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Abstract

A new approach is described for the deterministic global optimization of dynamic systems, in-
cluding optimal control problems. The method is based on interval analysis and Taylor models and
employs a type of sequential approach. A key feature of the method is the use of a new validated
solver for parametric ODEs, which is used to produce guaranteed bounds on the solutions of dy-
namic systems with interval-valued parameters. This is combined with a new technique for domain
reduction based on the use of Taylor models in an efficient constraint propagation scheme. The re-
sult is that an e-global optimum can be found with both mathematical and computational certainty.
Computational studies on benchmark problems are presented showing that this new approach pro-
vides significant improvements in computational efficiency, well over an order of magnitude in most

cases, relative to other recently described methods.
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Introduction

The dynamic behavior of many physical systems of practical interest can be modeled using
systems of ordinary differential equations (ODEs). Optimization problems involving these dynamic
models arise when optimal performance measures are sought for such systems. There are many
applications of dynamic optimization, including parameter estimation from time series data, de-
termination of optimal operating profiles for batch and semi-batch processes, optimal start-up,
shut-down, and switching of continuous system, etc.

To address this problem, one class of methods is based on discretization techniques to reduce
what is essentially an infinite-dimensional optimization problem to a finite-dimensional problem.
Two different discretization strategies are available: (a) the complete discretization or simulta-
neous approach,’>? in which both state variables and control parameters are discretized, and (b)
the control parameterization or sequential approach,®4 in which only the control parameters are
discretized. In this paper, only the control parameterization approach is considered. Since these
problems are often nonconvex and thus may exhibit multiple local solutions, the classical techniques
based on solving the necessary conditions for a local minimum may fail to determine the global
optimum. This is true even for a rather simple temperature control problem with a batch reactor.?
Therefore, there is a need to develop global optimization algorithms which can rigorously guarantee
optimal performance.

The deterministic global optimization of dynamic systems has been a topic of significant recent
interest. Esposito and Floudas®” used the aBB approach®? for addressing this problem. In
this method convex underestimating functions are used in connection with a branch-and-bound
framework. A theoretical guarantee of attaining an e-global solution is offered as long as rigorous
underestimators are used, and this requires that sufficiently large values of a be used. However, the

determination of proper values of o depends on the Hessian of the function being underestimated,



and, when the sequential approach is used, this matrix is not available in explicit functional form.
Thus, Esposito and Floudas®7 did not use rigorous values of « in their implementation of the
sequential approach, and so did not obtain a theoretical guarantee of global optimality. This issue is
discussed in more detail by Papamichail and Adjiman.'® Recently, alternative approaches have been
given by Chachuat and Latifi'! and by Papamichail and Adjiman'®!? that provide a theoretical
guarantee of e-global optimality. However, this is achieved at a high computational cost. Singer
and Barton'? have recently described a branch-and-bound approach for determining an e-global
optimum with significantly less computational effort. In this method, convex underestimators and
concave overestimators are used to construct two bounding initial value problems (IVPs), which are
then solved to obtain lower and upper bounds on the trajectories of the state variables.' However,
as implemented,'® the bounding IVPs are solved using standard numerical methods that do not
provide guaranteed error estimates. Thus, strictly speaking, this approach cannot be regarded as
providing computationally guaranteed results.

We present here a new approach for the deterministic global optimization of dynamic systems.
This method is based on interval analysis and Taylor models and employs a type of sequential
approach. Instead of the usual branch-and-bound approach, we incorporate a new domain reduc-
tion technique, and thus use a type of branch-and-reduce strategy.'® A key feature of the method
is the use of a new validated solver!” for parametric ODEs, which is used to produce guaranteed
bounds on the solutions of dynamic systems with interval-valued parameters. The result is that
an e-global optimum can be found with both mathematical and computational certainty. The
computational efficiency of this approach will be demonstrated through application to benchmark
problems, including optimal control problems. In the context of optimal control, a global mini-
mization algorithm based on different validated ODE solvers has recently been presented by Rauh

et al.18



The remainder of this paper is organized as follows. In the next section, we present the math-
ematical formulation of the problem to be solved. This is followed by a section that provides
background on interval analysis and Taylor models, a section in which we review the new validated
method!” for parametric ODEs, and a section in which we outline the algorithm for determin-
istic global optimization of dynamic systems. Finally, we present the results of some numerical

experiments that demonstrate the effectiveness of the approach presented.

Problem Statement

In this section we give the mathematical formulation of the nonlinear dynamic optimization
problem to be solved. Assume the system is described by the nonlinear ODE model & = f(x,0).
Here x is the vector of state variables (length n) and 6 is a vector of adjustable parameters (length
p), which may be a parameterization of a control profile #(t). The model is given as an autonomous
system; a non-autonomous system can easily be converted into autonomous form by treating the
independent variable (t) as an additional state variable with derivative equal to 1. The objective
function ¢ is expressed in terms of the adjustable parameters and the values of the states at discrete
points t,, 4 = 0,1,...,r. That is, ¢ = ¢[x,(0),0; p=0,1,...,r], where x,(0) = x(t,,0). If an
integral appears in the objective function, it can be eliminated by introducing an appropriate

quadrature variable.



The optimization problem is then stated as

min ¢[2u(0),0; p=0,1,...,7] (1)
s.t. z = f(x,0)
xo = x0(0)
t € [to, t,]
0cO.

