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Background

• Many practically important physical systems are modeled by ODE systems.

• Optimization problems involving these models may be stated as

min
θ,xµ

φ [xµ(θ), θ; µ = 0, 1, . . . , r]

s.t. ẋ = f(x, θ)

x0 = x0(θ)

xµ(θ) = x(tµ, θ)

t ∈ [t0, tr]

θ ∈ Θ

• Sequential approach: Eliminate xµ using parametric ODE solver, obtaining

an unconstrained problem in θ

• May be multiple local solutions – need for global optimization
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Deterministic Global Optimization of Dynamic Systems

Much recent interest, mostly combining branch-and-bound and relaxation

techniques, e.g.,

• Esposito and Floudas (2000): α-BB approach

– Rigorous values of α not used: no theoretical guarantees

• Chachuat and Latifi (2003): Theoretical guarantee of ε-global optimality

• Papamichail and Adjiman (2002, 2004): Theoretical guarantee of ε-global

optimality

• Singer and Barton (2006): Theoretical guarantee of ε-global optimality

– Use convex underestimators and concave overestimators to construct two

bounding IVPs, which are then solved to obtain lower and upper bounds

on the state trajectories.

– Bounding IVPs are not solved rigorously, so state bounds are not

computationally guaranteed.
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Deterministic Global Optimization of Dynamic Systems

Our approach: Branch-and-reduce algorithm based on interval analysis and using

Taylor models

• Basic ideas

– Use local optimizations to obtain an upper bound φ̂ on the global minimum

– Compute Taylor models of the state variables using a new validated solver

for parametric ODEs (VSPODE) (Lin and Stadtherr, 2006)

– Compute the Taylor model Tφ of the objective function

– Perform constraint propagation procedure using Tφ ≤ φ̂, to reduce the

parameter (decision variable) space Θ

– Use branch-and-bound

• Can implement to obtain either an ε-global minimum, or (using interval

Newton approach) the exact (ε = 0) global minimum
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Interval Analysis

• A real interval X = [a, b] = {x ∈ < | a ≤ x ≤ b} is a segment on the real

number line.

• An interval vector X = (X1, X2, ..., Xn)T is an n-dimensional rectangle.

• Basic interval arithmetic for X = [a, b] and Y = [c, d] is

X op Y = {x op y | x ∈ X, y ∈ Y }

• Interval elementary functions (e.g., exp(X), sin(X)) are also available.

• The interval extension F (X) encloses all values of f(x) for x ∈ X ; that is,

{f(x) | x ∈ X} ⊆ F (X)

• Interval extensions computed using interval arithmetic may lead to

overestimation of function range (the interval “dependency” problem).

6



Taylor Models

• Taylor Model Tf = (pf , Rf ): Bounds a function f(x) over X using a q-th

order Taylor polynomial pf and an interval remainder bound Rf .

• Could obtain Tf using a truncated Taylor series:

pf =
q∑

i=0

1
i! [(x − x0) · 5]

i
f (x0)

Rf = 1
(q+1)! [(x − x0) · 5]q+1 F [x0 + (x − x0)ζ]

where,

x0 ∈ X; ζ ∈ [0, 1]

[g · 5]k =
∑

j1+···+jm=k

0≤j1,··· ,jm≤k

k!
j1!···jm!g

j1
1 · · · gjm

m
∂k

∂x
j1
1 ···∂x

jm
m

• Can also compute Taylor models by using Taylor model operations (Makino

and Berz, 1996)
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Taylor Model Operations

• Let Tf and Tg be the Taylor models of the functions f(x) and g(x),

respectively, over the interval x ∈ X .

• Addition: Tf±g = (pf±g, Rf±g) = (pf ± pg, Rf ± Rg)

• Multiplication: Tf×g = (pf×g, Rf×g) with pf×g = pf × pg − pe and

Rf×g = B(pe) + B(pf ) × Rg + B(pg) × Rf + Rf × Rg

• B(p) indicates an interval bound on the function p.

