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Abstract. In initial value problems for ODEs with interval-valued parameters, it is desirable in
many applications to be able to determine a validated enclosure of all possible solutions to the ODE
system. Much work has been done for the case in which initial values are given by intervals, and
there are several available software packages that deal with this case. However, relatively little work
has been done on the case in which parameters are given by intervals. We demonstrate here a new
method for obtaining validated solutions of initial value problems for ODEs with interval-valued
parameters. The method also accounts for interval-valued initial values. The effectiveness of the
method is demonstrated using numerical examples involving kinetics in a bioreactor and motion of
a double pendulum.
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1. Introduction

Initial value problems for ODEs arise naturally in many applications in engineering and science.
It is often the case that the problem involves parameters and/or initial values that are not known
with certainty but that can be expressed as intervals. For this situation it is desirable to be able to
determine an enclosure of all possible solutions to the ODEs. Interval methods (validated methods)
not only can determine such guaranteed error bounds on the true solution, but can also verify that
a unique solution to the problem exists. An excellent review of interval methods for initial value
problems has been given by Nedialkov et al. (1999). Much work has been done for the case in which
the initial values are given by intervals, and there are several available software packages, including
AWA (Lohner, 1992), VNODE (Nedialkov et al., 2001) and COSY VI (Berz and Makino, 1998), that
deal with this case. However, relatively little work has been done on the case in which parameters
are given by intervals. We concentrate here on the case of such parametric ODEs. However, the
method demonstrated will also account for interval-valued initial values.

Since available general-purpose validated ODE solvers are focused on dealing with uncertainties
in the initial values, the presence of interval parameters can cause inefficiencies because they lead
to a wrapping effect. An alternative approach is to treat time-invariant interval parameters as
additional state variables, with zero first-order derivatives, as suggested by Lohner (1988). Since
the parameters are now treated as independent variables, tighter enclosures can be obtained.
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However, the increase in the number of state variables, m, can result in a significant increase
in the computational expense. For example, a matrix of order m must be factored at each time
step in the usual methods (e.g., QR factorization) for controlling the wrapping effect. In this work,
we will demonstrate a new method for efficiently determining validated solutions of ODEs with
interval parameters; instead of increasing the number of state variables, this method will treat
the parametric uncertainty directly. The method makes use, in a novel way, of the Taylor model
approach that Makino and Berz (1996) used to deal with the dependence problem in interval
arithmetic, and which they applied in COSY VI (Berz and Makino, 1998).

2. Background

2.1. Interval analysis

A real interval X is defined as the set of real numbers lying between (and including) given upper
and lower bounds; that is,

X =
[

X,X
]

=
{

x ∈ < | X ≤ x ≤ X
}

. (1)

Here an underline is used to indicate the lower bound of an interval and an overline is used to indicate
the upper bound. A real interval vector X = (X1, X2, · · · , Xn)T has n real interval components and
can be interpreted geometrically as an n-dimensional rectangle or box. Note that in this context
uppercase quantities are intervals, and lowercase quantities or uppercase quantities with underline
or overline are real numbers.

Basic arithmetic operations with intervals are defined by

X op Y = {x op y | x ∈ X, y ∈ Y } , (2)

where op = {+,−,×,÷}. Interval versions of the elementary functions can be similarly defined.
It should be emphasized that, when machine computations with interval arithmetic operations are
done, as in the procedures outlined below, the endpoints of an interval are computed with a directed
(outward) rounding. That is, the lower endpoint is rounded down to the next machine-representable
number and the upper endpoint is rounded up to the next machine-representable number. In this
way, through the use of interval, as opposed to floating-point arithmetic, any potential rounding
error problems are avoided. Several good introductions to interval analysis, as well as interval
arithmetic and other aspects of computing with intervals, are available (Jaulin et al., 2001; Hansen
and Walster, 2004; Kearfott, 1996; Neumaier, 1990). Implementations of interval arithmetic and
elementary functions are also readily available, and recent compilers from Sun Microsystems directly
support interval arithmetic and an interval data type.