Here © is an interval vector that provides upper and lower parameter bounds. We assume that f
is (k — 1)-times continuously differentiable with respect to the state variables @, and (q + 1)-times
continuously differentiable with respect to the parameters 8. We also assume that ¢ is (¢+ 1)-times
continuously differentiable with respect to the parameters 8. Here k is the order of the truncation
error in the interval Taylor series (ITS) method to be used in the integration procedure, and ¢ is the
order of the Taylor model to be used to represent parameter dependence. When a typical sequential
approach is used, an ODE solver is applied to the constraints with a given set of parameter values,
as determined by the optimization routine. This effectively eliminates x,,u = 0,1,...,r, and leaves
a bound-constrained minimization in the adjustable parameters 6 only.

A new method is described below for the deterministic global solution of Problem (1). This
method can also be easily extended to solve optimization problems with state path constraints
and more general equality or inequality constraints involving the parameters. This can be done by

adapting the constraint propagation procedure to handle the additional constraints.



Background

Interval analysis

A real interval X is defined as the set of real numbers lying between (and including) given upper

and lower bounds; that is,
X=[X,X|={zcR|X<z<X}. (2)

Here an underline is used to indicate the lower bound of an interval and an overline is used to
indicate the upper bound. A real interval vector X = (X1, Xo,--- ,Xn)T has n real interval
components and can be interpreted geometrically as an n-dimensional rectangle or box. Note that
in this context uppercase quantities are intervals, and lowercase quantities or uppercase quantities
with underline or overline are real numbers.

Basic arithmetic operations with intervals are defined by
XopY={ropy|reX,yeY}, (3)

where op € {+,—, x,+}. Interval versions of the elementary functions can be similarly defined.
It should be emphasized that, when machine computations with interval arithmetic operations
are done, as in the procedures outlined below, the endpoints of an interval are computed with a
directed (outward) rounding. That is, the lower endpoint is rounded down to the next machine-
representable number and the upper endpoint is rounded up to the next machine-representable
number. In this way, through the use of interval, as opposed to floating-point arithmetic, any
potential rounding error problems are avoided. Several good introductions to interval analysis,
as well as interval arithmetic and other aspects of computing with intervals, including their use
in global optimization, are available.'¥2? Implementations of interval arithmetic and elementary
functions are also readily available, and recent compilers from Sun Microsystems directly support

interval arithmetic and an interval data type.



For an arbitrary function f(x), the interval extension, F'(X) encloses all possible values of
f(x) for € X. That is, F(X) O {f(x) | * € X} encloses the range of f(x) over X. It is
often computed by substituting the given interval X into the function f(x) and then evaluating
the function using interval arithmetic. This so-called “natural” interval extension is sometimes
wider than the actual range of function values, though it always includes the actual range. For
example, the natural interval extension of f(z) = z/(x—1) over the interval X = [2,3] is F([2,3]) =
12,3]/(12,3]—1) = [2,3]/[1,2] = [1, 3], while the true function range over this interval is [1.5,2]. This
overestimation of the function range is due to the “dependency” problem, which may arise when a
variable occurs more than once in a function expression. While a variable may take on any value
within its interval, it must take on the same value each time it occurs in an expression. However,
this type of dependency is not recognized when the natural interval extension is computed. In
effect, when the natural interval extension is used, the range computed for the function is the range
that would occur if each instance of a particular variable was allowed to take on a different value
in its interval range. For the case in which f(x) is a single-use expression, that is, an expression in
which each variable occurs only once, natural interval arithmetic will always yield the true function
range. For example, rearrangement of the function expression used above gives f(z) = z/(x —1) =
1+1/(x—1), and now F([2,3]) =1+1/([2,3] —1) =1+ 1/[1,2] = 1+ [0.5,1] = [1.5,2], the true
range.

In some situations, dependency issues can be avoided through the use of the dependent sub-
traction operation (also known as the cancellation operation). Assume that there is an interval
S that depends additively on the interval A. The dependent subtraction operation is defined by
SoA=[S—A,S—A]. For example, let A =[1,2], B=1[2,3],C =[3,4 and S = A+B+C = [6,9].
Say that only S is stored and that later it is desired to compute A + B by subtracting C from S.

Using the standard subtraction operation yields S — C = [6,9] — [3, 4] = [2, 6], which overestimates



the true A + B. Using the dependent subtraction operation, which is allowable since S depends
additively on C, yields S © C = [6,9] © [3,4] = [3,5], which is the true A + B. For more gen-
eral situations, there are a variety of other approaches that can be used to try to tighten interval
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extensions, including the use of Taylor models, as described in the next subsection.

Taylor models

Makino and Berz?® have described a remainder differential algebra (RDA) approach for bound-
ing function ranges and control of the dependency problem of interval arithmetic.?4 In this method,
a function is represented using a model consisting of a Taylor polynomial and an interval remainder
bound. Such a model is called a Taylor model.

One way of forming a Taylor model of a function is by using a truncated Taylor series. Consider
a function f: x € X C R™ — R that is (¢ + 1) times partially differentiable on X and let g € X.

