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Abstract

A strategy for state and parameter estimation in nonlinear, continuous-time systems is presented.

The method provides guaranteed enclosures of all state and parameter values that are consistent

with bounded-error output measurements. Key features of the method are the use of a new validated

solver for parametric ODEs, which is used to produce guaranteed bounds on the solutions of

nonlinear dynamic systems with interval-valued parameters and initial states, and the use of a

constraint propagation strategy on the Taylor models used to represent the solutions of the dynamic

system. Numerical experiments demonstrate the use and computational efficiency of the method.

Keywords: State estimation; Parameter estimation; Continuous-time systems; Validated methods;

Interval methods



1 Introduction

In this paper we consider the estimation of state variables and parameters for nonlinear,

continuous-time systems in a bounded-error context. This problem was first addressed by Jaulin,1

though other versions of the problem (e.g., with linear models and/or discrete time) have also been

studied.2–5 Jaulin1 proposed an algorithm for state estimation based on interval analysis6 and con-

sistency (constraint propagation) techniques.7 A first-order method was used to get a guaranteed

enclosure of the solution of the ordinary differential equations (ODEs) describing the system. Con-

sistency techniques then were used to contract the domains for the state variables by pruning parts

that are inconsistent with the measured output. However, the large wrapping effect associated

with the first-order method leads to very pessimistic results. Räıssi et al.8 provided a technical

improvement by using a more accurate interval computation of the solution of the ODEs. Use of

a high-order Taylor series method, together with other techniques proposed by Rihm,9 made it

possible to obtain a better enclosure of the solution to the ODE system. This approach was also

used to provide a method for guaranteed parameter estimation.

These approaches rely on the use of interval methods6 (also called validated or verified methods)

for solving the initial value problem (IVP) for ODEs. When the parameters and/or initial states are

not known with certainty and are given by intervals, traditional approximate solution methods for

ODEs are not useful, since, in essence, they would have to solve infinitely many systems to determine

an enclosure of the solutions. In contrast, interval methods not only can determine a guaranteed

error bound on the true solution, but can also verify that a unique solution to the problem exists.

An excellent review of interval methods for IVPs has been given by Nedialkov et al.10 For addressing

this problem, there are various packages available, including AWA,11 VNODE,12 and COSY VI,13

all of which consider uncertainties in initial state only.

In this study, we use a new package named VSPODE (Validating Solver for Parametric ODEs),

described by Lin and Stadtherr,14 for computing a validated enclosure of all solutions of an ODE

system with interval-valued parameters and/or initial state. The method is based on a traditional

interval approach,10 but involves a novel use of Taylor models15,16 to address the dependency
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problem in interval arithmetic. In addition, a constraint propagation2,19 procedure based on Taylor

models is employed to efficiently reduce the domain of the uncertain quantities, which provides

significant advantages over the methods used by Jaulin1 and Räıssi et al.8 The use of Taylor models

for state and parameter estimation in this context was first suggested by Lin and Stadtherr,17 and

again more recently by Kletting et al.18

The rest of this paper is organized as follows. A problem statement is given in Section 2.

Background on interval analysis and Taylor models is presented in Section 3. The validating solver

for parametric ODEs is described in Section 4. The guaranteed nonlinear state and parameter

estimator is then presented in Section 5. Finally in Section 6, we present the results of some

numerical experiments that demonstrate the effectiveness of the new estimation method.

2 Problem Statement

Consider a nonlinear, continuous-time system represented by the following equations:

ẋ = f(x,θ), x(0) = x0 (1)

y = g(x,θ), (2)

where x is the m-dimensional state vector, θ is a p-dimensional time-

invariant parameter vector, and y is the n-dimensional output vector. Output measurements ŷj

at t = tj are available with error vj = ŷj − yj , where yj = g(xj,θ) and xj = x(tj). A sequence

of N sampling times t0 < t1 < · · · < tN , at which the measurements ŷj have been collected, is

considered. We assume that f is (k − 1)-times continuously differentiable with respect to the state

variables x. Here k is the order of the truncation error in the interval Taylor series (ITS) method

to be used in the integration procedure (to be discussed in Section 4). We also assume that f and g

are (q + 1)-times continuously differentiable with respect to the uncertain quantities (initial states

x0 and/or parameters θ), where q is the order of the Taylor model to be used to represent initial

state and parameter dependence (to be discussed in Section 3.2).

In this study, the initial state x0 is assumed to belong to a known interval X0. The parameter
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vector θ is assumed to be constant and belong to a known interval Θ. Both X0 and Θ could

represent arbitrarily large domains. The measurement error vj is bounded and assumed to belong

to a known interval V j at each tj . Therefore, the output vector yj belongs to a known interval

Y j = ŷj − V j. The goal is then to use this information to obtain estimates of the state vector xj

at each measurement time j = 0, . . . , N and of the parameter vector θ.

3 Background

3.1 Interval Analysis

A real interval X is defined as the set of real numbers lying between (and including) given upper

and lower bounds; that is,

X =
[
X,X

]
=
{
x ∈ R | X ≤ x ≤ X

}
. (3)

Here an underline is used to indicate the lower bound of an interval and an overline is used to indicate

the upper bound. A real interval vector X = (X1,X2, · · · ,Xn)T has n real interval components and

can be interpreted geometrically as an n-dimensional rectangle or box. Unless indicated otherwise,

uppercase quantities are intervals, and lowercase quantities or uppercase quantities with underline

or overline are real numbers.

Basic arithmetic operations with intervals are defined by

X op Y = {x op y | x ∈ X, y ∈ Y } , (4)

where op = {+,−,×,÷}. That is, the result of an interval arithmetic operation on X and Y is

an interval enclosing the range of results obtainable by performing the operation with any number

in X and any number in Y . Interval versions of the elementary functions can be similarly defined.

For dealing with exceptions, such as division by an interval containing zero, extended models for

interval arithmetic are available, often based on the extended real system R
∗ = R ∪ {−∞,+∞}.