For an arbitrary function f(x), the interval extension F (X) encloses all possible values of f(x)
for x ∈ X; that is, it encloses the range of f(x) over X. It is often computed by substituting the
given interval X into the function f(x) and then evaluating the function using interval arithmetic.
This so-called “natural” interval extension is often wider than the actual range of function values,
though it always includes the actual range. This overestimation of the function range is due to
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the “dependency” problem, which may arise when a variable occurs more than once in a function
expression. There are a variety of approaches that can be used to try to tighten interval extensions
(Jaulin et al., 2001; Hansen and Walster, 2004; Kearfott, 1996; Neumaier, 1990), including the use
of Taylor models, as described in the next subsection.

2.2. Taylor models

Makino and Berz (1996; 1999) have described a remainder differential algebra (RDA) approach
for bounding function ranges and controlling the dependency problem of interval arithmetic. This
method employs high-order computational differentiation to express a function by a model consist-
ing of a Taylor polynomial, usually a truncated Taylor series, and an interval remainder bound.

Consider a function f : x ∈ X ⊂ R
m → R that is (q +1) times partially differentiable on X and

let x0 ∈ X. The Taylor theorem states that for each x ∈ X, there exists a ζ ∈ R with 0 < ζ < 1
such that

f(x) =
q
∑

i=0

1

i!
[(x − x0) · 5]i f (x0) +

1

(q + 1)!
[(x − x0) · 5]q+1 f [x0 + (x − x0)ζ] , (3)

where the partial differential operator [g · 5]k is

[g · 5]k =
∑

j1+···+jm=k

0≤j1 ,··· ,jm≤k

k!

j1! · · · jm!
g

j1
1 · · · gjm

m

∂k

∂x
j1
1 · · · ∂x

jm
m

. (4)

The last (remainder) term in (3) can be quantitatively bounded over 0 < ζ < 1 using interval
arithmetic or other methods to obtain an interval remainder bound. The Taylor model for f(x)
then consists of a q-th order polynomial in (x − x0), pf (x − x0) (the summation in (3)), and an
interval remainder bound Rf . This Taylor model is denoted by Tf = (pf , Rf ).

Arithmetic operations with Taylor models can be done using the RDA approach described by
Makino and Berz (1996; 1999; 2003). Let Tf and Tg be the Taylor models of the functions f(x)
and g(x) respectively over the interval x ∈ X. The Taylor model of f ± g can be represented as

Tf±g = (pf , Rf ) ± (pg, Rg) = (pf ± pg, Rf ± Rg) = (pf±g, Rf±g). (5)

For the the product f × g,

f × g ∈ (pf , Rf ) × (pg, Rg) ⊆ pf × pg + pf × Rg + pg × Rf + Rf × Rg. (6)

Note that pf×pg is a polynomial of order 2q. In order to be consistent with the q-th order polynomial
in a Taylor model, this term is split into the sum of a polynomial pf×g of up to q-th order, and an
extra polynomial pe containing the higher order terms. A Taylor model for the product f × g can
then be given by Tf×g = (pf×g, Rf×g), with

Rf×g = B(pe) + B(pf ) × Rg + B(pg) × Rf + Rf × Rg. (7)

Here B(p) = P (X−x0) denotes an interval bound of the polynomial p(x−x0) over x ∈ X . Similarly,
an interval bound on an overall Taylor model T = (p,R) will be denoted by B(T ) = B(p) + R.
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In storing and operating on a Taylor model, only the coefficients of the polynomial part p(x − x0)
are used, and these are point valued. However, when these coefficients are computed in floating
point arithmetic, numerical errors may occur and they must be bounded. To do this in our current
implementation of Taylor model arithmetic, we have used the “tallying variable” approach, as
described by Makino and Berz (2003). This approach has been analyzed in detail by Revol et al.
(2005). This results in an error bound on the floating point calculation of the coefficients in p(x−x0)
being added to the interval remainder bound R.

