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Background

• Parameter estimation is a key step in development of mathematical models

• Models of interest may be ODEs/DAEs

• Minimization of a weighted squared error

min
θ,zµ

φ =
∑

m∈M

r
∑

µ=1
(zµ,m − z̄µ,m)2

s.t. ż = f(z, θ, t), z(t0) = z0

θ ∈ Θ

zµ = z(tµ), tµ ∈ [t0, tf ]

• Sequential approach – eliminate zµ using parametric ODE solver

• Multiple local solutions – a need for global optimization
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Deterministic Global Optimization with Dynamic Systems

• Much recent interest, e.g.

– Esposito and Floudas (2000)

– Chachuat and Latifi (2003)

– Papamichail and Adjiman (2002, 2004)

– Singer and Barton (2004)

• New approach: branch and reduce algorithm based on interval analysis

– Construct Taylor models of the states using a new validated solver for

parametric ODEs (VSPODE) (Lin and Stadtherr, 2005)

– Compute the Taylor model Tφ of the objective function

– Perform constraint propagation procedure using Tφ ≤ φ̂, to reduce the

parameter domain
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Interval Analysis

• A real interval

X = [X, X] = {x ∈ R | X ≤ x ≤ X}

• A real interval vector – a box

X = (X1, X2, · · · , Xn)T

• Interval arithmetic – basic operations and elementary functions

• An interval extension of a function f(x) over X

F (X) ⊇ {f(x) | x ∈ X}

• Natural interval extension – leads to overestimation (dependence problem)
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Taylor Models

• Taylor Model Tf – an interval extension of a function over X

Tf = (pf , Rf )

pf =
q
∑

i=0

1
i! [(X − x0) · 5]

i
f (x0)

Rf = 1
(q+1)! [(X − x0) · 5]q+1 F [x0 + (X − x0)Ξ]

where,

x0 ∈ X; Ξ = [0, 1]

[g · 5]
k

=
∑

j1+···+jm=k

0≤j1,··· ,jm≤k

k!
j1!···jm!g

j1
1 · · · gjm

m
∂k

∂x
j1
1

···∂x
jm
m

• pf is a polynomial function; store and operate on its coefficients only
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Taylor Models - Remainder Differential Algebra (RDA)

• Basic operations

Tf±g = (pf , Rf ) ± (pg, Rg) = (pf ± pg, Rf ± Rg)

Tf×g = (pf , Rf ) × (pg, Rg)

= pf × pg + pf × Rg + pg × Rf + Rf × Rg

= (pf×g, Rf×g)

where,

pf×g = pf × pg − pe

Rf×g = B(pe) + B(pf ) × Rg + B(pg) × Rf + Rf × Rg

• B(p) indicates an interval bound on the function p.

• Reciprocal operation and intrinsic functions can also be defined.

• It is possible to compute Taylor models of complex functions.
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Taylor Models - Range Bounding

• Exact range bounding of the interval polynomials – NP hard

• Direct evaluation of the interval polynomials – inefficient

• Focus on bounding the dominant part (1st and 2nd order terms)

• Exact range bounding of a general interval quadratic - computationally

expensive

• A compromise approach – 1st order and diagonal elements of 2nd order

B(p) =
m

∑

i=1

[

ai (Xi − xi0)
2 + bi(Xi − xi0)

]

+ S

=
m

∑

i=1

[

ai

(

Xi − xi0 +
bi

2ai

)2

−
b2
i

4ai

]

+ S,

where, S is the interval bound of other terms by direct evaluation
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Taylor Models - Constraint Propagation

• Goal – to reduce part of domain not satisfying c(x) ≤ 0

• For some i = 1, 2 · · · , m

B(Tc) = B(pc) + Rc = ai

(

Xi − xi0 +
bi

2ai

)2

−
b2
i

4ai

+ Si ≤ 0

=⇒ aiU
2
i ≤ Vi, with Ui = Xi − xi0 +

bi

2ai

and Vi =
b2
i

4ai

− Si

=⇒ Ui =



































∅ if ai > 0 and Vi < 0
[

−
√

Vi

ai
,
√

Vi

ai

]

if ai > 0 and Vi ≥ 0

[−∞,∞] if ai < 0 and Vi ≥ 0
[

−∞,−
√

Vi

ai

]

∪

[

√

Vi

ai
,∞

]

if ai < 0 and Vi < 0

=⇒ Xi = Xi ∩

(

Ui + xi0 −
bi

2ai

)
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Validated Solutions for Parametric ODEs

• Consider the IVP for the parametric ODEs

ẏ = f(y, θ), y(t0) = y0, θ ∈ Θ

• Validated methods:

– Guarantee there exists a unique solution y in the interval [t0, tf ], for each

θ ∈ Θ

– Compute the interval Y tf
that encloses all solutions of the ODEs at tf .