The Taylor theorem states that for each @ € X, there exists a ( € R with 0 < { < 1 such that

q i 1 ,
f(fc)zgﬁ[(w—wo)‘w f(wo)er[(w—iBo)'V] T f o + (2 — 20)C] (4)

where the partial differential operator [g - /]* is

k! ; . ak

k — J1 Jm

| | j1+~z+;m:k il ! "o - daly (5)
0S.7177.7mgk

The last (remainder) term in Eq. (4) can be quantitatively bounded over 0 < ¢ < 1 and € X using
interval arithmetic or other methods to obtain an interval remainder bound Ry. The summation
in Eq. (4) is a ¢-th order polynomial (truncated Taylor series) in (x — x() which we denote by
pf(x —xg). A g-th order Taylor model Ty = ps + Ry for f(x) then consists of the polynomial ps
and the interval remainder bound Ry and is denoted by Ty = (ps, R¢). Note that f € Ty forx € X

and thus T encloses the range of f over X.



Taylor models of functions can also be formed by performing Taylor model operations. Arith-
metic operations with Taylor models can be done using the remainder differential algebra (RDA)
described by Makino and Berz.23 2% Let Ty and T, be the Taylor models of the functions f(x) and

g(x), respectively, over the interval & € X. For f + g,

frgeTy+Ty=(ps, Ry) £ (pg: Ry) = (pf £ pgs Ry £ Ry). (6)

Thus a Taylor model of f + g is given by

Tig = (Prrgs Rpsg) = (pf £ pg, Ry £ Ry). (7)

For the product f x g,
[ xg€ ps,Rf) x (pg: Rg) Cpf X pg+pf X Rg+py x Ry + Ry X Ry. (8)

Note that py x py is a polynomial of order 2g. Since a g-th order polynomial is sought for the
Taylor model of f x g, this term is split ps X p; = pyxg + pe. Here the polynomial ps., contains
all terms of order ¢ or less, and p. contains the higher order terms. A ¢-th order Taylor model for

the product f x g can then be given by Tty = (Dfxg, Rfxg), With
Rywg = B(pe) + B(ps) x Rg+ B(pg) X Ry + Ry X Ry. 9)

Here B(p) = P(X — x¢) denotes an interval bound on the polynomial p(x — x¢) over x € X.
Similarly, an interval bound on an overall Taylor model T' = (p, R) will be denoted by B(T), and is
computed by obtaining B(p) and adding it to the remainder bound R; that is, B(T') = B(p) + R.
The method we use to obtain the polynomial bounds is described below. In storing and operating
on a Taylor model, only the coefficients of the polynomial part p are used, and these are point
valued. However, when these coefficients are computed in floating point arithmetic, numerical
errors may occur and they must be bounded. To do this in our current implementation of Taylor

model arithmetic, we have used the “tallying variable” approach, as described by Makino and



Berz.?> This approach has been analyzed in detail by Revol et al.26 This results in an error bound
on the floating point calculation of the coefficients in p being added to the interval remainder bound
R.

Taylor models for the reciprocal operation, as well as the intrinsic functions (exponential,
logarithm, sine, etc.) can also be obtained.?®227 Using these, together with the basic arith-
metic operations defined above, it is possible to start with simple functions such as the constant
function f(xz) = k, for which Ty = (k,[0,0]), and the identity function f(x;) = x;, for which
Ty = (x40 + (z; — xi0), [0,0]), and then to compute Taylor models for very complicated functions.
Altogether, it is possible to compute a Taylor model for any function that can be represented in a
computer environment by simple operator overloading through RDA operations. It has been shown
that, compared to other rigorous bounding methods, the Taylor model often yields sharper bounds
for modest to complicated functional dependencies.?32428 A discussion of the uses and limitations
of Taylor models has been given by Neumaier.?®

The range bounding of the interval polynomials B(p) = P(X —x() is an important issue, which
directly affects the performance of Taylor model methods. Unfortunately, exact range bounding of
an interval polynomial is NP hard, and direct evaluation using interval arithmetic is very inefficient,
often yielding only loose bounds. Thus, various bounding schemes?® 29 have been used, mostly
focused on exact bounding of the dominant parts of P, i.e., the first- and second-order terms.
However, exact bounding of a general interval quadratic is also computationally expensive (in
the worst case, exponential in the number of variables m). Thus, we have adopted here a very
simple compromise approach, in which only the first-order and the diagonal second-order terms are

considered for exact bounding, and other terms are evaluated directly. That is,

B(p) = Y |ai (Xi — zi0)” + bi(X; — wio)| + Q. (10)
=1

where @ is the interval bound of all other terms, and is obtained by direct evaluation with interval



arithmetic. In Eq. (10), since X; occurs twice, there exists a dependency problem. However, we

can rearrange Eq. (10) such that each X; occurs only once; that is,

o b \* b2

In this way, the dependence problem in bounding the interval polynomial is alleviated so that a
sharper bound can be obtained. Since we prefer not to divide by a very small number, Eq. (11)
will be used only if |a;| > w, where w is a very small positive number. If |a;| < w, direct evaluation

with Eq. (10) will be used instead.

