Global Optimization for Parameter Estimation of Dynamic Systems

Youdong Lin and Mark A. Stadtherr

Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame, IN 46556

> AIChE Annual Meeting, Cincinnati, OH October 31, 2005

Outline

- Background
- Interval Analysis
- Taylor Models
- Validated Solutions for Parametric ODEs
- Algorithm Summary
- Computational Studies
- Concluding Remarks and Acknowledgments

Background

- Parameter estimation is a key step in development of mathematical models
- Models of interest may be ODEs/DAEs
- Minimization of a weighted squared error

$$\begin{split} \min_{\boldsymbol{\theta}, \boldsymbol{z}_{\mu}} \phi &= \sum_{m \in M} \sum_{\mu=1}^{r} (z_{\mu,m} - \bar{z}_{\mu,m})^2 \\ \text{s.t.} \quad \dot{\boldsymbol{z}} &= \boldsymbol{f}(\boldsymbol{z}, \boldsymbol{\theta}, t), \quad \boldsymbol{z}(t_0) = \boldsymbol{z}_0 \\ \boldsymbol{\theta} \in \boldsymbol{\Theta} \\ \boldsymbol{z}_{\mu} &= \boldsymbol{z}(t_{\mu}), \quad t_{\mu} \in [t_0, t_f] \end{split}$$

- Sequential approach eliminate \boldsymbol{z}_{μ} using parametric ODE solver
- Multiple local solutions a need for global optimization

Deterministic Global Optimization with Dynamic Systems

- Much recent interest, e.g.
 - Esposito and Floudas (2000)
 - Chachuat and Latifi (2003)
 - Papamichail and Adjiman (2002, 2004)
 - Singer and Barton (2004)
- New approach: branch and reduce algorithm based on interval analysis
 - Construct Taylor models of the states using a new validated solver for parametric ODEs (VSPODE) (Lin and Stadtherr, 2005)
 - Compute the Taylor model T_{ϕ} of the objective function
 - Perform constraint propagation procedure using $T_{\phi} \leq \hat{\phi}$, to reduce the parameter domain

Interval Analysis

• A real interval

$$X = [\underline{X}, \overline{X}] = \{ x \in \mathfrak{R} \mid \underline{X} \le x \le \overline{X} \}$$

• A real interval vector – a box

$$\boldsymbol{X} = (X_1, X_2, \cdots, X_n)^T$$

- Interval arithmetic basic operations and elementary functions
- An interval extension of a function $f(\boldsymbol{x})$ over \boldsymbol{X}

 $F(\boldsymbol{X}) \supseteq \{f(\boldsymbol{x}) \mid \boldsymbol{x} \in \boldsymbol{X}\}$

• Natural interval extension – leads to overestimation (dependence problem)

Taylor Models

• Taylor Model T_f – an interval extension of a function over X

$$T_f = (p_f, R_f)$$

$$p_f = \sum_{i=0}^q \frac{1}{i!} \left[(\boldsymbol{X} - \boldsymbol{x}_0) \cdot \nabla \right]^i f(\boldsymbol{x}_0)$$

$$R_f = \frac{1}{(q+1)!} \left[(\boldsymbol{X} - \boldsymbol{x}_0) \cdot \nabla \right]^{q+1} F[\boldsymbol{x}_0 + (\boldsymbol{X} - \boldsymbol{x}_0) \Xi]$$

where,

$$\boldsymbol{x}_{0} \in \boldsymbol{X}; \quad \boldsymbol{\Xi} = [0, 1]$$
$$[\boldsymbol{g} \cdot \boldsymbol{\nabla}]^{k} = \sum_{\substack{j_{1} + \dots + j_{m} = k \\ 0 \leq j_{1}, \dots, j_{m} \leq k}} \frac{k!}{j_{1}! \cdots j_{m}!} g_{1}^{j_{1}} \cdots g_{m}^{j_{m}} \frac{\partial^{k}}{\partial x_{1}^{j_{1}} \cdots \partial x_{m}^{j_{m}}}$$

• p_f is a polynomial function; store and operate on its coefficients only

Taylor Models - Remainder Differential Algebra (RDA)

• Basic operations

$$T_{f\pm g} = (p_f, R_f) \pm (p_g, R_g) = (p_f \pm p_g, R_f \pm R_g)$$
$$T_{f\times g} = (p_f, R_f) \times (p_g, R_g)$$
$$= p_f \times p_g + p_f \times R_g + p_g \times R_f + R_f \times R_g$$
$$= (p_{f\times g}, R_{f\times g})$$

where,

$$p_{f \times g} = p_f \times p_g - p_e$$
$$R_{f \times g} = B(p_e) + B(p_f) \times R_g + B(p_g) \times R_f + R_f \times R_g$$

- B(p) indicates an interval bound on the function p.
- Reciprocal operation and intrinsic functions can also be defined.
- It is possible to compute Taylor models of complex functions.