• Reciprocal operation and intrinsic functions can also be defined.

• Store and operate on coefficients of pf only. Floating point errors are

accumulated in Rf .

• Beginning with Taylor models of simple functions, Taylor models of very

complicated functions can be computed.

• Compared to other rigorous bounding methods (e.g., interval arithmetic),

Taylor models often yield sharper bounds for modest to complicated

functional dependencies (Makino and Berz, 1999).
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Taylor Models – Range Bounding

• Exact range bounding of the interval polynomials – NP hard

• Direct evaluation of the interval polynomials – overestimation

• Focus on bounding the dominant part (1st and 2nd order terms)

• Exact range bounding of a general interval quadratic – also worst-case

exponential complexity

• A compromise approach – Exact bounding of 1st order and diagonal 2nd

order terms

B(p) =
m∑

i=1

[
ai (Xi − xi0)

2 + bi(Xi − xi0)
]

+ S

=

m∑

i=1

[
ai

(
Xi − xi0 +

bi

2ai

)2

− b2
i

4ai

]
+ S,

where S is the interval bound of other terms by direct evaluation
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Taylor Models – Constraint Propagation

• Consider constraint c(x) ≤ 0, x ∈ X . Goal – Eliminate parts of X in

which constraint cannot be satisfied

• For each i = 1, 2 · · · , m, shrink Xi using:

B(Tc) = B(pc) + Rc = ai

(
Xi − xi0 +

bi

2ai

)2

− b2
i

4ai

+ Si ≤ 0

=⇒ aiU
2
i ≤ Vi, with Ui = Xi − xi0 +

bi

2ai

and Vi =
b2
i

4ai

− Si

=⇒ Ui =





∅ if ai > 0 and Vi < 0[
−

√
Vi

ai
,
√

Vi

ai

]
if ai > 0 and Vi ≥ 0

[−∞,∞] if ai < 0 and Vi ≥ 0[
−∞,−

√
Vi

ai

]
∪

[√
Vi

ai
,∞

]
if ai < 0 and Vi < 0

=⇒ Xi = Xi ∩
(

Ui + xi0 −
bi

2ai

)
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Validated Solution of Parametric ODE Systems

• Consider the parametric ODE system

ẋ = f(x, θ)

x(t0) = x0 ∈ X0

θ ∈ Θ

• Validated methods:

– Guarantee there exists a unique solution x(t) in [t0, tf ], for each θ ∈ Θ and

x0 ∈ X0

– Compute an interval Xj that encloses all solutions of the ODE system at tj for

θ ∈ Θ and x0 ∈ X0

• Tools are available – VNODE, COSY VI, AWA, etc.

– May need to treat parameters as additional state variables with zero derivative

• New tool – VSPODE (Lin and Stadtherr, 2006): Deals directly with interval-valued

parameters (and also interval-valued initial states)
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New Method for Parametric ODEs

• Use interval Taylor series to represent dependence on time. Use Taylor

models to represent dependence on uncertain quantities (parameters and

initial states).

• Assuming Xj is known, then

– Phase 1: Same as “standard” approach (e.g., VNODE). Compute a coarse

enclosure X̃j and prove existence and uniqueness. Use fixed point

iteration with Picard operator using high-order interval Taylor series.

– Phase 2: Refine the coarse enclosure to obtain Xj+1. Use Taylor models

in terms of the uncertain parameters and initial states.

• Implemented in VSPODE (Validating Solver for Parametric ODEs) (Lin and

Stadtherr, 2006).
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Method for Phase 2

• Represent uncertain initial states and parameters using Taylor models T x0

and T θ , with components

Txi0 = (m(Xi0) + (xi0 − m(Xi0)), [0, 0]), i = 1, · · · , m

Tθi
= (m(Θi) + (θi − m(Θi)), [0, 0]), i = 1, · · · , p.

• Bound the interval Taylor series coefficients f [i] by computing

Taylor models T f [i] .

– Use mean value theorem.

– Evaluate using Taylor model operations.