Validating Solver for Parametric ODEs

When a traditional sequential approach is applied to the optimization of nonlinear dynamic
systems, the objective function ¢ is evaluated, for a given value of 8, by applying an ODE solver to
the constraints to eliminate the state variables . In the global optimization algorithm described
here, we will use a sequential approach based on interval analysis. This approach requires the
evaluation of bounds on ¢, given some parameter interval ®. Thus, we need an ODE solver that
can compute bounds on x,, i = 0,1,...,r, for the case in which the parameters are interval valued.
Interval methods (also called validated methods or verified methods) for ODEs,?? provide a natural
approach for computing the desired enclosure of the state variables at ¢,,u = 0,1,...,r. An
excellent review of interval methods for IVPs has been given by Nedialkov et al.3! Much work
has been done for the case in which the initial values are given by intervals, and there are several
available software packages that deal with this case. However, relatively little work has been done
on the case in which parameters are given by intervals. In our method for deterministic global
optimization of dynamic systems, we will use a new validated solver for parametric ODEs, ' called

VSPODE (Validating Solver for Parametric ODEs), which is used to produce guaranteed bounds on
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the solutions of dynamic systems with interval-valued initial states and parameters. In this section,
we review the key ideas behind the new method used in VSPODE, and outline the procedures used.
Additional details are given by Lin and Stadtherr.!”

Traditional interval methods usually consist of two processes applied at each integration step.3!
In the first process, existence and uniqueness of the solution are proved using the Picard-Lindelof
operator and the Banach fixed point theorem,3? and a rough enclosure of the solution is computed.
In the second process, a tighter enclosure of the solution is computed. In general, both processes
are realized by applying interval Taylor series (ITS) expansions with respect to time, and using
automatic differentiation to obtain the Taylor coefficients. A major difficulty in interval methods is
the overestimation of bounds caused by the dependency problem of interval arithmetic and by the
wrapping effect.?’ The accumulation of overestimations at successive time steps may ultimately
lead to an explosion of enclosure sizes, causing the integration procedure to abort. Several schemes
for reducing the overestimation of bounds have been proposed for the case of interval-valued initial
states. For example, Lohner’s AWA package employs a QR-factorization method which features
efficient coordinate transformations to tackle the wrapping effect.?® Nedialkov’s VNODE package
employs QR together with an interval Hermite-Obreschkoff method,?%3% which can be viewed as
a type of generalized Taylor method, and improves on AWA. Janssen et al.0 have introduced a
constraint satisfaction approach to these problems, which enhances traditional interval methods
with a pruning step based on a global relaxation of the ODEs. Another approach for addressing
the dependency problem and the wrapping effect has been described by Berz and Makino3” and
implemented in the beam dynamics package COSY INFINITY. This scheme is based on expressing
the dependence on initial values and time using a Taylor model. Neher et al.?® have recently de-
scribed this Taylor model approach in some detail and compared it to traditional interval methods.

Taylor models are also used in VSPODE, though they are determined and used in a different way,

11



and a new type of Taylor model, involving a parallelepiped remainder bound, is introduced.'”

Consider the parametric ODE system occurring in the constraints of the optimization problem:
T = f(.’IZ,O), xg € X9, 0€0O, (12)

where t € [tg,t,] for some t,. > tg. The interval vectors Xy = X((®) and © represent enclosures
of initial values and parameters, respectively. It is desired to determine a validated enclosure
of all possible solutions to this initial value problem. We denote by x(t;t;, X ;, ®) the set of
solutions x(t;t;, X ;,0) = {x(t;tj,x;,0) | ¢; € X;,0 € O}, where x(t;t;,x;,0) denotes a solution
of x = f(x,0) for the initial condition @ = x; at ¢;. We will outline a method for determining
enclosures X ; of the state variables at each time step j = 1,...,r, such that x(¢;;t, X0,0) C X ;.

Assume that at ¢; we have an enclosure X ; of x(t;;t9, X, ®), and that we want to carry out an
integration step to compute the next enclosure X ; ;. Then, in the first phase of the method, the
goal is to find a step size hj =t;j11 —t; > 0 and an a prior enclosure (coarse enclosure) /)Zj of the
solution such that a unique solution x(¢;t;,x;,0) € /)\(Jj is guaranteed to exist for all t € [t;,t;41],
all z; € X;, and all @ € ®. We apply the traditional interval method, with high order enclosure,
to the parametric ODEs by using an interval Taylor series (ITS) with respect to time. That is, we

~0
determine h; and X ; such that for X; C X ;,

e
—_

X; =Y 0.0 FI(X;.0) + 0.1, F¥(X.©) C X, (13)

@
Il
o

—~0 —~
Here X ; is an initial estimate of X j, k denotes the order of the Taylor expansion, and the coefficients

F! are interval extensions of the Taylor coefficients f [ of x(t) with respect to time, which can be

12



obtained recursively in terms of &(t) = f(x,0) by

U = f(x,0) (14)

Satisfaction of Eq. (13) demonstrates that there exists a unique solution x(t;t;,x;, ) € f)\(/j for all
t € [tj,tjt1), all z; € X;, and all @ € ©.39 3(/;) is initialized and h; is iteratively reduced, if needed
to satisfy Eq. (13), using the method described by Nedialkov et al.?"