The concept of containment sets (csets) provides a valuable framework for constructing models

for interval arithmetic with consistent handling of exceptions.19,20 When machine computations
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using intervals are performed, rounding errors must be handled correctly in order to ensure that the

result is a rigorous enclosure. Thus, when machine computations with interval arithmetic operations

are done, as in the procedures outlined below, the endpoints of an interval are computed with a

directed (outward) rounding. That is, the lower endpoint is rounded down to the next machine-

representable number and the upper endpoint is rounded up to the next machine-representable

number. Several good introductions to interval analysis, as well as interval arithmetic and other

aspects of computing with intervals, are available.2,19,21,22 Implementations of interval arithmetic

and elementary functions are also readily available, and recent compilers from Sun Microsystems

directly support interval arithmetic and an interval data type.

For an arbitrary function f(x), the interval extension, F (X) encloses all possible values of f(x)

for x ∈ X ; that is, it encloses the range of f(x) over X. It is often computed by substituting the

given interval X into the function f(x) and then evaluating the function using interval arithmetic.

This “natural” interval extension is often wider than the actual range of function values, though

it always includes the actual range. This potential overestimation of the function range is due to

the “dependency” problem, which may arise when a variable occurs more than once in a function

expression. While a variable may take on any value within its interval, it must take on the same

value each time it occurs in an expression. However, this type of dependency is not recognized

when the natural interval extension is computed. In effect, when the natural interval extension

is used, the range computed for the function is the range that would occur if each instance of a

particular variable were allowed to take on a different value in its interval range. For the case in

which f(x) is a single-use expression, that is, an expression in which each variable occurs only once,

natural interval arithmetic will always yield the true function range. For cases in which obtaining a

single-use expression is not possible, there are several other approaches that can be used to tighten

interval extensions,2,19,21–23 including the use of Taylor models, as described in the next subsection.

In some situations, including one encountered in Section 5.1, dependency issues can be avoided

through the use of the dependent subtraction operation (also known as the cancellation operation).

Assume that there is an interval S that depends additively on the interval A. The dependent

subtraction operation is defined by S ⊖A = [S −A,S −A]. For example, let A = [1, 2], B = [2, 3],
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C = [3, 4] and S = A + B + C = [6, 9]. Say that only S is stored and that later it is desired

to compute A + B by subtracting C from S. Using the standard subtraction operation yields

S−C = [6, 9]− [3, 4] = [2, 6], which overestimates the true A+B. Using the dependent subtraction

operation, which is allowable since S depends additively on C, yields S ⊖C = [6, 9]⊖ [3, 4] = [3, 5],

which is the true A + B.

3.2 Taylor Models

Makino and Berz have described a remainder differential algebra (RDA) approach that uses

Taylor models for bounding function ranges and control of the dependency problem of interval

arithmetic.15,16 In this method, a function is represented using a model consisting of a Taylor

polynomial and an interval remainder bound.

One way of forming a Taylor model of a function is by using a truncated Taylor series. Consider

a function f : x ∈ X ⊂ R
m → R that is (q + 1) times partially differentiable on X and let x0 ∈ X.

The Taylor theorem states that for each x ∈ X, there exists a ζ ∈ R with 0 < ζ < 1 such that

f(x) =

q∑

i=0

1

i!
[(x − x0) · ▽]i f (x0) (5)

+
1

(q + 1)!
[(x − x0) · ▽]q+1 f [x0 + (x − x0)ζ] ,

where the partial differential operator [g · ▽]k is

[g · ▽]k =
∑

j1+···+jm=k

0≤j1,··· ,jm≤k

k!

j1! · · · jm!
gj1
1 · · · gjm

m

∂k

∂xj1
1 · · · ∂xjm

m

. (6)

The last (remainder) term in eq 5 can be quantitatively bounded over 0 < ζ < 1 and x ∈ X using

interval arithmetic or other methods to obtain an interval remainder bound Rf . The summation in

eq 5 is a q-th order polynomial (truncated Taylor series) in (x−x0) which we denote by pf (x−x0).

A q-th order Taylor model Tf for f(x) then consists of the polynomial pf and the interval remainder

bound Rf and is denoted by Tf = (pf , Rf ). Note that f ∈ Tf for x ∈ X and thus Tf encloses the

range of f over X.

In practice, it is more useful to compute Taylor models of functions by performing Taylor model

operations. Arithmetic operations with Taylor models can be done using the RDA operations
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described by Makino and Berz,15,16,24,25 which include addition, multiplication, reciprocal, and

intrinsic functions. Using these, it is possible to start with simple functions such as the constant

function f(x) = k, for which Tf = (k, [0, 0]), and the identity function f(xi) = xi, for which

Tf = (xi0 + (xi − xi0), [0, 0]), and then to compute Taylor models for very complicated functions.

Therefore, it is possible to compute a Taylor model for any function representable in a computer

environment by simple operator overloading through RDA operations.

In performing RDA operations, only the coefficients of the polynomial part pf are used, and

these are point valued. However, when these coefficients are computed in floating point arithmetic,

numerical errors may occur and they must be bounded. To do this in our current implementation of

Taylor model arithmetic, we have used the “tallying variable” approach, as described by Makino and

Berz.25 This approach has been analyzed in detail by Revol et al.26 This results in an error bound

on the floating point calculation of the coefficients in pf being added to the interval remainder

bound Rf . It has been shown that, compared to other rigorous bounding methods, the Taylor

model often yields sharper bounds for modest to complicated functional dependencies.15,16,27 A

discussion of the uses and limitations of Taylor models has been given by Neumaier.27