• Reduce “wrapping effect” by using a new type of Taylor model involving a

parallelpiped remainder bound.

• This results in a Taylor model T xj+1 in terms of the initial states x0 and

parameters θ.

• Compute the enclosure Xj+1 = B(T xj+1) by bounding over X0 and Θ.
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VSPODE Example

• Lotka-Volterra Problem
ẋ1 = θ1x1(1 − x2)

ẋ2 = θ2x2(x1 − 1)

x0 = (1.2, 1.1)T

θ1 ∈ [2.99, 3.01]

θ2 ∈ [0.99, 1.01]

• Integrate from t0 = 0 to tN = 10.

• VSPODE run using q = 5 (order of Taylor model), k = 17 (order of interval

Taylor series) and QR for wrapping.

• For comparison, VNODE was used, with interval parameters treated as

additional state variables, and run using k = 17 order interval

Hermite-Obreschkoff and QR for wrapping.

• Constant step size of h = 0.1 used in both VSPODE and VNODE (step size

may be reduced if necessary in Phase 1).
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Lotka-Volterra Problem
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Summary of Global Optimization Algorithm

Beginning with initial parameter interval Θ(0)

• Establish φ̂, the upper bound on global minimum using p2 local

minimizations, where p is the number of parameters (decision variables)

• Iterate: for subinterval Θ(k)

1. Compute Taylor models of the states using VSPODE, and then obtain Tφ

2. Perform constraint propagation using Tφ ≤ φ̂ to reduce Θ
(k)

3. If Θ(k) = ∅, go to next subinterval

4. If (φ̂ − B(Tφ))/|φ̂| ≤ εrel, or φ̂ − B(Tφ) ≤ εabs, discard Θ
(k) and

go to next subinterval

5. If B(Tφ) < φ̂, update φ̂ with local minimization, go to step 2

6. If Θ(k) is sufficiently reduced, go to step 1

7. Otherwise, bisect Θ(k) and go to next subinterval

• This finds an ε-global optimum with either a relative tolerance (εrel) or

absolute tolerance (εabs)
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Global Optimization Algorithm (cont’d)

• By incorporating an interval-Newton approach, this can also be implemented

as an exact algorithm (ε = 0).

• This requires the validated integration of the first- and second-order sensitivity

equations. VSPODE was used.

• Interval-Newton steps are applied only after reaching an appropriate depth in

the branch-and-bound tree

• We have implemented the exact algorithm only for the case of parameter

estimation problems with least squares objective

• The exact algorithm may require more or less computation time than the

ε-global algorithm

17



Computational Studies – Example 1

• Parameter estimation – Catalytic cracking of gas oil (Tjoa and Biegler 1991)

A
θ1

θ3

Q

θ2

S

• The problem is:

min
θ

φ =
20∑

µ=1

2∑

i=1

(x̂µ,i − xµ,i)
2

s.t. ẋ1 = −(θ1 + θ3)x
2
1

ẋ2 = θ1x
2
1 − θ2x2

x0 = (1, 0)T; xµ = x(tµ)

θ ∈ [0, 20] × [0, 20] × [0, 20]

where x̂µ is given (experimental data).
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Example 1 (Cont’d)

• Solution: θ∗ = (12.2139, 7.9798, 2.2217)T and φ∗ = 2.6557 × 10−3

• Comparisons:

CPU time (s)

Method Reported Adjusted∗

This work (exact global optimum: ε = 0) 11.5 11.5
(Intel P4 3.2GHz)

This work (εrel = 10−3) 14.3 14.3
(Intel P4 3.2GHz)

Papamichail and Adjiman (2002) (εrel = 10−3) 35478 4541
(SUN UltraSPARC-II 360MHz)

Chachuat and Latifi (2003) (εrel = 10−3) 10400 −
(Machine not reported)

Singer and Barton (2006) (εabs = 10−3) 5.78 2.89
(AMD Athlon 2000XP+ 1.667GHz)

∗Adjusted = Approximate CPU time after adjustment for machine used (based on SPEC benchmark)
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Computational Studies – Example 2