In the second phase of the method, we compute a tighter enclosure X ;i1 C /)?j, such that
x(tjt15t0, X0,0©) € X ;1. This will be done by using an ITS approach to compute a Taylor

model T' of x; 41 in terms of the parameter vector €, and then obtaining the enclosure X ;1 =

Tji1

B(Tg,,,) by bounding T over 8 € ©®. For the Taylor model computations, we begin by

Tj+1

representing the parameters by the Taylor model T'g, with components

Ty, = (m(gz) + (01 - m(@z))a [070}% t=1---,p, (15)

K3

where m(©;) indicates the midpoint of ©;. To determine enclosures of the interval Taylor series
coefficients fm(a:j, 0) a novel approach combining RDA operations with the mean value theorem
is used to obtain the Taylor models Tfm. Now using an interval Taylor series for x;; with

coefficients given by T flil, one can obtain a result for T' in terms of the parameters. In order

Tj41
to address the wrapping effect,?” results are propagated from one time step to the next using a
new type of Taylor model, in which the remainder bound is not an interval, but a parallelepiped.
That is, the remainder bound is a set of the form P = {Av | v € V}, where A € R™™" is a real
and regular matrix. If A is orthogonal, as from a QR-factorization, then P can be interpreted as

a rotated n-dimensional rectangle. Complete details of the computation of T' are given by Lin

Tj+1

and Stadtherr.1”
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The approach outlined above, as implemented in VSPODE, has been tested by Lin and Stadt-
herr,'” who compared its performance with results obtained using the popular VNODE package?’
(in using VNODE, interval-valued parameters are treated as additional state variables with interval-
valued initial states). For the test problems used, VSPODE provided tighter enclosures on the state

variables than VNODE, and required significantly less computation time.

Deterministic Global Optimization Method

In this section, we present a new method for the deterministic global optimization of dynamic
systems. This a generalization of the approach used by Lin and Stadtherr? for the special case of
parameter estimation, in which the objective is a sum of squares function. As noted above, when a
sequential approach is used, the state variables are effectively eliminated using the ODE constraints,
in this case by employing VSPODE, leaving a bound-constrained minimization of ¢(6) with respect
to the adjustable parameters (decision variables) 8. The new approach can be thought of as a type
of branch-and-bound method, with a constraint propagation procedure used for domain reduction.
Therefore, it can also be viewed as a branch-and-reduce algorithm.'® The basic idea is that only
those parts of the decision variable space © that satisfy the constraint ¢(0) = ¢(0) — ¢ < 0, where
5 is a known upper bound on the global minimum, needs to be retained. We now describe a

constraint propagation procedure, based on the use of Taylor models, that exploits this constraint

information for domain reduction.

Constraint propagation on Taylor models

Partial information expressed by a constraint can be used to eliminate incompatible values from
the domain of its variables. This domain reduction can then be propagated to all constraints on

that variable, where it may be used to further reduce the domains of other variables. This process
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is known as constraint propagation. In this subsection, we show how to apply such a constraint
propagation procedure using Taylor models.

Let T, be the Taylor model of the function ¢(x) over the interval € X, and say the constraint
c(x) < 0 needs to be satisfied. In the constraint propagation procedure (CPP) described here,

B(T,) is determined and then there are three possible outcomes: 1. If B(T.) > 0, then no x € X

will ever satisfy the constraint; thus, the CPP can be stopped and X discarded. 2. If B(T,) <0,
then every € X will always satisfy the constraint; thus X cannot be reduced and the CPP
can be stopped. 3. If neither of previous two cases occur, then part of the interval X may be
eliminated; thus the CPP continues as described below, using an approach based on the range
bounding strategy for Taylor models described above.

For some component ¢ of x, let a; and b; be the polynomial coefficients of the terms (x; — wi0)2
and (x; — x0) of T, respectively. Note that x;o € X; and is usually the midpoint ;0 = m(X;); the

value of x;9 will not change during the CPP. For |a;| > w, the bounds on T, can be expressed using

Eq. (11) as

where

m b: \2 b2
- E ) R J __J
SZ N X [a] (XJ $JO + 2aj> 4aj
J=1
JFi

We can reduce the computational effort to obtain S; by recognizing that this quantity is just B(7.)

less the i-th term in the summation, and B(T.) was already computed earlier in the CPP. Thus,

for each i, S; can be determined by dependent subtraction (see above) using

b \? b2
a; <Xz — X0 + 7) — —Z] . (18)

2
Now define the intervals U; = X; — z;0 + 2%_ and V; = %Z_ — S;, so that B(T.) = a;U? — Vi. The

goal is to identify and retain only the part of X; that contains values of x; for which it is possible

15



to satisfy c¢(x) < 0. In other words, the part of X; that is going to be eliminated is guaranteed not
to satisfy the constraint c¢(x) < 0. Since B(T.) = a;U? — V; bounds the range of ¢(x) for x € X,
the part of X; in which it is possible to satisfy c¢(x) < 0 can be bounded by finding X; such that

all elements of aiUf are less than or equal to at least one element of V;. That is, we require that

a;U? <V, (19)

Then, the set U; that satisfies Eq. (19) can be determined to be

1] ifa; >0and V; <0
[—\/%,\/%] ifa;>0and V; >0

Ui = (20)
[—00, 00 if a; <0and V; >0

a; a;’

[—oo,— Z]U{ Zoo] ifa; <0and V; < 0.

The part of X; to be retained is then X; = X; N (U,’ + x50 — ;Zi).

If |a;| < w, then Eq. (11) should not be used (to avoid division by a very small number), but
Eq. (10) can be used instead. Following a procedure similar to that used above, we now have
B(T,) = b;U; — V; with U; = X; — xjp and V; = — (B(T.) © b;(X; — x40)). Note that all quadratic

terms are now included in V;. To identify bounds on the part of X; in which is it possible to satisfy

the constraint, we can now use the condition

b:iU; < V. (21)
Then, the set U; that satisfies Eq. (21) can be determined to be

[—oo, bz} it b; > 0

Ui = (22)
[bzoo] if b; <0,

where it is assumed that |b;| > w, to avoid dividing by a very small number. The part of X; to be
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retained is then X; = X; N (U; 4+ z40). If both |a;| and |b;| are less than w, then no CPP will be
applied on Xj;.