• Tools – AWA, VNODE, COSY VI, VSPODE, etc.
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Validated Solutions for Parametric ODEs (Cont’d)

• VSPODE (Lin and Stadtherr, 2005) – novel use of Taylor model approach for

dependency problem in solving ODEs with interval valued parameters

• Phase 1 – Validate existence and uniqueness (hj and Ỹ j ) – like in VNODE

Ỹ j =

k−1
∑

i=0

[0, hj ]
iF [i](Y j ,Θ) + [0, hj ]

kF [k](Ỹ
0

j ,Θ) ⊆ Ỹ
0

j

• Phase 2 – Compute tighter enclosure

– Dependence problem – Taylor model

– Wrapping effect – QR factorization

– Solutions: T yj+1
= pyj+1

+ Aj+1V j+1
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Validated Solutions for Parametric ODEs (Cont’d)

• Example – Lotka-Volterra equations

ẏ1 = θ1y1(1 − y2)

ẏ2 = θ2y2(y1 − 1)

t ∈ [0, 10]

y1(0) = 1.2

y2(0) = 1.1

θ1 ∈ 3 + [−0.01, 0.01]

θ2 ∈ 1 + [−0.01, 0.01]
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Branch and Reduce Algorithm Summary

Beginning with initial parameter interval Θ(0)

• Establish φ̂, the upper bound on global minimum using p2 local minimizations

• Iterate: for subinterval Θ(k)

1. Compute Taylor models of the states using VSPODE, and then obtain Tφ

2. Perform constraint propagation using Tφ ≤ φ̂ to reduce Θ
(k)

3. If Θ(k) = ∅, go to next subinterval

4. If (φ̂ − B(Tφ))/|φ̂| ≤ ε, discard Θ
(k) and go to next subinterval

5. If B(Tφ) < φ̂, update φ̂ with local minimization, go to step 2

6. If Θ(k) is sufficiently reduced, go to step 1

7. Otherwise, bisect Θ(k) and go to next subinterval
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Computational Studies - Example 1

• First-order irreversible series reaction (Esposito and Floudas, 2000)

A
θ1−→ B

θ2−→ C

• The differential equation model

żA = −θ1zA

żB = θ1zA − θ2zB

z0 = [1, 0]

θ ∈ [0, 10] × [0, 10]

• Solution: θ∗ = (5.0035, 1.0000) and φ∗ = 1.1858 × 10−6

• Results: 4 iterations and < 0.1 CPU seconds
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Computational Studies - Example 2

• Catalytic Cracking of Gas Oil (Esposito and Floudas, 2000)

A
θ1

θ3

Q

θ2

S

• The differential equation model

żA = −(θ1 + θ3)z
2
A

żQ = θ1z
2
A − θ2zQ

z0 = [1, 0]

θ ∈ [0, 20] × [0, 20] × [0, 20]

• Solution: θ∗ = (12.2139, 7.9798, 2.2217) and φ∗ = 2.6557 × 10−3

• Results: 359 iterations and 14.3 CPU seconds
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Computational Performance Comparison (CPU seconds)

Example 1 Example 2

Method Reported Adjusted Reported Adjusted

This work < 0.1 < 0.1 14.3 14.3
(Intel P4 3.2GHz)

Papamichail and Adjiman 801 102.5 35478 4541
(SUN UltraSPARC-II 360MHz)

Chachuat and Latifi 280 - 10400 -
(Machine not reported)

Esposito and Floudas∗ 13.30 1.53 100.21 11.5
(HP 9000 model J2240)

Adjusted = Approximate CPU time adjusted for machine used based on SPEC

benchmarks
∗ Does not provide rigorous guarantee of global optimality.
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Concluding Remarks and Acknowledgments

• A deterministic global optimization approach based on interval analysis can

be used to estimate the parameters of dynamic systems

• A validated solver for parametric ODEs is used to construct bounds on the

states of dynamic systems

• An efficient constraint propagation procedure is used to reduce the

incompatible parameter domain

• This approach can be combined with the interval-Newton method (Lin and

Stadtherr, 2005)

– True global optimum instead of ε-convergence

– May or may not reduce CPU time required
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