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Abstract

A method is presented for the quantitative, model-based safety analysis of nonlinear continuous-

time hybrid systems. This method uses the region-transition-model (RTM) framework of Huang

et al. (2002), together with a recently developed technique (Lin & Stadtherr, 2007c) for the rigorous

global analysis of nonlinear, continuous-time systems with uncertain initial conditions and/or pa-

rameters. Given an operating region described by bounds on possible initial conditions, inputs and

model parameters, and a finite time horizon, the method can determine which operating subregions

lead to safe operation. Numerical examples are presented that demonstrate the effectiveness of the

method. This approach can supplement and complement the more qualitative techniques that are

widely used for hazard identification and safety analysis.

Keywords: Safety; Hazard identification; Hybrid systems; Dynamic systems; Nonlinear systems;

Interval analysis;



1 Introduction

In the design and operation of chemical processes, safety is clearly a critical concern. In the

analysis of process safety, a key early step is hazard identification. In industrial practice, this is typ-

ically done using the qualitative, experience-based techniques of Process Hazards Analysis (PHA)

(also called Preliminary Hazard Analysis). There is a wide range of methods for PHA (Venkatasub-

ramanian & Preston, 1995; Crowl & Louvar, 2002), from simple “what if?” and checklist approaches

to detailed HAZard and OPerability (HAZOP) studies. Of these, the use of HAZOP analysis is

generally preferred in the chemical process industries. In this type of analysis, a multidisciplinary

team of experts systematically examines the process Piping and Instrumentation Diagram (P&ID)

to determine the potential hazards resulting from deviations from normal operation. HAZOP stud-

ies tend to be labor-, knowledge- and time-intensive. However, automated tools are available (e.g.,

Zhao et al., 2005a,b) to facilitate HAZOP analysis.

A recognized drawback of the qualitative techniques for hazard identification is that they do

not well account for the potential complexity of the chemical process being analyzed, including the

interactions of different effects. Thus, it may be difficult to determine whether specific hazards

are physically realizable, and if so how they might occur. Because of such difficulties, methods for

qualitative analysis are generally designed to produce very conservative results, perhaps leading

to significant “overdesign.” For a more realistic understanding of possible hazards, a quantitative,

model-based approach to safety analysis can supplement and complement the usual qualitative

techniques.

Chemical processes can be modeled fundamentally as hybrid dynamic systems, characterized

by a strong coupling between continuous state dynamics and discrete events (Barton & Pantelides,

1994). In the context of hazard identification, such a hybrid system involves both nonterminal safe

states and terminal states which may be safe or unsafe. All unsafe states are considered terminal,
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since once such a state is reached a hazard has been identified. In general, each nonterminal state is

associated with a set of differential-algebraic equations and variables. Transitions between states are

triggered when certain logical conditions are satisfied. Using such a state transition representation,

two approaches have been used to examine the system of interest and identify potential hazards:

reachability analysis and worst-case analysis. In reachability analysis, the problem is, given a set of

possible initial conditions, to identify the states the system can reach over an infinite time horizon

(Clarke et al., 1986; Moon et al., 1992; Park & Barton, 1997). Worst-case analysis is optimization

based, and the problem is, given a finite time horizon and set of possible initial conditions and

controls, to minimize the time required to reach an unsafe state (Dimitriadis et al., 1996, 1997;

Srinivasan et al., 1997, 1998). For either of these strategies, a global analysis of the model is needed

in order to guarantee the validity of the results, which in turn has restricted these approaches to

linear systems and a limited number of chemical processes. To obtain a more realistic approach to

safety analysis, Huang et al. (2002) have proposed a region-transition-model (RTM) framework for

uncertain, nonlinear systems. While this can be formulated in terms of continuous-time systems,

Huang et al. (2002) actually implemented the RTM approach using a discrete-time approximation;

that is, they used difference equations to describe the evolution of the continuous states. However,

as emphasized by Barton et al. (2006), for nonlinear systems the use of differential equations,

as opposed to difference equations, often provides a more realistic physical model, which may be

necessitated by the demands of many real world applications.

We present here an approach for quantitative, model-based safety analysis based on continuous-

time hybrid systems. This method uses the RTM framework of Huang et al. (2002), together with a

recently developed technique (Lin & Stadtherr, 2007c) for the rigorous global analysis of nonlinear,

continuous-time systems with uncertain initial conditions and/or parameters. The goal is to solve

the problem stated by Huang et al. (2002), “given a set of possible initial conditions and inputs
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and a finite time horizon, identify the set of initial conditions and inputs which lead to unsafe

behavior,” but to do so for continuous-time, not discrete-time, systems. The remainder of this

article is organized as follows. In the next section, we present the mathematical formulation of the

problem to be solved. This is followed by a section that provides background on tools used, namely

interval analysis and Taylor models, and a section summarizing the method used to bound the state

variables. Then a section is presented in which we outline the approach for rigorous, model-based

safety analysis. Finally, we present the results of numerical examples: linear and nonlinear tank

flow problems and a nonlinear batch reactor problem.