The overall CPP is implemented by beginning with ¢ = 1 and proceeding component by com-
ponent. If, for any 7, the result X; = () is obtained, then no & € X can satisfy the constraint; thus,
X can be discarded and the CPP stopped. Otherwise the CPP proceeds until all components of X
have been updated. Note that, in principle, each time an improved (smaller) X; is found, it could
be used in computing S; for subsequent components of X. However, this requires recomputing the
bound B(T.), which, for the function ¢(x) that is of interest here, is expensive. Thus, the CPP
for each component is done using the bounds B(T.) computed from the original X. If, after each
component is processed, X has been sufficiently reduced (by more than w; = 10% by volume), then
a new bound B(T,) is obtained, now over the smaller X, and a new CPP is started. Otherwise,

the CPP terminates.

Global optimization algorithm

As with any type of procedure incorporating branch-and-bound, an important issue is how to
initialize ;5\, the upper bound on the global minimum. There are many ways in which this can be
done, and clearly, it is desirable to find a ngb that is as small as possible (i.e., the tightest possible
upper bound). To initialize QAS, we run p? local minimizations (p is the number of adjustable
parameters) using a local optimization routine from randomly chosen starting points, and then
choose the smallest value of ¢ found to be the initial ngb For this purpose, we use the bound-
constrained quasi-Newton method L-BFGS-B*' as the local optimization routine, and DDASSL*?

as the integration routine. Additional initialization steps are to set either a relative convergence

1 bs

tolerance €' or an absolute convergence tolerance €*®) and initialize a work list £. The work

list (stack) £ will contain a sequence of subintervals (boxes) that need to be tested and initially
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L = {©}, the entire parameter (decision variable) space.

The core steps in the iterative process involve the testing of boxes in the work list. This is
an objective range test combined with domain reduction done using the CPP described above.
Beginning with k = 0, at the k-th iteration a box is removed from the front of £ and is designated
as the current subinterval ©*). The Taylor model Ty, of the objective function ¢ over o® ig
computed. To do this, Taylor models of x,, the state variables at times ¢, = 1,...,r, in terms
of @ are determined using VSPODE, as described above. Note that T, then consists of a g-th
order polynomial in the decision variables 6, plus a remainder bound. The part of ©®) that can
contain the global minimum must satisfy the constraint ¢(0) = ¢(0) — 5 < 0 Thus the constraint
propagation procedure (CPP) described above is now applied using this constraint. Recall that
there are three possible outcomes in the CPP:

1. Testing for the first possible outcome, B(7.) > 0, amounts to checking if the lower bound

of Ty, , B(Ty,), is greater than ngb If so, then ®®) can be discarded because it cannot contain the

global minimum and need not be further tested.

2. Testing for the second possible outcome, m < 0, amounts to checking if the upper bound
of Ty, , m, is less than gg If so, then all points in @®) satisfy the constraint and the CPP can
be stopped since no reduction in ©®) can be achieved. This also indicates, with certainty, that
there is a point in ©®) that can be used to update gg Thus, if m < &5, a local optimization
routine, starting at some point in @)(k), is used to find a local minimum, which then provides an
updated (smaller) &5, that is, a better upper bound on the global minimum. In our implementation,
the midpoint of ©®) is used as the starting point for the local optimization. A new CPP is then
started on ©*) using the updated value of ngb

3. If neither of the previous two outcomes occurs, then the full CPP described above is applied

to reduce ®*). Note that if @*) is sufficiently reduced (by more than w; = 10% by volume) in
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comparison to its volume at the beginning of CPP, then new bounds B(Ty,) are obtained, now
over the smaller @(k), and a new CPP is started.

After the CPP terminates, a convergence test is performed. If (QAS — B(Ty,))/ |<;AS| < €, or

~

(¢ — B(Ty,)) < ¢S then ©*) need not be further tested and can be discarded. Otherwise, we
will check to what extent ©*) has been reduced compared to its volume at the beginning of the
objective range test. If the subinterval has been reduced by more than wy = 70% by volume, it will
be added to the front of the sequence £ of boxes to be tested. Otherwise, it will be bisected, and
the resulting two subintervals added to the front of £. Various strategies can be used to select the
component to be bisected. For the problems solved here, the component with the largest relative

(k)

width was selected for bisection. The relative width of a parameter component ©;" is defined as
(@ — %) / max{| @ [, | % [, 1}. The volume reduction targets wi and wy can be adjusted
as needed to tune the algorithm; the default values given above were used in the computational
studies described below. At the end of this testing process, k is incremented, a box is removed from
the front of £, and the testing process is begun again. At termination, £ will become empty, and
 is the e-global minimum.

The method described above is an e-global algorithm. It is also possible to incorporate interval-
Newton steps in the method, and to thus make it an exact algorithm. This requires the application
of VSPODE on the first- and second-order sensitivity equations. An exact algorithm using interval-
Newton steps has been implemented by Lin and Stadtherr® for the special case of parameter

estimation problems, but has not yet been fully implemented for the more general case described

here.
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Computational Studies

In this section, three example problems are presented to illustrate the theoretical and compu-
tational aspects of the proposed approach. All example problems were solved on an Intel Pentium
4 3.2GHz machine running Red Hat Linux. The VSPODE package,!” with a k = 17 order interval
Taylor series, ¢ = 3 order Taylor model, and QR approach for wrapping, was used to integrate
the dynamic systems in each problem. Using a smaller ITS order £ will result in the need for
smaller step sizes in the integration and so will tend to increase computation time. Using a larger
Taylor model order ¢ will result in somewhat tighter bounds on the states, though at the expense
of additional complexity in the Taylor model computations. The algorithm was implemented in

Ctt.