Taylor models for the reciprocal operation, as well as the intrinsic functions (exponential, log-
arithm, square root, sine, cosine, etc.) can also be obtained (Makino, 1998; Makino and Berz,
1996; Makino and Berz, 2003). Using these, together with the basic arithmetic operations defined
above, it is possible to start with simple functions such as the constant function k(x) = k,
for which Tk = (k, [0, 0]), and the identity function i(xi) = xi, i = 1, · · · ,m, for which Ti =
(xi0 + (xi − xi0), [0, 0]), and to then compute Taylor models for very complicated functions. Al-
together, it is possible to compute a Taylor model for any function that can be represented in a
computer environment by simple operator overloading through RDA operations. It has been shown
that, compared to other rigorous bounding methods, the Taylor model often yields sharper bounds
for modest to complicated functional dependencies (Makino and Berz, 1996; Makino and Berz,
1999; Neumaier, 2002).

3. Validated Solution of Parametric ODEs

Traditional interval methods usually consist of two processes applied at each integration step
(Moore, 1966; Nedialkov et al., 1999). In the first process, existence and uniqueness of the solution
are proven using the Picard-Lindelöf operator and the Banach fixed point theorem (Eijgenraam,
1991), and a rough enclosure of the solution is computed. In the second process, a tighter enclosure
of the solution is computed. In general, both processes are realized by applying interval Taylor
series (ITS) expansions with respect to time, and using automatic differentiation to obtain the
Taylor coefficients. We will demonstrate here the use of a new method (Lin and Stadtherr, 2005)
for the validated solution of parametric ODEs, which is used to produced guaranteed bounds on the
solutions of dynamic systems with interval-valued initial states and parameters. The method uses
the traditional two-phase approach, but in the second phase makes use of Taylor models to deal
with the uncertain quantities (parameters and initial values). We will summarize here the basic
ideas of this approach. Additional details are given by Lin and Stadtherr (2005).

Consider the following parametric ODE system:

ẋ = f(x,θ), x(t0) = x0 ∈ X0, θ ∈ Θ, (8)

where x is the m-dimensional state vector, θ is a p-dimensional parameter vector, and t ∈ [t0, tN ] for
some tN > t0. The interval vectors X0 and Θ represent enclosures of initial values and parameters,
respectively. It is desired to determine a validated enclosure of all possible solutions to this initial
value problem. Also note that nonautonomous (time dependent) problems can be converted to the
autonomous form given in (8). We denote by x(t; tj ,Xj,Θ) the set of solutions x(t; tj ,Xj ,Θ) =
{x(t; tj ,xj,θ) | xj ∈ Xj ,θ ∈ Θ} , where x(t; tj ,xj ,θ) denotes a solution of ẋ = f(x,θ) for the
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initial condition x = xj at tj. We will describe a method for determining enclosures X j of the state
variables at each time step j = 1, . . . , N , such that x(tj ; t0,X0,Θ) ⊆ Xj.

Assume that at tj we have an enclosure X j of x(tj; t0,X0,Θ), and that we want to carry out
an integration step to compute the next enclosure X j+1. Then, in the first phase of the method,

the goal is to find a step size hj = tj+1 − tj > 0 and a prior enclosure X̃j of the solution such that

a unique solution x(t; tj ,xj,θ) ∈ X̃j is guaranteed to exist for all t ∈ [tj, tj+1], all xj ∈ Xj , and
all θ ∈ Θ. We apply the traditional interval method, with high order enclosure, to the parametric
ODEs by using an interval Taylor series (ITS) with respect to time. That is, we determine hj and

X̃j such that for Xj ⊆ X̃
0
j ,

X̃j =
k−1
∑

i=0

[0, hj ]
iF [i](Xj ,Θ) + [0, hj ]

kF [k](X̃
0
j ,Θ) ⊆ X̃

0
j . (9)

Here k denotes the order of the Taylor expansion, and the coefficients F [i] are interval extensions of
the Taylor coefficients f [i] of x(t) with respect to time, which can be obtained recursively in terms
of ẋ(t) = f(x,θ) by

f [0] = x

f [1] = f(x,θ) (10)

f [i] =
1

i

(

∂f [i−1]

∂x
f

)

(x,θ), i ≥ 2.