An interval bound on a Taylor model T = (p,R) over X is denoted by B(T ), and is found

by determining an interval bound B(p) on the polynomial part p and then adding the remainder

bound; that is B(T ) = B(p) + R. The range bounding of the polynomial B(p) = P (X − x0) is an

important issue, which directly affects the performance of Taylor model methods. Unfortunately,

exact range bounding of an interval polynomial is NP hard, and direct evaluation using interval

arithmetic is very inefficient, often yielding only loose bounds. Thus, various bounding schemes27–29

have been used, mostly focused on exact bounding of the dominant parts of P , i.e., the first- and

second-order terms. However, exact bounding of a general interval quadratic is also computationally

expensive (in the worst case, exponential in the number of variables m). Thus, we have adopted

a very simple compromise approach, in which only the first-order and the diagonal second-order

terms are considered for exact bounding, and other terms are evaluated directly. That is,

B(p) =

m∑

i=1

[
ai (Xi − xi0)

2 + bi(Xi − xi0)
]

+ Q, (7)
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where Q is the interval bound of all other terms, and is obtained by direct evaluation with interval

arithmetic. In eq 7, since Xi occurs twice, there exists a dependency problem. However, we can

rearrange eq 7 such that each Xi occurs only once; that is,

B(p) =
m∑

i=1

[
ai

(
Xi − xi0 +

bi

2ai

)2

− b2
i

4ai

]
+ Q. (8)

In this way, the dependency problem in bounding the interval polynomial is alleviated so that a

sharper bound can be obtained. Since we prefer not to divide by a very small number, eq 8 will be

used only if |ai| ≥ ω, where ω is a very small positive number. If |ai| < ω, direct evaluation with

eq 7 will be used instead.

4 Validating Solver for Parametric ODEs

Interval methods6 (also called validated or verified methods) for ODEs not only can determine

guaranteed bounds on the state variables, but can also verify that a unique solution to the problem

exists. Traditional interval methods usually consist of two processes applied at each integration

step.6 In the first process, existence and uniqueness of the solution are proved using the Picard-

Lindelöf operator and the Banach fixed point theorem,30 and a rough enclosure of the solution is

computed. In the second process, a tighter enclosure of the solution is computed. In general, both

processes are realized by applying interval Taylor series (ITS) expansions with respect to time,

and using automatic differentiation to obtain the Taylor coefficients. An excellent review of the

traditional interval methods has been given by Nedialkov et al.10 For addressing this problem, there

are various packages available, including AWA,11 VNODE12 and COSY VI,13 all of which consider

uncertainties (interval valued) in initial values only. In this study, we will use a new validated

solver14 for parametric ODEs, which is used to produce guaranteed bounds on the solutions of

nonlinear dynamic systems with interval-valued initial states and parameters. The method makes

use, in a novel way, of the Taylor model approach15,16,25 to deal with the dependency problem on

the uncertain variables (parameters and initial values). We will summarize here the basic ideas of

the method used. Additional background and details are given by Lin and Stadtherr.14
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Consider the following parametric ODE system, with state variables and parameters denoted

by x and θ, respectively:

ẋ = f(x,θ), x(t0) = x0 ∈ X0, θ ∈ Θ, (9)

where t ∈ [t0, tN ] for some tN > t0. The interval vectors X0 and Θ represent enclosures of initial

values and parameters, respectively. It is desired to determine a validated enclosure of all possible

solutions to this initial value problem. Also note that nonautonomous (time dependent) problems

can be converted to the autonomous form given in eq 9. We denote by x(t; tj ,Xj ,Θ) the set of

solutions x(t; tj ,Xj ,Θ) = {x(t; tj ,xj,θ) | xj ∈ Xj ,θ ∈ Θ} , where x(t; tj ,xj ,θ) denotes a solution

of ẋ = f(x,θ) for the initial condition x = xj at tj . We will describe a method for determining

enclosures Xj of the state variables at each time step j = 1, . . . , N , such that x(tj ; t0,X0,Θ) ⊆ Xj .

Assume that at tj we have an enclosure Xj of x(tj; t0,X0,Θ), and that we want to carry out an

integration step to compute the next enclosure Xj+1. Then, in the first phase of the method, the

goal is to find a step size hj = tj+1 − tj > 0 and an a priori enclosure (coarse enclosure) X̃j of the

solution such that a unique solution x(t; tj ,xj,θ) ∈ X̃j is guaranteed to exist for all t ∈ [tj , tj+1],

all xj ∈ Xj , and all θ ∈ Θ. We apply a traditional interval method, with high order enclosure,

to the parametric ODEs by using an interval Taylor series (ITS) with respect to time. That is, we

determine hj and X̃j such that for Xj ⊆ X̃
0

j ,

X̃j =

k−1∑

i=0

[0, hj ]
iF [i](Xj ,Θ) + [0, hj ]

kF [k](X̃
0

j ,Θ) ⊆ X̃
0

j . (10)

Here X̃
0

j is an initial estimate of X̃j, k denotes the order of the Taylor expansion, and the coefficients

F [i] are interval extensions of the Taylor coefficients f [i] of x(t) with respect to time, which can be

obtained recursively in terms of ẋ(t) = f(x,θ) by

f [0] = x

f [1] = f(x,θ) (11)

f [i] =
1

i

(
∂f [i−1]

∂x
f

)
(x,θ), i ≥ 2.
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Satisfaction of eq 10 demonstrates that there exists a unique solution

x(t; tj ,xj ,θ) ∈ X̃j for all t ∈ [tj, tj+1], all xj ∈ Xj , and all θ ∈ Θ.