Illustrative example

This problem has been used by several previous authors as an illustrative example. It involves
the optimization of a simple dynamic system, with one decision variable. The problem is formulated

as:

min ¢ = —a(ty) (23)
s.t. & =-—-2°+0
Trog = 9

t S [to,tf] = [0, 1]
0 €]-5,5].

It has been shown that Problem (23) has two local minima, one at each bound of the parameter

domain. 12

We will illustrate here the optimization procedure described above by solving this problem to
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abs — 1073, First, the upper bound ngb on the global minimum is initialized

an absolute tolerance of €
using local optimization. This results in finding the local solution 0 = —5 with objective value
¢ = —8.23262154. The work list is initialized to £ = {[—5,5]}.

The main iteration is now begun with k£ = 0 (in this section k is an iteration counter and does
not refer to the order of the interval Taylor series used), and ©() = [=5,5] is removed from the

work list. VSPODE is now applied and a Taylor model T, of the objective function over 0 ig

obtained, with the result
Ty = (—1.4347 — 0.6394(0 — 0) — 0.0865(60 — 0)*
+0.0167(0 — 0)3, [—9.212744,9.212744]).
The bounds B(Ty,) = [—18.098954,11.053372] are now computed and the CPP is performed.
The CPP results in no reduction of the current interval; thus it is bisected and the resulting two
subintervals [—5,0], and [0, 5] are added to the work sequence, giving £ = {[-5,0], [0, 5]}.
For the next iteration, k = 1 and ©(1) = [—5,0] is removed from the front of £. VSPODE is

applied and a Taylor model T3, of the objective function over ©W is obtained, resulting in

Ty, = (—0.2969 + 0.3949(6 + 2.5) — 0.4569( + 2.5)°
+0.1223(6 + 2.5)%, [—2.205915, 2.205915)).

The bounds are computed as B(Ty,) = [—8.256285,3.905142] and the CPP is applied. Applying

the CPP reduces the current subinterval to @) = [~5,-4.9911] and gives B(Ty,) = —8.256285.

This does not satisfy the convergence test, but the volume of ©(1) has been reduced by more
than 70%. Thus, the reduced subinterval is added to the front of the work array, giving £ =
{[-5,4.9911], [0, 5]}.

Next, with & = 2 and ©®) = [-5, —4.9911], the Taylor model of the objective computed using
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VSPODE is
Ty, = (—8.18836 + 9.9814(6 + 4.99555) — 6.0120(6 + 4.99555)2

+2.7786(6 + 4.99555), [0.000001, 0.000001]),
and B(Ty,) = [—8.232622,—-8.144335]. After the CPP, the subinterval has been reduced to
[—5,—4.9999] and B(Ty,) = —8.232622. Since B(T§,) satisfies the convergence condition, this
subinterval needs no further testing and can be discarded. Now £ = {[0, 5]}.
Next, with k£ = 3 and ©®) = {[0, 5]}, the Taylor model of the objective function is

Ty, = (—2.8176 — 0.8901(6 — 2.5) — 0.0223(0 — 2.5)?

+0.0035(6 — 2.5)%,[~0.066276, 0.066276)),

and B(Ty,) = [—5.302934,—0.610588]. Now in the CPP it is seen that B(Ty,) > ¢, so this

subinterval can be discarded. Now £ = (), indicating termination. Thus the global minimum is

~

¢* = ¢ = —8.23262154 at 0" = 9 = —5. The total CPU time required was 0.05 seconds.

Singular control problem

This example is a nonlinear singular optimal control problem originally formulated by Luus*?

and also considered by Esposito and Floudas,® Chachuat and Latifi'! and Singer and Barton.!'3

This problem is known to have multiple local solutions. The problem to be solved is:

Iglé])a ¢ = /t :f (27 + 23 4+ 0.0005(22 + 16t — 8 — 0.1236%)?] dt (24)
s.t. T1 = To

iy = —x30+ 16t — 8

iy =0

xzg = (0,—1,—V5)T

t c [to,tf] = [0, 1]
0 € [-4,10].
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In order to express the ODE constraints in the autonomous form of Problem (1), we introduce
an additional state variable x4 representing ¢, and an additional equation, 4 = 1. We also introduce

a quadrature variable x5. The reformulated singular control problem is then given by:

min ¢ =w5(ty) (25)
s.t. T1 = T9

iy = —xs3f + 1624 — 8

T3 =10

iy =1

Z5 =%+ 22 4+ 0.0005(zo + 1624 — 8 — 0.1230%)?
Ty = (07 _17 _\/57 07 O)T
t € [to,ty] =1[0,1]

0 €[-4,10].

The control #(t) was parameterized as a piecewise constant profile with a specified number of
equal time intervals. Five problems are considered, corresponding to one, two, three, four and
five time intervals in the parameterization. For example, for the two-interval case, there are two
decision variables, 61 and 65, corresponding to the constant values of 6(t) over the first and second
halves of the overall time interval of interest. Each problem was solved to an absolute tolerance
of €’ = 1073, The results are presented in Table 1. This shows, for each problem, the globally
optimal objective value ¢* and the corresponding optimal controls 8%, as well as the CPU time (in
seconds) and number of iterations required.