2 Problem Definition

It is assumed that the system of interest is described by a model with the following character-

istics.

1. There is a finite number of normal (safe) states. There is one and only one active state at

any time, except at times corresponding to events (state transitions). Associated with each

normal state si is a set of ordinary differential equations (ODEs) describing the system,

ẋ = f (i)(x,θ), (1)

where x is the state vector (length m) and θ is a time-invariant “parameter” vector (length

p) that includes uncertain model parameters, inputs, and disturbances. Models that are non-

autonomous, or that involve parameters with known time dependence, can be easily converted

into the form of Eq. (1) by the introduction of additional state variables. It is assumed that

the model has a unique solution for any given set of initial conditions and parameter values.

Initially the system is in state s1.

2. There is a set of possible state transitions (discrete events). A transition from a source state
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si to a destination state sr occurs when the logical condition

lir(x(t),θ) ≤ 0 (2)

is satisfied. It is assumed that the transition is instantaneous.

3. For simplicity, it is assumed that all normal states are described by the same state vector x,

and that the value of x does not change during a state transition. It should be emphasized

that the problem can be formulated (Huang et al., 2002) and solved without use of this

assumption. Initially, at t = 0, x = x0.

4. The initial state values are uncertain or are operating decisions, and are within a specified

interval X0. That is, x0 ∈ X0. Similarly, the components of the parameter vector θ are

uncertain or are operating or design decisions, and are within a specified interval Θ. That

is, θ ∈ Θ. The interval Z = (X0,Θ)T then defines an “operating space” that encompasses

uncertainties and the range of possible operating/design decisions for the process.

5. In order to use the technique of Lin & Stadtherr (2007c) for rigorous global analysis of

nonlinear, continuous-time systems with uncertain initial conditions and/or parameters, it

is assumed that f (i) is (k − 1)-times continuously differentiable with respect to x, and (q +

1)-times continuously differentiable with respect to x0 and θ, where k is the order of the

truncation error in the interval Taylor series (ITS) method to be used in the integration

procedure, and q is the order of Taylor model to be used to represent dependence on x0 and

θ (to be discussed in Sections 3.2 and 4).

The problem then is to identify the regions of the operating space Z = (X0,Θ)T that lead to

safe operation, and to do so with mathematical and computational certainty. If there are some safe

states that correspond to successful operation (for example, in terms of a product specification),

then the regions of the operating space leading to successful operation should also be identified.
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The end result is to distinguish regions of Z leading to safe and successful operation from those

leading to unsafe or unsuccessful operation.

3 Background

The method described here uses interval analysis and Taylor models. As background, a brief

introduction to these topics is provided. Additional background is available elsewhere.

3.1 Interval analysis

A real interval X =
[
X,X

]
is defined by X =

{
x ∈ R | X ≤ x ≤ X

}
. We use an underline

to indicate the lower bound of an interval and an overline to indicate the upper bound. A real

interval vector X = (X1,X2, · · · ,Xn)T ⊂ R
n has n real interval components and can be interpreted

geometrically as an n-dimensional rectangle or box. Unless noted otherwise, we use uppercase to

indicate intervals and lowercase (or uppercase with underline or overline) to indicate real numbers.

Arithmetic operations with intervals are defined by X op Y = {x op y | x ∈ X, y ∈ Y }, where

op ∈ {+,−,×,÷}. Interval versions of the elementary functions can be similarly defined. For

dealing with exceptions, such as division by an interval containing zero, extended models for interval

arithmetic are available, often based on the extended real system R
∗ = R∪{−∞,+∞}. The concept

of containment sets (csets) provides a valuable framework for constructing models for interval

arithmetic with consistent handling of exceptions (Hansen & Walster, 2004; Pryce & Corliss, 2006).

Implementations of interval arithmetic and elementary functions are readily available, and recent

compilers from Sun Microsystems directly support interval arithmetic and an interval data type.

Several good introductions to interval analysis, including interval arithmetic and other aspects of

computing with intervals, are available (Jaulin et al., 2001; Hansen & Walster, 2004; Neumaier,

1990; Kearfott, 1996).
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For an arbitrary function f(x), the interval extension F (X) encloses the range of f(x) over X.

It is often computed by substituting X into f(x) and then evaluating the function using interval

arithmetic. This “natural” interval extension may be wider than the actual range of function values,

though it always includes the actual range. This overestimation of the function range is due to

the “dependency” problem, which may arise when a variable occurs more than once in a function

expression. While a variable may take on any value within its interval, it must take on the same

value each time it occurs in an expression. However, this type of dependency is not recognized

when the natural interval extension is computed. Another source of overestimation that may arise

in the use of interval methods is the “wrapping” effect. This occurs when an interval is used to

enclose (wrap) a set of results that is not an interval. One approach that can be used to address

both the dependency and wrapping problems is the use of Taylor models, as described in the next

subsection.