In the second phase of the method, we compute a tighter enclosure Xj+1 ⊆ X̃j , such that

x(tj+1; t0,X0,Θ) ⊆ Xj+1. This will be done by using an ITS approach to compute a Taylor model

T xj+1 of xj+1 in terms of the initial values and parameters, and then obtaining the enclosure

Xj+1 = B(T xj+1). For the Taylor model computations, we begin by representing the interval

initial states and parameters by the Taylor models T x0 and T θ, respectively, with components

Txi0 = (m(Xi0) + (xi0 − m(Xi0)), [0, 0]), i = 1, · · · ,m, (12)

and

Tθi
= (m(Θi) + (θi − m(Θi)), [0, 0]), i = 1, · · · , p. (13)

Then, we can determine Taylor models T
f[i] of the interval Taylor series coefficients f [i](xi,θ)

by using RDA operations to compute T
f [i] = f [i](T xj

,T θ). Using an interval Taylor series for

xj+1 with coefficients given by T
f [i], and incorporating a novel approach for using the mean value

theorem on Taylor models, one can obtain a result for T xj+1 in terms of the parameters and initial

states. In order to address the wrapping effect,6 results are propagated from one time step to

the next using a new type of Taylor model, in which the remainder bound is not an interval, but

a parallelepiped. That is, the remainder bound is a set of the form P = {Av | v ∈ V }, where

A ∈ R
n×n is a real and regular matrix. If A is orthogonal, as from a QR-factorization, then P can

be interpreted as a rotated n-dimensional rectangle. Complete details of the computation of T xj+1

are given by Lin and Stadtherr.14

The approach outlined above, as implemented in VSPODE, has been tested by Lin and

Stadtherr,14 who compared its performance with results obtained using the popular VNODE pack-

age12 (in using VNODE, interval-valued parameters are treated as additional state variables with

interval-valued initial states). In these tests, VSPODE was able to provide comparable or better

(tighter) enclosures of the state variables than VNODE, while requiring an order of magnitude less

computation time.
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5 Guaranteed Nonlinear State and Parameter Estimator

The proposed state and parameter estimator is based on a type of “predictor-corrector” ap-

proach. The prediction step aims at computing the attainable set for the state vector, while the

correction step retains only the parts of the set which are compatible with the bounded-error mea-

surements. This is combined with a subinterval reconstitution scheme to allow handling of relatively

large intervals of uncertainty and to improve the resolution of the results. In such a scheme, inter-

vals of uncertainty are subdivided and each resulting subinterval is processed independently using

the predictor-corrector procedure. The final results are then reconstituted simply by taking the

union of the results from each subinterval.

The prediction step begins with a box Θ that is known to contain the uncertain parameter

values, and a box X0 that is known to contain the uncertain initial states. Using a validated solver

for parametric ODEs, an outer approximation of the predicted attainable set X+
j at tj can be

computed. When the VSPODE package14 is used, the set is represented by the Taylor model T xj

in terms of the uncertain quantities (initial values x0 ∈ X0 and parameters θ ∈ Θ). This set is

guaranteed to contain the true state at tj, i.e. Xj ⊆ X+
j = B(T xj

).

In the correction step, a Taylor model of the output variables, T yj
, is calculated from yj =

g(xj ,θ) using T xj
, T θ, and RDA operations. That is T yj

= g(T xj
,T θ), a Taylor model in terms of

the uncertain initial states x0 and parameters θ. This must be compatible with the bounded-error

measurements, that is, the bound constraint yj ∈ Y j = ŷj − V j must be satisfied. In the next

subsection we describe a procedure for using this constraint to eliminate parts of Θ and X0 which

are incompatible with the measurements. Then, using these updated intervals for the uncertain

quantities, the estimates Xj = B(T xj
) for the state vector can be obtained.

5.1 Constraint Propagation Procedure

Information expressed by a constraint can be used to eliminate incompatible values from the

domain of its variables. The domain reduction can then be propagated to all constraints on that

variable, which may be used to further reduce the domains of other variables. This process is
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known as constraint propagation,2,19 and is widely used in various forms (e.g., hull consistency) in

connection with interval methods. In this subsection, we show how to use Taylor models to apply

such a constraint propagation procedure for bound constraints.

Let Tc be the Taylor model of the function c(x) over the interval x ∈ X, and say the bound

constraint R ≤ c(x) ≤ R must be satisfied; that is, c(x) ∈ R, where R = [R,R] is some specified

interval. This is equivalent to the constraint c(x) − r = 0 with r ∈ R. We seek to eliminate parts

of X for which it can be guaranteed that the constraint will not be satisfied. In the constraint

propagation procedure (CPP) described here, B(Tc) is first determined, thus bounding c(x) − r,

r ∈ R, by B(Tc)−R. There are now two possible outcomes: 1. If B(Tc) − R < 0 or B(Tc) − R > 0,

that is 0 6∈ B(Tc)−R, then no x ∈ X will ever satisfy the constraint; thus, the CPP can be stopped

and X discarded. 2. Otherwise, if 0 ∈ B(Tc)−R, then it still may be possible to eliminate at least

part of X; thus the CPP continues as described below, using an approach based on the bounding

strategy for Taylor models described in Section 3.2.

For some component i of x, let ai and bi be the polynomial coefficients of the terms (xi − xi0)
2

and (xi − xi0) of Tc, respectively. Note that, xi0 ∈ Xi and is usually the midpoint xi0 = m(Xi);

the value of xi0 will not change during the CPP. For |ai| ≥ ω, the bound of Tc can be expressed

using eq 8 as

B(Tc) = ai

(
Xi − xi0 +

bi

2ai

)2

− b2
i

4ai

+ Si. (14)

where

Si =

m∑

j=1
j 6=i

[
aj

(
Xj − xj0 +

bj

2aj

)2

−
b2
j

4aj

]
+ Q. (15)

We can reduce the computational effort to obtain Si by recognizing that this quantity is just B(Tc)

less the i-th term in the summation, and B(Tc) was already computed earlier in the CPP. Thus,

for each i, Si can be determined by dependent subtraction (see above) using

Si = B(Tc) ⊖
[
ai

(
Xi − xi0 +

bi

2ai

)2

− b2
i

4ai

]
. (16)

Now define the intervals Ui = Xi − xi0 + bi

2ai
and Vi =

b2i
4ai

− Si, so that B(Tc) = aiU
2
i − Vi.