Comparisons with computation times reported for other methods can give only a very rough
idea of the relative efficiency of the methods, due to differences in implementation and in the

machine used for the computation. Chachuat and Latifi'! solved the two-interval problem to e-
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global optimality using four different strategies, with the most efficient requiring 502 CPU seconds,
using an unspecified machine and a “prototype” implementation. Singer and Barton'? solved the
one-, two- and three-interval cases with ¢?P* = 1073 using two different problem formulations (with
and without a quadrature variable) and two different implementations (with and without branch-
and-bound heuristics). Best results in terms of efficiency were achieved with heuristics and without
a quadrature variable, with CPU times of 1.8, 22.5 and 540.3 seconds (1.667 GHz AMD Athlon
XP2000+) on the one-, two- and three-interval problems, respectively. This compares to CPU
times of 0.02, 0.32 and 10.88 seconds (3.2 GHz Intel Pentium 4) for the method given here. Even
accounting for the roughly factor of two difference in the speeds of the machines used, the method
described here appears to be well over an order of magnitude faster. The four- and five-interval
problems were solved here in 369 and 8580.6 CPU seconds, respectively, and apparently have not
been solved previously using a method rigorously guaranteed to find an e-global minimum. It
should be noted that our solution to the three-interval problem, as given in Table 1, differs from

the result reported by Singer and Barton,'® which is known to be a misprint.*4

Oil shale pyrolysis problem

This example is a fixed final time formulation of the oil shale pyrolysis problem originally

formulated by Luus®? and also considered by Esposito and Floudas® and Singer and Barton.'® The
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problem formulation is:

i = —x9(t 26
min ¢ a(t ) (26)
s.t. 1 = —kixy — (k3 + kg + ks)x129

o = k11 — kaxg + k3zi20

k; :aiexp<ﬂ>,i:1,...,5
0

zo = (1,0)"

t € lto.ts] = [0,10]

0 € [698.15,748.15].

The values for a; and b;/R are defined by Floudas et al.,*> and shown in Table 2. Singer and
Barton'3 indicate ¢ ¢ = 1 in their statement of the problem, but give results for the case t; = 10,
as specified above.

In Problem (26), the reciprocal operation on the control variable is required to calculate the
k;, which imposes a significant overhead on the related Taylor model computations. Thus, for the

control variable we use the transformation

698.15

SN
Il

(27)
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The transformed problem then becomes:

min - ¢ = —z(ty) (28)
0(t)
s.t. i‘l = —klazl - (k?g + ]C4 + ]C5)£C1$2

T = ki1 — kaxo + kw20

k; :aiexp(—ébi/R),i:1,~-- .5
zy = (1,0)"
t € [to,tf] = [0, 10]

0 € [698.15/748.15, 1.

As in the previous example, the control #(¢) was parameterized as a piecewise constant profile
with a specified number of equal time intervals. Four problems are considered, corresponding to
one, two, three and four time intervals in the parameterization. Each problem was solved to an

absolute tolerance of e2bs

= 1073, The results are presented in Table 3.

Singer and Barton' solved the one- and two-interval cases with €*”* = 1073 using two different
implementations (with and without branch-and-bound heuristics). Best results in terms of efficiency
were achieved using the heuristics, with CPU times of 26.2 and 1597.3 seconds (1.667 GHz AMD
Athlon XP2000+) on the one- and two-interval problems, respectively. This compares to CPU
times of 3.2 and 26.8 seconds (3.2 GHz Intel Pentium 4) for the method given here. As in the
previous problem, even after accounting for the roughly factor of two difference in the speeds of
the machines used, the method described here appears to be significantly more efficient, by well
over a order of magnitude in the two-interval case. The three- and four-interval problems were
solved here in 251.6 and 2443.5 CPU seconds, respectively, and apparently have not been solved

previously using a rigorously guaranteed method. The worst-case exponential complexity seen in

these results, as well as those in the previous example, reflects the fact that global optimization for

26



nonlinear problems is in general an NP-hard problem.

Concluding Remarks

We have presented here a new approach for the deterministic global optimization of dynamic
systems, including optimal control problems. This method is based on interval analysis and Tay-
lor models and employs a type of sequential approach. Instead of the usual branch-and-bound
approach, we incorporate a new domain reduction technique, and thus use a type of branch-and-
reduce strategy. A key feature of the method is the use of a new validated solver!” for parametric
ODEs, which is used to produce guaranteed bounds on the solutions of dynamic systems with
interval-valued parameters. The result is that an e-global optimum can be found with both math-
ematical and computational certainty. Computational studies on benchmark problems have been
done showing that this new approach provides significant improvements in computational efficiency,

well over an order of magnitude in most cases, relative to other recently described methods.
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Table 1: Results for the singular control problem.

# of time intervals ¢* 0" CPU (s) Iterations
1 0.4965 (4.071) 0.02 9
2 0.2771  (5.575, -4.000) 0.32 71
3 0.1475 (8.001, -1.944, 6.042) 10.88 1414
4 0.1237  (9.789, -1.200, 1.257, 6.256) 369.0 31073
) 0.1236  (10.00, 1.494, -0.814, 3.354,