3.2 Taylor models

Makino & Berz (1996) have described a remainder differential algebra (RDA) approach for

bounding function ranges and controlling the dependency problem of interval arithmetic (Makino

& Berz, 1999). This method is based on representing a function with a model consisting of a

Taylor polynomial and an interval remainder bound. Based on a Taylor expansion about the point

x0 ∈ X ⊂ R
n, the q-th order Taylor model Tf of f(x) consists of a q-th order polynomial function

in (x − x0), pf , and an interval remainder bound Rf , such that f ∈ Tf = pf + Rf for all x ∈ X.

The function f is then bounded by seeking bounds on the Taylor model Tf , which is also denoted

Tf = (pf , Rf ).

Arithmetic operations with Taylor models can be done using the remainder differential algebra

described by Makino & Berz (1996, 1999, 2003), which includes addition and multiplication, as well
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as reciprocal and intrinsic functions. Using these, it is possible to start with simple functions such

as the constant function f(x) = k, for which Tf = (k, [0, 0]), and the identity function f(xi) = xi,

for which Tf = (xi0 + (xi − xi0), [0, 0]), and then to compute Taylor models for very complicated

functions. Therefore, by using simple operator overloading with RDA operations, it is possible to

compute a Taylor model for any function representable in a computer environment. It has been

shown that, compared to other rigorous bounding methods, the Taylor model often yields sharper

bounds for modest to complicated functional dependencies (Makino & Berz, 1996, 1999; Neumaier,

2003).

An interval bound on a Taylor model T = (p,R) over X is denoted by B(T ) and is given

by B(T ) = B(p) + R, where B(p) is an interval bound on the polynomial part p. The range

bounding of the polynomial B(p) = P (X − x0) is an important issue, which directly affects the

performance of Taylor model methods. However, exact range bounding of an interval polynomial

is NP hard, and direct evaluation using interval arithmetic is very inefficient, often yielding only

loose bounds. Various bounding schemes (Makino & Berz, 2004, 2005; Neumaier, 2003) have been

used, mostly focused on exact bounding of the first- and second-order polynomial terms. However,

exact bounding of a general interval quadratic is also computationally expensive (in the worst case,

exponential in the number of variables). Thus, in our implementation of Taylor models (Lin &

Stadtherr, 2006, 2007a,c), we have used a compromise approach, in which only the first-order and

the diagonal second-order terms are considered for exact bounding, and other terms are evaluated

directly.

This bounding scheme for Taylor models can be exploited in performing constraint propagation.

Information provided by a constraint can be used to eliminate incompatible values from the domain

of its variables. This domain reduction can then be propagated to all constraints on that variable,

where it may be used to further reduce the domains of other variables. This is the process known
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as constraint propagation (Jaulin et al., 2001; Hansen & Walster, 2004). It is widely used in

various forms (e.g., hull consistency) in connection with interval methods and Taylor models. We

have shown previously how efficient constraint propagation schemes using Taylor models can be

developed for inequality constraints (Lin & Stadtherr, 2006), bound constraints (Lin & Stadtherr,

2007b), and equality constraints (Lin et al., 2008). In the method for safety analysis described

below, we use the procedure given by Lin & Stadtherr (2006) for constraint propagation with

Taylor models on an inequality constraint c(x) ≤ 0, with x ∈ X. Using this procedure, regions of

X that are guaranteed not to satisfy the constraint can be identified and removed, thus yielding a

region X ′ in which it is possible to satisfy the constraint, and a region X \X ′ = {x ∈ X | x /∈ X ′}

in which it is impossible to satisfy the constraint.

4 Bounding the State Variables

In the context of safety analysis and hazard identification, in order to guarantee the reliability

of the results obtained, we need a solver for nonlinear ODEs that can compute rigorous, verified

bounds on the state variables for the case in which the initial values and parameters are given by

intervals. Interval methods (also called validated methods or verified methods) for ODEs (Moore,

1966), provide a natural approach for computing the desired enclosure of the state variables.