The goal is to identify and retain only the part of Xi that contains values of xi for which it is
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possible to satisfy the constraint c(x) − r = 0, r ∈ R. Thus, the part of Xi that is going to be

eliminated is guaranteed not to satisfy the constraint. The range of c(x) − r, r ∈ R, is bounded

by B(Tc) − R = aiU
2
i − Vi − R = aiU

2
i − (Vi + R). Thus, the part of Xi in which it is possible to

satisfy c(x) − r = 0, r ∈ R, can be bounded by finding Xi such that all elements of aiU
2
i are in

Vi + R. This corresponds, with Wi = (Vi + R)/ai, to the requirement that

U2
i ≤ Wi and U2

i ≥ Wi (17)

Then, the set Ui that satisfies eq 17 can be determined to be

Ui =





∅ if Wi < 0

[
−
√

Wi,
√

Wi

]
if Wi ≤ 0 ≤ Wi

−√
Wi ∪

√
Wi if Wi > 0

. (18)

Thus, the part of Xi retained is Xi = Xi ∩
(
Ui + xi0 − bi

2ai

)
.

If |ai| < ω and |bi| ≥ ω, then eq 8 should not be used, but eq 7 can be used instead. Following

a procedure similar to that used above, we now have B(Tc) = biUi − Vi with Ui = Xi − xi0 and

Vi = − (B(Tc) ⊖ bi(Xi − xi0)). Note that all quadratic terms are now included in Vi. To identify

bounds on the part of Xi in which it is possible to satisfy the constraint, the set Ui can be determined

to be Ui = (Vi + R)/bi. Thus, the part of Xi retained is Xi = Xi ∩ (Ui + xi0). If both |ai| and |bi|

are less than ω, then no CPP will be applied on Xi.

The overall CPP is implemented by beginning with i = 1 and proceeding component by com-

ponent. If, for any i, the result Xi = ∅ is obtained, then no x ∈ X can satisfy the constraint; thus,

X can be discarded and the CPP stopped. Otherwise the CPP proceeds until all components of X

have been updated. Note that, in principle, each time an improved (smaller) Xi is found, it could

be used in computing Si for subsequent components of X . However, this requires recomputing the

bound B(Tc), which, for the functions c(x) that will be of interest here, is expensive. Thus, the

CPP for each component is done using the bounds B(Tc) computed from the original X. If, after

each component is processed, X has been sufficiently reduced (by more than 10% by volume), then

a new bound B(Tc) is obtained, now over the smaller X, and a new CPP is started. Otherwise,
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the CPP terminates.

5.2 Estimation Algorithm

The core of the estimation algorithm is the prediction-correction procedure that is given as

Algorithm 1. The overall estimation algorithm, including the subinterval reconstitution scheme, is

then given as Algorithm 2. In both procedures, it is sometimes convenient to treat the uncertain

quantities (initial states and parameters) as a single vector z = (θ,x0)
T ∈ Z = (Θ,X0)

T.

In Algorithm 1 (Prediction Correction), the inputs are the interval vector of uncertain quantities

Z, the set of measurement times t = {tj , j = 1, . . . , N}, the set of bounded-error measurements

Y = {Y j, j = 1, . . . , N}, and the number of measurement times N . The outputs are the updated

interval vector Z, the set of state enclosures X = {Xj , j = 1, . . . , N}, and a return flag. On

Line 1, the procedure Taylor init refers to the application of eqs 12 and 13 to initialize the Taylor

models used. If the input interval Z of uncertain quantities is too large, then it is possible that,

at some time instance j, VSPODE may fail to verify and bound the solution of the ODE system,

thus causing a result of info = .false. on Line 3. Thus, no meaningful solution enclosure can be

obtained, and Algorithm 1 returns FAIL on Line 12. This issue will be dealt with by subdividing Z

in Algorithm 2. The procedure Bound Constraint Propagation (Line 6) carries out the constraint

propagation procedure (CPP) for Taylor models, as described in Section 5.1. On Line 7, if the

interval returned from the CPP is empty, it means that the input domain Z = (Θ,X0)
T for the

uncertain quantities is not compatible with the measurements; thus it can be discarded and the

algorithm returns INCOMPATIBLE. If the input domain contains values of z that are compatible

with the measurements and other values that are incompatible, then the CPP may discard parts of

the domain that are incompatible, but will retain all compatible values. This possesses a significant

advantage over the approaches of Jaulin1 and Räıssi et al.,8 in which only a domain that is wholly

incompatible can be discarded. On Line 16, if the input domain interval has been tested through all

the time instances, the state enclosures will be computed and the procedure will return SUCCESS.

If the given input interval Z = (Θ,X0)
T of uncertainties is too large, the prediction and

correction procedure (Algorithm 1) may return FAIL if VSPODE fails to verify and enclose the
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solution to the ODE system. In addition, even in the case that the return from the prediction

and correction procedure is SUCCESS, it sometimes may be desirable to obtain higher resolution

in the results by using smaller input intervals. To deal with these cases, the input interval Z can

be divided into smaller subintervals, which can then be tested one at a time in Algorithm 1. The

overall results are then reconstituted by combining the results from each subinterval. To do this,

the iteration procedure summarized in Algorithm 2 (Estimator) is used, based on a specified volume

reduction fraction Ω and on specified tolerance vectors ǫZ and ǫX . The algorithm output Lr is a

list that contains parameter and state enclosures that are consistent with the measured outputs.

All values consistent with the measurements are guaranteed to be enclosed.

Algorithm 2 tests a series of subintervals using the prediction and correction procedure (Algo-

rithm 1) on each, with the list Lt containing subintervals remaining to be tested. The possible re-

turn values from Algorithm 1 (Prediction Correction procedure on Line 4) are INCOMPATIABLE,

SUCCESS, or FAIL. If the return from the prediction and correction procedure is INCOMPATI-

BLE (Line 5), then processing of the current subinterval will be stopped (current = .false.) and this

subinterval will be discarded. If the current subinterval has been significantly reduced (as specified

by the Ω input), its processing will continue (current = .true.) and it will be tested again without

bisection (Lines 8 and 9). On Line 10, when the flag bisection condition is true, a bisection opera-

tion will be performed. This results in the current subinterval being bisected into two subintervals,

one of which will be stored in the testing list Lt, with the other to be tested at the next iteration.

