from the packages
INTBIS (Kearfott and Novoa, 1990) and INTLIB (Kearfott
et al., 1993).  To demonstrate the potential of the technique
we use two models of liquid-phase systems, one a simple
model of excess Gibbs energy, the other the NRTL model.

Simple Model

This model is used by Green et al. (1993) to
demonstrate the difficulties in using Newton's method for
phase stability problems.  It is a three component system
with the excess Gibbs energy given by DgE/RT = 3x1x2.

This may be regarded as a special case of the two-suffix
Margules equation.  We solved the system (2) for this
model for the three different feed compositions used by
Green et al.  The roots found and the corresponding value
of D  are shown in TableÊ1, and are the same as those
reported by Green et al.  The results indicate phase stability
for only the third feed composition.  Performance data,
including the number of root inclusion tests required, the
depth reached in the binary tree generated in the bisection,
and the computation time on an HP 9000/735 workstation,
is given in Table 2.

NRTL Model

This example is used by McDonald and Floudas
(1993,1994) to demonstrate a global optimization
technique for solving the phase stability problem when the
NRTL model for excess Gibbs energy is used.  There are
two components: n-butyl acetate (1) and water (2).  The
parameters in the NRTL model for this system are G12 =
0.30794, G21 = 0.15904, t12Ê=Ê3.00498, and t21 =

4.69071.  The roots of system (2) found for five feed
compositions are shown in Table 3, and corresponding
performance data is shown in Table 4.  There are as many
as five roots for some feed compositions and phase
instability is indicated for all five cases.

Table 1.   Simple Model:  Roots Found

Feed:  (z1,z2,z3) Roots: (x1,x2,x3) D

(0.45,0.45,0.10) (0.8509,0.0857,0.0634) -0.0671
(0.0857,0.8509,0.0634) -0.0671

(0.45,0.45,0.10) 0.0
(0.60,0.18,0.22) (0.1185,0.6842,0.1973) -0.0284

(0.4675,0.2923,0.2401) 0.00152
(0.60,0.18,0.22) 0.0

(0.90,0.06,0.04) (0.3447,0.5820,0.0733) 0.1664
(0.1193,0.8277,0.0530) 0.1479

(0.90,0.06,0.04) 0.0

Table 2.   Simple Model:  Performance

Feed: (z1,z2,z3)

Root
Inclusion

Tests

Level
Reached in
Binary Tree

CPU Time:
HP 9000/735

(sec.)

(0.45,0.45,0.10) 111 14 0.04
(0.60,0.18,0.22) 119 15 0.03
(0.90,0.06,0.04) 117 14 0.03

The CPU times indicate performance that is
significantly faster than a GAMS implementation of the
model-specific procedure of McDonald and Floudas (1993),
and that is comparable to a more recent C implementation
of their technique (McDonald and Floudas, 1994).  For
example, for the last feed composition (z1 = 0.65)

McDonald and Floudas (1993,1994) report CPU times on a
HP 9000/730 of 10.74Ês for the GAMS implementation of
their technique and 0.11 s for the C implementation of the
method, versus 0.06 s on an HP 9000/735 for the interval
Newton/generalized bisection method used here.  (Note
that, based on the well-known LINPACK-100 benchmark,
the Model 735 used here is about 70% faster than the
Model 730 used by McDonald and Floudas.)  In addition to
being very efficient, the technique used here has the
advantage of being model-independent; it can be easily used
to solve the phase stability problem for other models of
excess Gibbs energy, and can also be used in connection
with equation of state models.
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Concluding Remarks

The interval computation method demonstrated here
provides an efficient and completely reliable means for
solving the phase stability problem.  The method is model-
independent, straightforward to use, and requires no
problem reformulation.  Though we have treated the
problem here as one of solving a system of nonlinear
equations for all its roots, the method can readily be
extended to try to take advantage of the fact that this can be
considered a global optimization problem, and that to
determine phase instability all that really needs to be found
is an interval value of D  with a negative upper bound.
Since this requires the additional work of doing an interval
function evaluation of D for each box tested, it is not clear
that this will always result in any overall savings, though
for problems in which the phase is unstable, savings are
likely and potentially substantial.

Table 3.   NRTL Model:  Roots Found

Feed: (z1,z2) Roots: (x1,x2) D

(0.50,0.50) (0.1602,0.8398) 0.0278
(0.00421,0.99579) -0.0325

(0.50,0.50) 0.0
(0.10,0.90) (0.96346,0.03654) -0.2142

(0.00599,0.99401) -0.0291
(0.10,0.90) 0.0

(0.20,0.80) (0.3922,0.6078) -0.00607
(0.00379,0.99621) -0.0743

(0.20,0.80) 0.0
(0.15,0.85) (0.5423,0.4577) -0.0388

(0.8549,0.1451) -0.0260
(0.9216,0.0784) -0.0267

(0.00438,0.99562) -0.0557
(0.15,0.85) 0.0

(0.65,0.35) (0.7593,0.2407) 0.00063
(0.9413,0.0587) -0.00671
(0.1346,0.8654) 0.0632

(0.00471,0.99529) 0.0150
(0.65,0.35) 0.0

Table 4.  NRTL Model:  Performance

Feed: (z1,z2)

Root
Inclusion

Tests

Level
Reached in
Binary Tree

CPU Time:
HP 9000/735

(sec.)

(0.50,0.50) 206 13 0.05
(0.10,0.90) 116 11 0.02
(0.20,0.80) 204 14 0.04
(0.15,0.85) 245 15 0.06
(0.65,0.35) 268 17 0.06
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