Traditional interval methods (Moore, 1966) usually consist of two processes applied at each

integration step. In the first process, existence and uniqueness of the solution are proved using

the Picard-Lindelöf operator and the Banach fixed point theorem, and a rough enclosure of the

solution is computed. In the second process, a tighter enclosure of the solution is computed. In

general, both processes are realized by applying interval Taylor series (ITS) expansions with respect

to time, and using automatic differentiation to obtain the Taylor coefficients. An excellent review

of the traditional interval methods has been given by Nedialkov et al. (1999), and more recent
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work has been reviewed by Neher et al. (2007). For addressing this problem, there are various

packages available, including AWA (Lohner, 1992), VNODE (Nedialkov, 1999; Nedialkov et al.,

2001) COSY VI (Berz & Makino, 1998) and ValEncIA-IVP (Rauh et al., 2006). In this study, we

will use a new validating solver (Lin & Stadtherr, 2007c) for parametric ODEs, which is used to

produce guaranteed bounds on the solutions of dynamic systems with interval-valued initial states

and parameters, and which offers significant performance improvements over the popular VNODE

package. The method makes use, in a novel way, of the Taylor model approach (Makino & Berz,

1996, 1999, 2003) to deal with the dependency and wrapping problems on the uncertain quantities

(parameters and initial values). We will summarize here the basic ideas of the method used.

The ODE problem of interest is

ẋ = f(x,θ), x0 ∈ X0, θ ∈ Θ, (3)

where t ∈ [t0, tN ] for some tN > t0, and X0 and Θ represent enclosures of initial values and

parameters, respectively. It is desired to determine a verified enclosure of all possible solutions

to this IVP. We denote by x(t; tj ,Xj,Θ) the set of solutions {x(t; tj ,xj ,θ) | xj ∈ Xj,θ ∈ Θ} ,

where x(t; tj ,xj ,θ) denotes a solution of ẋ = f(x,θ) for the initial condition x = xj at tj. We

will summarize a method for determining enclosures Xj of the state variables at each time step

j = 1, . . . , N , such that x(tj; t0,X0,Θ) ⊆ Xj.

Assume that at tj we have an enclosure Xj of x(tj; t0,X0,Θ), and that we want to carry out

an integration step to compute the next enclosure Xj+1. Then, in the first phase of the method,

the goal is to find a step size hj = tj+1 − tj > 0 and a rough enclosure X̃j of the solution such that

a unique solution x(t; tj,xj,θ) ∈ X̃j is guaranteed to exist for all t ∈ [tj, tj+1], all xj ∈ Xj, and

all θ ∈ Θ. We apply a traditional interval method, with high order enclosure, to the parametric

ODEs by using an interval Taylor series (ITS) with respect to time. That is, we determine hj and
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X̃j such that for Xj ⊆ X̃
0

j ,

X̃j =

k−1∑

i=0

[0, hj ]
iF [i](Xj ,Θ) + [0, hj ]

kF [k](X̃
0

j ,Θ) ⊆ X̃
0

j . (4)

Here k denotes the order of the Taylor series, X̃
0

j is an initial estimate of X̃j , and the coefficients

F [i] are interval extensions of the Taylor coefficients f [i] of x(t) with respect to time, which can

be obtained recursively in terms of ẋ(t) = f(x,θ). When Eq. (4) is satisfied, it demonstrates

(Corliss & Rihm, 1996) that there exists a unique solution x(t; tj,xj,θ) ∈ X̃j for all t ∈ [tj , tj+1],

all xj ∈ Xj , and all θ ∈ Θ.

In the second phase of the method, we compute a tighter enclosure Xj+1 ⊆ X̃j , such that

x(tj+1; t0,X0,Θ) ⊆ Xj+1. This is done by using an ITS approach to compute T xj+1(x0,θ),

a Taylor model of xj+1 in terms of the initial values x0 and parameters θ, and then obtaining

the enclosure Xj+1 = B(T xj+1). For the Taylor model computations, we begin by representing

the interval initial states and parameters by the Taylor models (identity functions) T x0 and T θ,

respectively. Then, we can determine Taylor models T
f[i] of the interval Taylor series coefficients

f [i](xj ,θ) by using RDA operations to compute T
f[i] = f [i](T xj

,T θ). Using an interval Taylor

series for xj+1 with coefficients given by T
f [i], and using the mean value theorem, one can obtain

T xj+1(x0,θ), the desired Taylor model of xj+1 in terms of the parameters θ and initial states

x0. To control the wrapping effect, the state enclosures are propagated using a new type of

Taylor model consisting of a polynomial and a parallelepiped (as opposed to an interval) remainder

bound. Complete details of the computation of T xj+1 are given by Lin & Stadtherr (2007c). An

implementation of this approach, called VSPODE (Verifying Solver for Parametric ODEs), has

been developed and tested by Lin & Stadtherr (2007c), who compared its performance with results

obtained using the popular VNODE package (Nedialkov, 1999; Nedialkov et al., 2001). For the

test problems used, VSPODE provided tighter enclosures on the state variables than VNODE, and

required significantly less computation time. Information about the availability of VSPODE can
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be obtained by contacting the authors.