Satisfaction of (9) demonstrates that there exists a unique solution x(t; tj ,xj ,θ) ∈ X̃j for all
t ∈ [tj , tj+1], all xj ∈ Xj , and all θ ∈ Θ.

In phase 2, we compute a tighter enclosure X j+1 ⊆ X̃j , such that x(tj+1; t0,X0,Θ) ⊆ Xj+1.
This will be done by using an ITS approach to compute a Taylor model T xj+1 of xj+1 in terms
of the initial values and parameters, and then obtaining the enclosure X j+1 = B(T xj+1). For the
Taylor model computations, we begin by representing the interval initial states and parameters by
the Taylor models T x0 and T θ, respectively, with components

Txi0 = (m(Xi0) + (xi0 − m(Xi0)), [0, 0]), i = 1, · · · ,m, (11)

and

Tθi
= (m(Θi) + (θi − m(Θi)), [0, 0]), i = 1, · · · , p. (12)

Then, we can determine Taylor models T
f [i] of the interval Taylor series coefficients f [i](xi,θ) by

using RDA operations to compute T
f [i] = f [i](T xj

,T θ). Using an interval Taylor series for xj+1

with coefficients given by T
f [i] , and incorporating a novel approach for using the mean value theorem

on Taylor models, one can obtain a result for T xj+1 in terms of the parameters and initial states.
This result can be improved (tightened) by applying additional steps, based on a QR factorization
approach, to further control the wrapping effect. Complete details of the computation of T xj+1 are
given by Lin and Stadtherr (2005).
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4. Results

We now report results of numerical experiments using a C++ implementation of the method
outlined above. This implementation is called VSPODE (Validating Solver for Parametric ODEs).
The results for VSPODE were obtained using a k = 17 order interval Taylor series method, and
with a q = 5 order Taylor model. All tests were performed on a workstation running Linux with
an Intel Pentium 4 3.2GHz CPU.

4.1. Bioreactor kinetics

In a bioreactor, a simple microbial growth process (Bastin and Dochain, 1990), which involves a
single biomass and single substrate, can be described using the following ODE model,

Ẋ = (µ − αD)X (13)

Ṡ = D(Si − S) − kµX, (14)

where X and S are concentrations of biomass and substrate, respectively; α is the process het-
erogeneity parameter; D and S i are the dilution rate and the influent concentration of substrate,
respectively; k is the yield coefficient; and µ is the growth rate, which is dependent on S. We
consider two models for µ, the Monod law,

µ =
µmS

KS + S
, (15)

and the Haldane law,

µ =
µmS

KS + S + KIS2
, (16)

where µm is the maximum growth rate, KS is the saturation parameter, and KI is the inhibition
parameter. In this study, the initial value of biomass concentration X0, and the process kinetic
parameters (µm, KS , and KI) are assumed to be uncertain and given by intervals. Thus, for the
Monod law, there are three uncertain quantities, and four for the Haldane law. The values of the
initial conditions (X0, S0), the inputs (D and Si), and parameters (α, k, µm, KS , and KI) are
given in Table I.

For purposes of comparison, as a representative of traditional interval methods, we used the
popular VNODE package (Nedialkov et al., 2001), with a k = 17 order interval Hermite-Obreschkoff
QR method. Though, like other available solvers, VNODE is designed to deal with uncertain initial
values, it can take interval parameter values as input. However, better performance can be obtained
by treating the uncertain parameters as additional state variables with zero time derivatives; thus
the parametric uncertainties become uncertainties in the initial values of the extra state variables.