The flag bisection condition is true when: 1. The return from the prediction and correction proce-

dure is FAIL and the size of the current interval Z is larger than the tolerance ǫZ , or 2. Further

refinement of the solution enclosure is desired, as indicated by the size of the current interval Z

and/or the solution enclosure X being larger than the corresponding tolerance ǫZ and/or ǫX . Note

that the components of the tolerance vectors ǫZ and ǫX may be different for each component of

z and x, and that interval size is determined on a componentwise basis. That is, only when the

size (diameter) of each component of Z and/or X is less than the corresponding tolerance is the

subinterval determined to be sufficiently small to avoid bisection. If the subinterval is sufficiently

small and has been successfully tested in the prediction and correction procedure, it, along with
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the state enclosure at each sampling instance, is then stored in the output list (Lines 14 and 15).

If the current subinterval is sufficiently small and VSPODE has failed to verify the solution, the

procedure will abort and return FAIL (Line 18), which suggests that a reduced size tolerance must

be required for one or more component. In a successful return, the parameter and state enclosures

from each tested subinterval are stored in the output list Lr. The final overall parameter and state

enclosures are then reconstituted by taking the union of the enclosures stored in the output list.

If desired, the final overall enclosures may also be represented by their interval hull. If the output

list is empty upon return, it means that there are no initial state and/or parameter values in the

initially specified X0 and Θ that are consistent with the measurements.

6 Computational Studies

In this section, we present the results of numerical experiments using three different models.

The numerical experiments were performed on a workstation running Linux with an Intel Pentium

4 3.2GHz CPU. Results from VSPODE were obtained using a k = 11 order interval Taylor QR

method, and with a q = 3 order Taylor model. The volume reduction threshold Ω = 0.75 was used.

The size tolerances used are given in each subsection below. Any size tolerances not given were set

to some arbitrarily large number, indicating no size tolerance was enforced for these quantities.

6.1 Lotka-Volterra Model

We consider the Lotka-Volterra predator-prey model, which describes the population dynamics

of two species, with biomasses represented by x1 and x2. The model is represented by the following

differential equations:

ẋ1 = (a − bx2)x1 (19)

ẋ2 = (dx1 − c)x2, (20)

where a, b, c, and d are positive parameters. The outputs are y1 = x1 and y2 = x2. Output

measurements were simulated by solving the model from t = 0 to t = 10 with constant time
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step h = 0.01, using the initial state x0 = (50, 50)T and known parameters θ = (a, b, c, d)T =

(1, 0.01, 1, 0.02)T , and adding uniform noise in the interval Vj = [−1, 1] at each measurement time

tj. The size tolerances used are ǫ = 1 and ǫ = 0.001 for initial states and parameters, respectively.

In the following three numerical experiments, we will estimate 1) state, 2) parameters and 3) state

and parameters simultaneously.

6.1.1 State Estimation

In this experiment, we assume that bounded-error measurements for only one output (y1 = x1)

are available, and that the parameters are known exactly (as specified above). The goal then is to

estimate the unmeasured state variable x2. The initial value of x2 was assumed to be in the interval

[0, 100]. The initial value of x1 was assumed to be in the interval [49, 51], to be consistent with

the measurement error bounds. In a computation time of 12.9 seconds, the estimation procedure

described above generated the enclosure of x2 depicted in Fig. 1. The enclosure of x2 at t = 0 has

been reduced dramatically, to [49.1464, 50.8707], compared to the assumed interval [0, 100]. The

majority of the assumed initial interval has been proved incompatible with the measurements, and

thus has been deleted during the state estimation procedure. As shown in Fig. 1, a good enclosure

of x2 was obtained from t = 0 to t = 10. The enclosure of x2 at t = 10 is [148.9294, 154.5899].

6.1.2 Parameter Estimation

In this experiment, the bounded error measurements of both outputs (y1 = x1 and y2 = x2)

are available, and the goal is to estimate the parameters b and d, with the other parameters

assumed known exactly (at the values specified above). The initial intervals assumed for the two

parameters are b ∈ [0, 1] and d ∈ [0, 1]. The initial values of both states were assumed to be in the

interval [49, 51], for consistency with the measurement error bounds. In a computation time of 35.5

seconds, the estimation procedure generated the parameter enclosure shown in Fig. 2, which shows

the union of the four enclosures in the final output list Lr. Using the interval hull of this enclosure

gives b ∈ [0.009883, 0.010111] and d ∈ [0.019626, 0.0203934] for the parameters, as compared to

their true values of b = 0.01 and d = 0.02.
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A similar parameter estimation example with uncertain initial values was studied by Räıssi et

al.8 In this case, bounded-error measurement data for only one output (y1 = x1) is available.

The measurements were simulated as described above, but with uniform noise in the interval

Vj = [−1.5, 1.5] and spanning t = 0 to t = 7 with constant time step h = 0.005. Again, b

and d are to be estimated, with the other parameters assumed known. Räıssi et al.8 assumed the

initial values of both states to be in the interval [49, 51]. This is inconsistent with the available

measurement data, since there are no measurements for x2, and x1 is measured with an error of

±1.5. Nevertheless, for the sake of comparison, we have tested the estimation procedure described

above on this same problem. In 439.5 seconds of computation time, the estimation procedure

generated the enclosure of the parameters depicted in Fig 3, which shows all of the parameter

boxes in the output list Lr. The interval hull of this enclosure is b ∈ [0.009271, 0.01085] and

d ∈ [0.01954, 0.02051], representing a maximum absolute error of 8.5% in b and 2.6% in d. Räıssi et

al.8 reported obtaining a maximum absolute error of 14% in b and 7.7% in d, corresponding to an

enclosure with an interval hull of about b ∈ [0.0087, 0.0114] and d ∈ [0.0185, 0.0215] (approximate

values obtained from Räıssi et al.’s Fig. 4), in a computation time of 1 hour on a Pentium 4 1.6

GHz machine. Considering that the machine used in our experiments is about twice as fast, it

appears that the approach presented here can obtain a better enclosure, and in about a fourth of

the computation time.