5 Safety Analysis Method

Consider again the safety analysis problem described in Section 2. The core problem is to

determine regions of the operating space in which state transitions occur. A transition from a

state si to another state sr occurs when lir(x(t),θ) ≤ 0. Thus, if bounds on lir(x(t),θ) can be

determined, it is possible to check for the possibility of transitions. To do this we need bounds on

the state variables x(t), which can be obtained using VSPODE. The bounds Xj, j = 1, . . . , N ,

computed by VSPODE are valid at the corresponding times tj; that is, at the endpoints of the

integration steps. However, transitions may also occur during an integration step. Thus, bounds

that are valid over entire integration steps are needed. These can be obtained from the course

enclosures X̃j, j = 1, . . . , N , which bound the state variables for all t ∈ [tj, tj+1], all xj ∈ Xj , and

all θ ∈ Θ, and are thus critical in determining the occurrence of system transition during a period

of time.

Since overestimation of X̃j can lead to poor performance in the method described here, we first

describe a simple technique to tighten these bounds. This is based on the idea that over a small

time step, it is usually possible to show that most or all of the component functions of f(x,θ) = ẋ

are bounded either above zero or below zero, making most or all of the component trajectories of

x(t) monotonic. If this is true, then the tighter endpoint enclosures Xj and Xj+1 can be used to

determine bounds over the entire time step. This is shown schematically in Fig. 1, for a trajectory

x(t) that has been shown to be monotonically increasing based on the initial coarse enclosure X̃j .

An improved X̃j can be obtained by taking the interval hull of Xj and Xj+1. Note that the curves

connecting Xj and Xj+1 cannot go outside the bounds given by the improved X̃j without violating

the known monotonicity of x(t).
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In general, the procedure used for improvement of the course enclosure X̃j is:

1. For time step j + 1, with Xj known, use VSPODE to compute X̃j and then Xj+1.

2. For each variable i = 1, . . . ,m,

(a) Compute Fi = Fi(X̃j ,Θ) using interval arithmetic.

(b) If Fi ≥ 0 (xi monotonically increases with respect to time) or Fi ≤ 0 (xi monotonically

decreases with respect to time), then X̃i,j = �{Xi,j ,Xi,j+1}, where � indicates the

interval hull.

To test a region Z for transition from state si to sr, integration with VSPODE is combined

with evaluations of lir. If there are multiple possible destination states sr, then different parts of Z

may transition to different destination states. However, during an integration step, it is assumed

that only one transition may occur in any particular part of Z. At integration step j + 1, and for

all possible destination states sr,

1. Compute the interval Lir = lir(X̃j,Θ) for t ∈ [tj, tj+1] using interval arithmetic, where X̃j

is the improved coarse enclosure.

(a) If Lir > 0, then a transition to sr does not occur for any point in Z, for all t ∈ [tj , tj+1].

Mark the region as FALSE and proceed to consider the next possible destination state.

(b) If Lir ≤ 0, then the transition to sr does occur at all points in Z, for all t ∈ [tj , tj+1].

Mark the region as TRUE and move it to the working list Lr for state sr. Stop integration

and set Z = ∅.

(c) Otherwise, the transition to sr may or may not occur for all points in Z, and the region

is UNDECIDED.
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For a region to be marked TRUE, we need to show that the transition to sr occurs at all points

in Z, but not necessarily for all times t ∈ [tj , tj+1]. In fact, it is only necessary to show that a

transition to sr may occur at one point in time. Therefore, in the next step, to continue testing

an UNDECIDED region, we only consider the time t = tj+1, since a Taylor model state enclosure

T xj+1 is available there.

2. To bound lir, compute Tlir = lir(T xj+1 ,T θ) for t = tj+1 using Taylor model operations.

(a) If B(Tlir) ≤ 0, then the transition to sr will occur at all points in Z at t = tj+1. Mark

the region as TRUE and move it to the working list Lr for state sr. Stop integration

and set Z = ∅.

(b) If B(Tlir) > 0, the transition to sr does not occur for any point in Z, but this has been

shown only for t = tj+1. Thus, keep the mark as UNDECIDED.

(c) Otherwise, perform constraint propagation (see Section 3.2) using Tlir with the constraint

lir ≥ 0 to reduce the region Z to Z ′.

i. For all points in the region Z \ Z′, it is guaranteed that lir < 0 at t = tj+1. Thus,

the transition to sr will occur at all points in Z \ Z′ at t = tj+1. Mark this region

as TRUE and move it to the working list Lr for state sr.

ii. Reset Z = Z ′. Mark the remaining region Z as UNDECIDED and proceed to

consider the next possible destination state.

This procedure for testing a region Z for transition from state si to sr at time step j + 1 is

summarized in Fig. 2. After all possible destination states have been considered, the possible

outcomes for the region Z that was tested are: 1) The entire region is marked FALSE; integration

proceeds with the next time step. 2) The entire region is marked TRUE; integration in state si

stops. 3) The entire region is marked UNDECIDED; integration proceeds with the next time step.
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4) The region is subdivided into subregions that are TRUE for one of the possible destination

states, and a subregion that remains UNDECIDED; integration proceeds with the next time step

in the UNDECIDED region. Integration proceeds until a specified time horizon is reached, or until

Z = ∅ (meaning the entire region has been marked TRUE).