Enclosures of the state variables S and X for t ∈ [0, 20] were computing using VSPODE and
VNODE with constant step size h = 0.1. The results were shown in Fig. 1 and Fig. 2 for the
Monod law and the Haldane law, respectively. VSPODE clearly provides a better enclosure, with
VNODE failing at t = 9.3 for the Monod law, and at t = 6.6 for the Haldane law. In order
to allow VNODE to solve the problem all the way to tN = 20, we divided the intervals into a
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Table I. Bioreactor microbial growth parameters

Parameter Value Units Parameter Value Units

α 0.5 - µm [1.19, 1.21] day−1

k 10.53 g S/ g X KS [7.09, 7.11] g S/l

D 0.36 day−1 KI [0.49, 0.51] (g S/l)−1

Si 5.7 g S/l X0 [0.82, 0.84] g X/l

S0 0.80 g S/l

0 5 10 15 20

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

t

X
/S

X
VSPODE

S
VSPODE

← X
VNODE

← S
VNODE

Figure 1. Enclosures for bioreactor state using the Monod law

certain number of equal-sized sub-boxes and then used VNODE to determine the solution for each
sub-box. The final solution enclosure is then the union of all the enclosures resulting from each
sub-box. Results showing the final solution enclosures (tN = 20) and their widths, as determined
using VSPODE (with no box subdivision) and VNODE with an increasing number of sub-boxes,
are given in Table II for the Monod law. For example, VNODE-1000 in Table II indicates the use
of 1000 sub-boxes in VNODE. Even with 1000 sub-boxes, the solution enclosure determined by
VNODE is still significantly wider than that obtained from a single calculation with VSPODE, and
requires about 200 times more computational time.
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VSPODE
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VSPODE

← X
VNODE

← S
VNODE

Figure 2. Enclosures for bioreactor state using the Haldane law

Table II. Results for the Monod law, showing final enclosures
(tN = 20).

Method Enclosure Width CPU time (s)

VSPODE [ 0.8386, 0.8450 ] 0.0064 1.34

[ 1.2423, 1.2721 ] 0.0298

VNODE–343 [ 0.8359, 0.8561 ] 0.0202 68.6

[ 1.2309, 1.2814 ] 0.0505

VNODE–512 [ 0.8375, 0.8528 ] 0.0153 102.8

[ 1.2331, 1.2767 ] 0.0436

VNODE–1000 [ 0.8380, 0.8502 ] 0.0122 263.1

[ 1.2359, 1.2732 ] 0.0373
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m
2

m
1

2

1

L
2

L
1

Figure 3. Schematic of double pendulum

4.2. Double pendulum

In this problem, we consider the motion of a double pendulum, as depicted in Fig. 3. This system
is described by the nonlinear state equations:

θ̇1 = ω1 (17)

θ̇2 = ω2

ω̇1 =
−g(2m1 + m2) sin θ1 − m2g sin(θ1 − 2θ2) − 2m2 sin(θ1 − θ2)

[

ω2
2L2 − ω2

1L1 cos(θ1 − θ2)
]

L1 [2m1 + m2 − m2 cos(2θ1 − 2θ2)]

ω̇2 =
2 sin(θ1 − θ2)

[

ω2
1L1(m1 + m2) + g(m1 + m2) cos θ1 + ω2

2L2m2 cos(θ1 − θ2)
]

L2 [2m1 + m2 − m2 cos(2θ1 − 2θ2)]
,

where θ1 and θ2 are the angles of the pendulum rods (0 = vertical downwards, counter-clockwise
is positive), and ω1 and ω2 are the angular velocities of the top and bottom rod, respectively. The
mass parameters are set to m1 = m2 = 1 kg and the length parameters are set to L1 = L2 = 1 m.
The parameter g is the local acceleration of gravity, which varies with latitude (greatest at the poles,
lowest at the equator) and altitude. In this problem, we will treat g as an uncertain parameter in the
interval [9.79, 9.81] m/s2. This corresponds roughly to the variation in the sea level value between
25◦ and 49◦ latitude (i.e., spanning the contiguous United States). The initial conditions determine
the amount of potential and kinetic energy given to the system. We consider two set of initial
values: 1) a relatively high-energy case with initial state of (θ1, θ2, ω1, ω2)0 = (0.75π, 0.5π, 0, 0) and
2) a relatively low-energy case with initial state of (θ1, θ2, ω1, ω2)0 = (0,−0.25π, 0, 0).