6.1.3 State and Parameter Estimation

In this final experiment with the Lotka-Volterra model, bounded-error measurements of one

output (y1 = x1) are available, and the goal is to simultaneously estimate one unknown state

variable (x2) and one unknown parameter (d), with the other parameters fixed at the values given

above. The initial interval for d was assumed to be [0, 1], and the initial value of x2 was assumed

to be in the interval [0, 100]. The initial value of x1 was assumed to be in the interval [49, 51],

which is consistent with the measurement error bounds. In a computation time of 115 seconds, the

estimation procedure generated an enclosure for d of [0.019647, 0.0203704] and the enclosure of x2

depicted in Fig. 4. The enclosure of x2 at t = 0 is again reduced dramatically, to [48.2580, 51.6546],
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and a good state enclosure is obtained from t = 0 to t = 10, with a final enclosure at t = 10 of

[146.2092, 157.4294].

6.2 Two-state Microbial Growth Model

We consider a simple microbial growth process31 in a bioreactor, which involves a single biomass

and a single substrate. The process can be described using the following ODE model:

Ẋ = (µ − αD)X (21)

Ṡ = D(Si − S) − kµX, (22)

where X and S are concentrations of biomass and substrate, respectively; α is the process het-

erogeneity parameter; D and Si are the dilution rate and the influent concentration of substrate,

respectively; k is the yield coefficient; and µ is the growth rate, which is dependent on S. In this

study, we use the Haldane law for the growth rate,

µ =
µmS

KS + S + KIS2
, (23)

where µm is the maximum growth rate, KS is the saturation parameter, and KI is the inhibition

parameter. Here, the initial values of the biomass concentration X0, and the process kinetic pa-

rameters (µm, KS , and KI) are assumed to be uncertain and given by intervals. The inputs, D

and Si, and other parameters, α and k, are assumed known, with values as shown in Table 1. The

only output measurement available is the concentration of substrate (y = S). The output data

ŷj = Ŝj , j = 1, . . . N , were simulated by solving the model from t = 0 to t = 20 days with constant

time step h = 0.2, and using the initial state (X0, S0) = (0.83, 0.80) with assumed parameter values

(µm,KS ,KI) = (1.2, 7.1, 1/256), and adding noise that is ±1% of the measurement. That is, the

measurement error bounds are given by Yj = ŷj × [0.99, 1.01] at each time step tj. The goal of the

experiment is to estimate the unknown state variable, namely the biomass concentration X, from

t = 0 to t = 20 days, and to estimate the uncertain parameters, µm, KS , and KI . The intervals

initially assumed for the initial conditions (X0, S0) and for the uncertain parameters (µm, KS ,

and KI) are given in Table 1. The only size tolerance (stopping criterion) is that the width of

subinterval enclosures of X at t = 20 be less than ǫ = 0.01 g/L.
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After 719.7 seconds computation time, the estimation procedure generated the enclosure of

biomass concentration (X) depicted in Fig. 5. The interval of the initial value X0 was reduced to

[0.7944, 0.8640] g/L from its assumed value of [0.4, 1.2] g/L. A good enclosure of X from t = 0 to

t = 20 was obtained, with a final enclosure at t = 20 of [0.8358, 0.8476] g/L. The enclosure of the

parameters, µm and KS is shown in Fig. 6, where all the boxes in the output list Lr are depicted.

The interval hull of µm was reduced somewhat to [1.0316, 1.3445] day−1, but there was no reduction

of the interval hull for the other two parameters. However, a clear relationship between µm and KS

has been identified, suggesting some correlation of these parameters, at least for this error-bounded

data set in which only the substrate concentration is measured.

6.3 Three-state Biochemical Reactor

We consider a biochemical reactor32 where the consumption of substrate (x2) promotes the

growth of biomass (x1) and formation of product (x3). The process can be described using the

following ODE model:

ẋ1 = (µ − D)x1 (24)

ẋ2 = D(x2f − x2) −
µx1

Y
(25)

ẋ3 = −Dx3 + (αµ + β)x1 (26)

where the specific growth rate µ is a function of both the substrate and the product concentrations:

µ =
µm(1 − x3/x3m)x2

ks + x2
. (27)

Here, we assume the maximum growth rate µm, and the saturation parameter ks are unknown,

but belong to intervals of [0.2, 0.6] hr−1 and [1, 2] g/L, respectively. The biomass concentrations

are unknown but within the interval of [2, 10] g/L. Other parameters and inputs are assumed

known exactly with values shown in Table 2. The output measurements of substrate and product

concentrations are available, but subject to measurement noise of ±0.01 g/L. The output data

ŷj = (x̂2,j , x̂3,j)
T, j = 1, . . . N , were simulated by solving the model from t = 0 to t = 20 hours

with constant time step h = 0.2, using the initial state of x0 = (6.5, 5, 15)T and the assumed
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parameter values (µm, ks) = (0.48, 1.2), and adding measurement noise. Then, the measurement

error bounds are given by Y j = ŷj + [−0.01, 0.01] at each time step tj . The goal of the experiment

is to estimate the unknown state variable, namely the biomass concentrations x1, from t = 0 to

t = 20 hours, and to estimate the uncertain kinetic parameters, µm and ks. The only size tolerance

(stopping criterion) is that the width of subinterval enclosures of x1 at t = 20 be less than ǫ = 0.01

g/L.