To deal with regions that remain UNDECIDED, and that are larger that some desired tolerance,

a subdivision strategy is needed. This is incorporated into the overall algorithm that follows.

1. Initialize. Consider the initial state s1 and initial operating region Z(0), with a specified time

horizon. Set the region size tolerance vector ǫ. The components of ǫ provide tolerances for

the corresponding components of the operating region. Set the working list for state s1 as

L1 = {Z(0)}. Set the working lists for all other states to be empty, that is, Li6=1 = ∅. Set

the results lists for all states to be empty, that is, Ri = ∅.

2. Iterate, beginning with L1, over all working lists Li. Iterate over all subregions Z(k) stored

in Li.

(a) Integrate using VSPODE, testing for transitions, as described above. Note that during

integration any subregions of Z(k) that are marked TRUE are excluded from Z(k) and

stored in the working list for the corresponding destination state. Integration proceeds

until the specified time horizon is reached, or until Z(k) = ∅ (meaning the entire region

has been marked TRUE).

(b) If Z(k) = ∅, go to (f).

(c) If the time horizon was reaching during integration, check for final-time transitions. If

any is TRUE, move Z(k) to the results list for the corresponding state. Go to (f).

(d) If Z(k) is marked FALSE, put it in the results list Ri for state si. Go to (f).

(e) If Z(k) is marked as UNDECIDED

14



i. If the width all components of Z(k) is smaller than the corresponding components

in the tolerance vector ǫ, store it in the UNDECIDED results list RU, and go to (f).

Note that the width of an interval vector is the maximum of the component widths.

ii. Else if Z(k) has been sufficiently reduced (30% reduction in volume), return to (a).

iii. Else, bisect Z(k) and put the resulting subregions at the front of Li and go to (f).

(f) Go to the next subregion in Li. If Li = ∅, process another nonempty working list.

3. Terminate. At termination all working lists Li will be empty. The initial operating space

Z(0) will now be divided into non-overlapping subregions which have been stored in results

lists corresponding to the eventual states achieved, or stored in the UNDECIDED list if no

determination could be made.

6 Examples

In this section, we present the results of numerical experiments on three example problems to

illustrate the theoretical and computational aspects of the proposed approach for safety analysis.

The first and third example problems were taken from Huang et al. (2002), who used discrete-time

models to do the analysis. Since the models used here are continuous-time, and thus not the same

as those used by Huang et al. (2002), no direct comparisons are made to their results. The first

problem involves a linear model, and the last two involve nonlinear models. All example problems

were solved on an Intel Pentium 4 3.2GHz workstation running Red Hat Linux. The VSPODE

package (Lin & Stadtherr, 2007c), with a k = 17 order interval Taylor series, q = 5 order Taylor

model, QR approach for wrapping, and automatic variable step size (unless otherwise noted) was

used to integrate the continuous dynamic systems.
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6.1 Linear tank flow

This simple problem involves flow into and out of a tank, and considers the possibility of

underflow and overflow, shown in Fig. 3 (Huang et al., 2002). The tank system has three states:

state s1, normal operation (safe); state s2, underflow (unsafe); and state s3, overflow (unsafe). The

normal operation state is governed by the ODE

dV

dt
= Fin − αV, t ∈ [0, tH], V (0) = V0, (5)

where V is the (real-valued) fluid volume in the tank, Fin is the (real-valued) time-invariant inlet

flow rate, α is a time-invariant constant, and tH is the time horizon. The unsafe states (underflow

and overflow) are considered terminal states, therefore there is no need to provide models for these

two states. The possible transitions at any given time are: 1) Transition from normal state s1 to

underflow state s2 when V ≤ Vmin. Thus, this transition occurs when l12 = V − Vmin ≤ 0. 2)

Transition from normal state s1 to overflow state s3 when V ≥ Vmax. Thus, this transition occurs

when l13 = Vmax − V ≤ 0.

For the safety analysis of this system, we consider the operating region defined by the initial

tank level V0 ∈ [2, 3] m3 and the inlet flow rate Fin ∈ [0, 1] m3/s, with a constant α = 0.15 s−1.

A region size tolerance of ǫ = 0.01 is used for both V0 and Fin. Applying the algorithm described

above, for a time horizon of tH = 10 s, gives the results shown in Fig. 4. Here it can be seen that

the (V0, Fin) operating space has been split into regions corresponding to safe and unsafe operation

(underflow or overflow), with small undecidable regions separating the safe and unsafe regions.