Enclosures of the state variables for both cases were computed using VSPODE with variable
step size (automatically determined by program). The results for θ1 and θ2 are shown in Fig. 4 for
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the high-energy case and Fig. 5 for the low-energy case. The computational times were 8.1 and 12.7
seconds, respectively. For the high-energy case, good enclosures were maintained through two full
rotations of the lower pendulum and one of the upper. For the low-energy case, good enclosures
were maintained through several cycles of motion. The enclosures of all state variables at some time
instances, as well as the break-down time, are shown in Table III and Table IV.

0 0.5 1 1.5 2 2.5 3 3.5
−20

−15

−10

−5

0

5

t

θ 1;θ
2

←θ
1

θ
2
→

Figure 4. Enclosures of θ1 and θ2 for the double pendulum model, high-energy case.

Table III. Enclosures for the double pendulum model, high-energy case.

Enclosure

t θ1 θ2 ω1 ω2

0.5 [ 1.6563, 1.6579 ] [ 1.0368, 1.0372] [-3.0472, -3.0408] [-0.9327, -0.9298]

1.0 [-0.6093, -0.6067] [-0.2392, -0.2277] [-2.5851, -2.5397] [-11.3007, -11.2407]

1.5 [-2.2913, -2.2883] [-3.0230, -3.0203] [-1.9772, -1.9647] [-1.7512, -1.7474]

2.0 [-2.5990, -2.5978] [-4.5055, -4.4958] [-0.5943, -0.5778] [-4.7957, -4.7668]

2.5 [-5.1731, -5.1512] [-8.3532, -8.3308] [-8.5972, -8.5801] [-8.7733, -8.7566]

3.0 [-6.8254, -6.8000] [-12.9548, -12.9121] [ 6.3803, 6.4705] [-12.7200, -12.5692]

3.07 FAIL
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Figure 5. Enclosures of θ1 and θ2 for the double pendulum model, low-energy case.

Table IV. Enclosures for the double pendulum model, low-energy case.

Enclosure

t θ1 θ2 ω1 ω2

1.0 [ 0.2688, 0.2704] [ 0.1153, 0.1167] [ 1.5710, 1.5734] [-1.3996, -1.3971]

2.0 [-0.2517, -0.2509] [ 0.1744, 0.1792] [ 0.3534, 0.3688] [-2.3539, -2.3340]

3.0 [-0.3623, -0.3622] [ 0.1393, 0.1444] [ 0.0310, 0.05463] [ 1.6578, 1.6810]

4.0 [ 0.2161, 0.2224] [ 0.3409, 0.3483] [-1.5371, -1.5321] [ 1.7902, 1.8019]

5.0 [-0.0034, -0.0004] [-0.7395, -0.7382] [-0.6020, -0.5848] [ 0.2325, 0.2808]

6.0 [ 0.2927, 0.3014] [-0.0856, -0.0818] [ 1.3907, 1.4213] [-0.6345, -0.5891]

7.0 [-0.0976, -0.0922] [ 0.1977, 0.2179] [ 0.7267, 0.7672] [-2.8614, -2.8031]

8.0 [-0.4260, -0.4213] [ 0.1059, 0.1150] [ 0.3924, 0.4578] [ 0.7548, 0.8205]

8.89 FAIL
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5. Concluding Remarks

We have demonstrated a new method for obtaining validated solutions of initial value problems for
ODEs with interval-valued parameters and initial values. The dependence of the solution on t is
handled using ITS methods, as in VNODE (Nedialkov et al., 2001). However, the dependence on the
parameter vector θ and the initial state x0 is handled through a novel use of Taylor models of the
form described by Makino and Berz (Makino and Berz, 1996; Makino and Berz, 2003). Numerical
results on a bioreactor kinetics problem and a double pendulum motion problem demonstrate that
this approach provides a very efficient way to obtain a tight enclosure of all possible solutions to a
parametric ODE system under uncertain conditions.
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