Taylor Models - Range Bounding

- Exact range bounding of the interval polynomials NP hard
- Direct evaluation of the interval polynomials inefficient
- Focus on bounding the dominant part (1st and 2nd order terms)
- Exact range bounding of a general interval quadratic computationally expensive
- A compromise approach 1st order and diagonal elements of 2nd order

$$B(p) = \sum_{i=1}^{m} \left[a_i \left(X_i - x_{i0} \right)^2 + b_i (X_i - x_{i0}) \right] + S$$
$$= \sum_{i=1}^{m} \left[a_i \left(X_i - x_{i0} + \frac{b_i}{2a_i} \right)^2 - \frac{b_i^2}{4a_i} \right] + S,$$

where, S is the interval bound of other terms by direct evaluation

Taylor Models - Constraint Propagation

• Goal – to reduce part of domain not satisfying $c({m x}) \leq 0$

$$\begin{aligned} \text{For some } i &= 1, 2 \cdots, m \\ B(T_c) &= B(p_c) + R_c = a_i \left(X_i - x_{i0} + \frac{b_i}{2a_i} \right)^2 - \frac{b_i^2}{4a_i} + S_i \leq 0 \\ \implies & a_i U_i^2 \leq V_i, \quad \text{with } U_i = X_i - x_{i0} + \frac{b_i}{2a_i} \text{ and } V_i = \frac{b_i^2}{4a_i} - S_i \\ \text{ if } a_i > 0 \text{ and } \overline{V_i} < 0 \\ \begin{bmatrix} 0 & \text{if } a_i > 0 \text{ and } \overline{V_i} < 0 \\ \left[-\sqrt{\frac{V_i}{a_i}}, \sqrt{\frac{V_i}{a_i}} \right] & \text{if } a_i > 0 \text{ and } \overline{V_i} \geq 0 \\ \left[-\infty, \infty \right] & \text{if } a_i < 0 \text{ and } \overline{V_i} \geq 0 \\ \begin{bmatrix} -\infty, -\sqrt{\frac{V_i}{a_i}} \end{bmatrix} \cup \left[\sqrt{\frac{V_i}{a_i}}, \infty \right] & \text{if } a_i < 0 \text{ and } \overline{V_i} < 0 \\ \end{bmatrix} \\ \implies & X_i = X_i \cap \left(U_i + x_{i0} - \frac{b_i}{2a_i} \right) \end{aligned}$$

Validated Solutions for Parametric ODEs

• Consider the IVP for the parametric ODEs

$$\dot{\boldsymbol{y}} = \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{\theta}), \quad \boldsymbol{y}(t_0) = \boldsymbol{y}_0, \quad \boldsymbol{\theta} \in \boldsymbol{\Theta}$$

- Validated methods:
 - Guarantee there exists a unique solution $m{y}$ in the interval $[t_0,t_f]$, for each $m{ heta}\inm{\Theta}$
 - Compute the interval \boldsymbol{Y}_{t_f} that encloses all solutions of the ODEs at t_f .
- Tools AWA, VNODE, COSY VI, VSPODE, etc.

Validated Solutions for Parametric ODEs (Cont'd)

- VSPODE (Lin and Stadtherr, 2005) novel use of Taylor model approach for dependency problem in solving ODEs with interval valued parameters
- Phase 1 Validate existence and uniqueness $(h_j \text{ and } \tilde{Y}_j)$ like in VNODE

$$\tilde{\boldsymbol{Y}}_{j} = \sum_{i=0}^{k-1} [0, h_{j}]^{i} \boldsymbol{F}^{[i]}(\boldsymbol{Y}_{j}, \boldsymbol{\Theta}) + [0, h_{j}]^{k} \boldsymbol{F}^{[k]}(\tilde{\boldsymbol{Y}}_{j}^{0}, \boldsymbol{\Theta}) \subseteq \tilde{\boldsymbol{Y}}_{j}^{0}$$