The calculations required 0.62 s of CPU time and involved 1125 subregion tests. The undecidable

regions account for about 1.37% of the total operating space tested. Repeating the analysis for a

time horizon of tH = 100 s with constant step size h = 2 s yields the results given in Fig. 5. This

was obtained in 21.7 s of CPU time and 862 subregion tests. The undecidable regions account
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for about 1.29% of the overall operating space tested. These results correspond to the theoretical

results for an infinite time horizon, which can be derived analytically for this simple system (Huang

et al., 2002).

A similar analysis can also be done for the case of uncertainty in the model parameter α, which

we now assume is known only within ±5% of its nominal value, that is α ∈ A = [0.142, 0.158]. A

region size tolerance of ǫ = 0.001 is set for α. The results of the safety analysis for tH = 10 s are

shown in Fig. 6, which was obtained in 24.7 s of CPU time and 28987 subregion tests. Because of

the uncertainty in α, the undecidable regions now grow to about 9.85% of the (V0, Fin) space tested.

Note that the complete operating space is now three dimensional, with α as the third dimension,

and that Fig. 6 is a projection into the (V0, Fin) space. Regions in Fig. 6 are marked as safe,

overflow or underflow only when this is true for all values α ∈ A in the α dimension. Fig. 7 shows

the results obtained for the longer time horizon tH = 100 s, with constant step size h = 2 s. For this

case, the computation time was 617 s of CPU time with 31139 subregion tests. The undecidable

regions account for about 10.80% of the (V0, Fin) space tested.

6.2 Nonlinear tank flow

The algorithm described here is also applicable to nonlinear systems. In this example, we

consider again the tank flow problem described above, but now with a nonlinear relationship for

flow from the tank. For this problem, the normal operating (safe) state is described by

dV

dt
= Fin − α

√
V , t ∈ [0, tH], V (0) = V0, (6)

For the safety analysis of this system, we again use the operating region defined by V0 ∈ [2, 3] m3

and Fin ∈ [0, 1] m3/s, with a constant α = 0.15 m3/2/s and region size tolerances of ǫ = 0.01 for

both V0 and Fin. Results of the safety analysis for this case, with a time horizon of tH = 10 s,

are given in Fig. 8, which was obtained with 10.1 s of CPU time and 777 subregion tests. The
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undecidable regions account for about 1.35% of the total operating space tested. For tH = 100 s,

the results are shown in Fig. 9. This required 28.0 s of CPU time and 850 subregion tests. The

undecidable regions account for about 1.52% of the total operating space.

The case of an uncertain α is also considered again, with α ∈ A = [0.142, 0.158], and region

size tolerance ǫ = 0.001. Fig. 10 shows the results for tH = 10 s, which required 396 s of CPU

time and 18745 subregion tests, and Fig. 11 shows the results for tH = 100 s, which required 1259

seconds of CPU time and 27297 subregion tests. As described above, this is a projection in the

(V0, Fin) space. The undecidable regions account for about 5.98% of the (V0, Fin) space tested in

the tH = 10 s case, and 6.19% for tH = 100 s. This example demonstrates that it is very easy to

apply the algorithm described above to nonlinear systems. In the next example, a model with more

complicated nonlinearities is considered.

6.3 Exothermic batch reactor

In this example, the process is a first-order exothermic reaction A → B in a batch reactor

fitted with a segmented, variable-area cooling jacket. The process model is given by the following

nonlinear ODE system (mass and energy balance)

dX

dt
= k0 exp

(
− Ea

RT

)
(1 − X)

dT

dt
=

UA

CA0V Cp
(Ta − T ) − ∆HRk0

Cp
exp

(
− Ea

RT

)
(1 − X), (7)

where X is the (real-valued) conversion and T is the (real-valued) reactor temperature. Other

symbols and their nominal values are shown in Table 1. The coolant temperature Ta and heat

transfer constant UA are adjustable.

As shown in Fig. 12 (Huang et al., 2002), the system has four possible states, with states s2,

s3 and s4 being terminal states:

State s1: Normal (safe) operation.
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State s2: Overheated (unsafe) operation; this occurs when the reactor temperature exceeds

540 K. Thus, the transition from s1 to s2 occurs when l12 = 540 − T < 0.

State s3: Successful (and safe) run completion; this occurs at the final time of tH = 1500 s

when the conversion X is greater than or equal to 97.5%. This is a final-time transition from

s1 to s3 that occurs when l13 = 0.975 − X ≤ 0.

State s4: Off-spec (but safe) run; this occurs at the final time of tH = 1500 s when the

conversion X is less than 97.5%. This is a final-time transition from s1 to s4 that occurs

when l14 = X − 0.975 < 0.