After 1450.8 seconds computation time, the estimation procedure generated the enclosure of

biomass concentrations (x1) depicted in Fig. 7. The interval of the initial value was reduced to

[6.4549, 6.5676] g/L from its assumed value of [2, 10] g/L. A good enclosure of x1 from t = 0 to

t = 20 hours was obtained, with a final enclosure at t = 20 of [6.6375, 6.7581] g/L. The enclosure of

the kinetic parameters, µm and ks is shown in Fig. 8, where all the boxes in the output list Lr are

depicted. The interval hull of µm was reduced to [0.4595, 0.5004] hr−1 from [0.2, 0.6] hr−1 and the

interval hull of ks was reduced to [1.0344, 1.3750] g/L from [1, 2] g/L. A clear relationship between

µm and ks has also been identified, suggesting some correlation of these parameters.

7 Concluding Remarks

We have described here a technique for state and parameter estimation in nonlinear, continuous-

time systems. The method provides guaranteed enclosures of all state and parameter values that

are consistent with bounded-error output measurements. The technique is based on the use of

interval analysis and features: 1. Use of a new validated solver for parametric ODEs, which is used

to produce guaranteed bounds on the solutions of nonlinear dynamic systems with interval-valued

parameters and initial states; 2. Use of a constraint propagation strategy on the Taylor models used

to represent the solutions of the dynamic system; and 3. Use of a subinterval reconstitution scheme

to permit handling of relatively large intervals of uncertainty and refinement of results. Numerical

experiments have demonstrated the usefulness of the method, as well as its computational efficiency.
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Algorithm 1 Prediction Correction(in: Z,Y , t, N ; out: Z,X)

1: [Θ,X0] = Z; Taylor init(X0;T x0); Taylor init(Θ;T θ); ret = SUCCESS

2: for j = 0 to N − 1 do

3: info = VSPODE(T θ,T xj
, tj , tj+1; T xj+1)

4: if info = .true. then {Successful return from VSPODE}
5: T yj+1

= h(T xj+1 ,T θ)

6: Bound Constraint Propagation(T yj+1
,Z,Y j+1; Z)

7: if Z = ∅ then {Incompatible box}
8: ret = INCOMPATIBLE

9: break

10: end if

11: else {VSPODE fail}
12: ret = FAIL

13: break

14: end if

15: end for

16: if ret = SUCCESS then {Complete prediction-correction procedure}
17: Xj = B(T xj

), j = 1, . . . , N

18: end if

19: return ret
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Algorithm 2 Estimator(in: Θ,X0,Y , t, N, ǫZ , ǫX ,Ω; out: Lr)

1: Lt = ∅; Lr = ∅; Z = [Θ,X0]; current = .true.

2: while current = .true. do

3: Vol old = Volume(Z)

4: info = Prediction Correction(Z ,Y , t, N ; Z,X)

5: if info = INCOMPATIBLE then

6: current = .false.

7: else {SUCCESS or FAIL}
8: if Volume(Z)/Vol old < Ω then {Box significantly reduced}
9: current = .true.

10: else if bisection condition = .true. then {Do bisection}
11: Bisect the box, resulting in Z and Z1

12: Push Z1 into Lt

13: current = .true.

14: else if info = SUCCESS then {Small box and SUCCESS}
15: Push [Z,X ] into Lr

16: current = .false.

17: else {Small box and FAIL}
18: return FAIL

19: end if

20: end if

21: if current = .false. and Lt 6= ∅ then

22: Pop one box from Lt as Z

23: current = .true.

24: end if

25: end while

26: return SUCCESS
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Table 1: Microbial growth model parameters

Parameter Value Units Parameter Value Units

α 0.5 – µm [1.0, 1.4] day−1

k 10.53 g S/ g X KS [6, 8] g S/L

D 0.36 day−1 KI [0.0025, 0.01] (g S/L)−1

Si 5.7 g S/L X0 [0.4, 1.2] g X/L

S0 0.80 × [0.99, 1.01] g S/L
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Table 2: Three-state biochemical reactor model parameters

Parameter Value Units Parameter Value Units

Y 0.4 g/g α 2.2 g/g

β 0.2 hr−1 x3m 50 g/L

D 0.202 hr−1 x2f 20 g/L
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List of Figure Captions

Figure 1. Enclosure of unmeasured state variable x2 in state estimation for the Lotka-Volterra

model.

Figure 2. Enclosure of parameters b and d in parameter estimation for the Lotka-Volterra model.

Figure 3. Enclosure of parameters b and d in parameter estimation for the Lotka-Volterra model

(using problem data given by Räıssi et al.8).

Figure 4. Enclosure of unmeasured state variable x2 in simultaneous state and parameter estima-

tion for the Lotka-Volterra model.

Figure 5. Enclosure of unmeasured state variable X (biomass concentration) in simultaneous state

and parameter estimation for the microbial growth model with Haldane kinetics.

Figure 6. Enclosure of parameters KS and µm in simultaneous state and parameter estimation

for the microbial growth model with Haldane kinetics.

Figure 7. Enclosure of unmeasured state variable x1 (biomass concentration) in simultaneous state

and parameter estimation for the three-state biochemical reactor.

Figure 8. Enclosure of parameters ks and µm in simultaneous state and parameter estimation for

the three-state biochemical reactor.
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Figure 1: Enclosure of unmeasured state variable x2 in state estimation for the Lotka-Volterra

model.
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Figure 2: Enclosure of parameters b and d in parameter estimation for the Lotka-Volterra model.
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Figure 3: Enclosure of parameters b and d in parameter estimation for the Lotka-Volterra model

(using problem data given by Räıssi et al.8).
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Figure 4: Enclosure of unmeasured state variable x2 in simultaneous state and parameter estimation

for the Lotka-Volterra model.
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Figure 5: Enclosure of unmeasured state variable X (biomass concentration) in simultaneous state

and parameter estimation for the microbial growth model with Haldane kinetics.
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Figure 6: Enclosure of parameters KS and µm in simultaneous state and parameter estimation for

the microbial growth model with Haldane kinetics.
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Figure 7: Enclosure of unmeasured state variable x1 (biomass concentration) in simultaneous state

and parameter estimation for the three-state biochemical reactor.
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Figure 8: Enclosure of parameters ks and µm in simultaneous state and parameter estimation for

the three-state biochemical reactor.

37