• Singular control problem (Luus, 1990)

• The original problem is stated as:

min
θ(t)

φ =

∫ tf

t0

[
x2

1 + x2
2 + 0.0005(x2 + 16t − 8 − 0.1x3θ

2)2dt
]

s.t. ẋ1 = x2

ẋ2 = −x3θ + 16t − 8

ẋ3 = θ

x0 = (0,−1,−
√

5)T

t ∈ [t0, tf ] = [0, 1]

θ ∈ [−4, 10]

• θ(t) is parameterized as a piecewise constant control profile with n pieces

(equal time intervals)
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Example 2 (Cont’d)

• Reformulate problem to be autonomous, and introduce quadrature variable:

min
θ(t)

φ = x5(tf )

s.t. ẋ1 = x2

ẋ2 = −x3θ + 16x4 − 8

ẋ3 = θ

ẋ4 = 1

ẋ5 = x2
1 + x2

2 + 0.0005(x2 + 16x4 − 8 − 0.1x3θ
2)2

x0 = (0,−1,−
√

5, 0, 0)T

t ∈ [t0, tf ] = [0, 1]

θ ∈ [−4, 10]

• Do ε-global optimization with εabs = 10−3
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Example 2 (Cont’d)

CPU time (s)

Singer and
n φ∗ θ∗ This work Barton (2006)∗

1 0.4965 (4.071) 0.02 0.9

2 0.2771 (5.575, -4.000) 0.32 11.3

3 0.1475 (8.001, -1.944, 6.042) 10.88 270.3

4 0.1237 (9.789, -1.200, 1.257, 6.256) 369.0 −
5 0.1236 (10.00, 1.494, -0.814, 3.354, 6.151) 8580.6 −
∗Approximate CPU time after adjustment for machine used
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Computational Studies – Example 3

• Oil shale pyrolysis problem (Luus, 1990)

• The original problem is stated as:

min
θ(t)

φ = −x2(tf )

s.t. ẋ1 = −k1x1 − (k3 + k4 + k5)x1x2

ẋ2 = k1x1 − k2x2 + k3x1x2

ki = ai exp

(−bi/R

θ

)
, i = 1, . . . , 5

x0 = (1, 0)T

t ∈ [t0, tf ] = [0, 10]

θ ∈ [698.15, 748.15].

• θ(t) is paramaterized as a piecewise constant control profile with n pieces

(equal time intervals)
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Example 3 (Cont’d)

• Transformation of control variable

θ̄ =
698.15

θ

• The reformulated problem is stated as:

min
θ̄(t)

φ = −x2(tf )

s.t. ẋ1 = −k1x1 − (k3 + k4 + k5)x1x2

ẋ2 = k1x1 − k2x2 + k3x1x2

ki = ai exp
(
−θ̄bi/R

)
, i = 1, · · · , 5

x0 = (1, 0)T

t ∈ [t0, tf ] = [0, 10]

θ̄ ∈ [698.15/748.15, 1].

• Do ε-global optimization with εabs = 10−3
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Example 3 (Cont’d)

CPU time (s)

Singer and
n φ∗ θ̄

∗
This work Barton (2006)∗

1 -0.3479 (0.984) 3.2 13.1

2 -0.3510 (0.970, 1.000) 26.8 798.7

3 -0.3517 (1.000, 0.963, 1.000) 251.6 -

4 -0.3523 (1.000, 0.955, 1.000, 1.000) 2443.5 -

∗Approximate CPU time after adjustment for machine used
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Concluding Remarks

• An approach has been described for deterministic global optimization of

dynamic systems using interval analysis and Taylor models

– A validated solver for parametric ODEs is used to construct bounds on the

states of dynamic systems

– An efficient constraint propagation procedure is used to reduce the

incompatible parameter domain

• Can be combined with the interval-Newton method (Lin and Stadtherr, 2006)

– True global optimum instead of ε-convergence

– May or may not reduce CPU time required
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