We first consider the case of an operating region given by initial temperature T0 ∈ [310, 540] K

and coolant temperature Ta ∈ [290, 310] K, with the heat transfer constant at its nominal value of

UA = 3 W/K. A region size tolerance of ǫ = 1 is used for both T0 and Ta. The results of the safety

analysis obtained using the procedure described above are shown in Fig. 13. The computation

required 1886.9 s of CPU time and 1299 subregion tests. The undecidable regions account for

about 1.66% of the overall (T0, Ta) operating region.

As a second case, we consider the operating region defined by initial temperature T0 ∈ [310, 540]

K and heat transfer constant UA ∈ [0, 6] W/K, with the coolant temperature at its nominal value

of Ta = 298 K. The region size tolerance for T0 is set to 1, and for UA to 0.05. The safety analysis

results are shown in Fig. 14, which was determined using 4487.58 seconds of CPU time and

2969 subregion tests. Here the undecidable regions account for about 0.96% of the total (T0, UA)

operating region.

As a final case, we consider the three-dimensional operating region given by initial temperature

T0 ∈ [310, 540] K, coolant temperature Ta ∈ [290, 310] K, and heat transfer constant UA ∈ [2.5, 3.5]

W/K. The region size tolerances for T0 and Ta are set to 1, and to 0.05 for UA. The full three-
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dimensional results are shown in Fig. 15. This computation required 98649 seconds of CPU

time and 48440 subregion tests. The undecidable regions account for about 4.80% of the overall

(T0, Ta, UA) operating region. In Fig. 15, the subregions that appear in each of the results lists R2

(overheat), R3 (successful run), R4 (insufficient conversion), and RU (undecided) are also depicted

(delineated by white lines).

7 Concluding Remarks

We have demonstrated here a strategy for quantitative, model-based safety analysis for nonlin-

ear, continuous-time hybrid systems. This method uses the region-transition-model (RTM) frame-

work of Huang et al. (2002), together with a recently developed technique (Lin & Stadtherr, 2007c)

for the rigorous global analysis of nonlinear, continuous-time systems with uncertain initial con-

ditions and/or parameters. Given an operating region described by bounds on possible initial

conditions, inputs and model parameters, and a finite time horizon, the method can determine

which operating subregions lead to safe operation. This approach can supplement and complement

the more qualitative techniques that are widely used for hazard identification and safety analysis.
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Table 1: Batch reactor parameters.

Parameter Description Value

k0 Kinetic rate constant 0.022 s−1

CA0 Initial concentration of A 10 mol/m3

V Volume of the reactor 0.1 m3

Cp Total heat capacity 60 J/mol K

Ea Activation energy 6000 J/mol

R Gas constant 8.314 J/mol/K

∆HR Heat of reaction -140,000 J/mol

UA Heat transfer constant 3 W/K

Ta Coolant temperature 290 K
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Figure 1: Improvement of the coarse enclosure X̃j based on monotonicity of x(t) for t ∈ [tj , tj+1].

See text for complete discussion.
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Figure 3: State-based representation of tank flow problem (Huang et al., 2002).

29



2 3
0

1

V
0
, initial volume(m3)

F
in

, i
nl

et
 fl

ow
ra

te
(m

3 /s
)

SAFE

UNDERFLOW

OVERFLOW

Figure 4: Safety analysis for linear tank flow problem with time horizon tH = 10 s.
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Figure 5: Safety analysis for linear tank flow problem with time horizon tH = 100 s.

31



2 3
0

1

V
0
, initial volume(m3)

F
in

, i
nl

et
 fl

ow
ra

te
(m

3 /s
)

SAFE

UNDERFLOW

OVERFLOW

Figure 6: Safety analysis for linear tank flow problem with uncertain α and time horizon tH = 10

s.
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Figure 7: Safety analysis for linear tank flow problem with uncertain α and time horizon tH = 100

s.
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Figure 8: Safety analysis for nonlinear tank flow problem with time horizon tH = 10 s.

34



2 3
0

1

V
0
, initial volume(m3)

F
in

, i
nl

et
 fl

ow
ra

te
(m

3 /s
)

SAFE

UNDERFLOW

OVERFLOW

Figure 9: Safety analysis for nonlinear tank flow problem with time horizon tH = 100 s.
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Figure 10: Safety analysis for nonlinear tank flow problem with uncertain α and time horizon

tH = 10 s.
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Figure 11: Safety analysis for nonlinear tank flow problem with uncertain α and time horizon

tH = 100 s.
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Figure 12: State-based representation of the batch reactor problem (Huang et al., 2002).
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Figure 13: Safety analysis for the batch reactor problem in (T0, Ta) operating space.
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Figure 14: Safety analysis for the batch reactor problem in (T0, UA) operating space.
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Figure 15: Safety analysis for the batch reactor problem in (T0, Ta, UA) operating space. Green

region denotes safe, successful run; Red region denotes overheating (unsafe operation); Blue region

denotes safe, but unsuccessful run (insufficient conversion); Black region denotes undecided.
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