- Phase 2 Compute tighter enclosure
 - Dependence problem Taylor model
 - Wrapping effect QR factorization
 - Solutions: $T_{y_{j+1}} = p_{y_{j+1}} + A_{j+1}V_{j+1}$

Validated Solutions for Parametric ODEs (Cont'd)

• Example – Lotka-Volterra equations

$$\dot{y}_1 = \theta_1 y_1 (1 - y_2)$$
$$\dot{y}_2 = \theta_2 y_2 (y_1 - 1)$$
$$t \in [0, 10]$$
$$y_1 (0) = 1.2$$
$$y_2 (0) = 1.1$$
$$\theta_1 \in 3 + [-0.01, 0.01]$$
$$\theta_2 \in 1 + [-0.01, 0.01]$$

Solution of Lotka–Volterra equations using VSPODE and VNODE

Branch and Reduce Algorithm Summary

Beginning with initial parameter interval $\Theta^{(0)}$

- Establish $\hat{\phi}$, the upper bound on global minimum using p^2 local minimizations
- Iterate: for subinterval $\Theta^{(k)}$
 - 1. Compute Taylor models of the states using VSPODE, and then obtain T_{ϕ}
 - 2. Perform constraint propagation using $T_{\phi} \leq \hat{\phi}$ to reduce $\Theta^{(k)}$
 - 3. If $\Theta^{(k)} = \emptyset$, go to next subinterval
 - 4. If $(\hat{\phi} \underline{B(T_{\phi})})/|\hat{\phi}| \leq \epsilon$, discard $\Theta^{(k)}$ and go to next subinterval
 - 5. If $\overline{B(T_{\phi})} < \hat{\phi}$, update $\hat{\phi}$ with local minimization, go to step 2
 - 6. If $\Theta^{(k)}$ is sufficiently reduced, go to step 1
 - 7. Otherwise, bisect $\Theta^{(k)}$ and go to next subinterval

Computational Studies - Example 1

• First-order irreversible series reaction (Esposito and Floudas, 2000)

$$A \xrightarrow{\theta_1} B \xrightarrow{\theta_2} C$$

• The differential equation model

$$\begin{aligned} \dot{z}_A &= -\theta_1 z_A \\ \dot{z}_B &= \theta_1 z_A - \theta_2 z_B \\ \boldsymbol{z}_0 &= [1, 0] \\ \boldsymbol{\theta} &\in [0, 10] \times [0, 10] \end{aligned}$$

- Solution: $\theta^* = (5.0035, 1.0000)$ and $\phi^* = 1.1858 \times 10^{-6}$
- Results: 4 iterations and < 0.1 CPU seconds

Computational Studies - Example 2

• Catalytic Cracking of Gas Oil (Esposito and Floudas, 2000)

• The differential equation model

$$\dot{z}_A = -(heta_1 + heta_3)z_A^2$$

 $\dot{z}_Q = heta_1 z_A^2 - heta_2 z_Q$
 $oldsymbol{z}_0 = [1, 0]$
 $oldsymbol{ heta} \in [0, 20] imes [0, 20] imes [0, 20]$

- Solution: $\pmb{\theta}^* = (12.2139, 7.9798, 2.2217)$ and $\phi^* = 2.6557 \times 10^{-3}$
- Results: 359 iterations and 14.3 CPU seconds

Computational Performance Comparison (CPU seconds)

	Example 1		Exan	Example 2	
Method	Reported	Adjusted	Reported	Adjusted	
This work (Intel P4 3.2GHz)	< 0.1	< 0.1	14.3	14.3	
Papamichail and Adjiman (SUN UltraSPARC-II 360MHz)	801	102.5	35478	4541	
Chachuat and Latifi (Machine not reported)	280	-	10400	-	
Esposito and Floudas* (HP 9000 model J2240)	13.30	1.53	100.21	11.5	

Adjusted = Approximate CPU time adjusted for machine used based on SPEC benchmarks

* Does not provide rigorous guarantee of global optimality.

Concluding Remarks and Acknowledgments

- A deterministic global optimization approach based on interval analysis can be used to estimate the parameters of dynamic systems
- A validated solver for parametric ODEs is used to construct bounds on the states of dynamic systems
- An efficient constraint propagation procedure is used to reduce the incompatible parameter domain
- This approach can be combined with the interval-Newton method (Lin and Stadtherr, 2005)
 - True global optimum instead of ϵ -convergence
 - May or may not reduce CPU time required
- Acknowledgments
 - Indiana 21st Century Research & Technology Fund
 - Department of Energy